
J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

https://doi.org/10.1590/jatm.v13.1186 ORIGINAL PAPER

ABSTRACT
Many researchers developed new algorithms to predict the faults of unmanned aerial vehicles (UAV). These algorithms

detect anomalies in the streamed data of the UAV and label them as potential faults. Most of these algorithms consider neither
the complex relationships among the UAV variables nor the temporal patterns of the previous instances, which leaves a potential
opportunity for new ideas. A new method for analyzing the relationships and the temporal patterns of every two variables to
detect the potentially defected sensors. The proposed method depends on a new platform, which is composed of multiple deep
neural networks. The method starts by building and training this platform. The training step requires reshaping the dataset into
a set of subdatasets. Each new subdataset is used to train one deep neural network. In the testing phase, the method reads new
instances of the UAV testing dataset. The output of the algorithm is the predicted potential faults. The proposed approach is
evaluated and compared it with other well-known algorithms. The proposed approach showed promising results in predicting
different kinds of faults.

Keywords: UAV; Deep neural network; Anomaly detection; Abnormal; Fault.

Using Multiple Deep Neural Networks
Platform to Detect Different Types of
Potential Faults in Unmanned Aerial Vehicles
Ahmad Alos1,* , Zouhair Dahrouj1

1. Higher Institute for Applied Science and Technology – Informatics – Damascus – Syria

*Corresponding author: ahmad.alos@hiast.edu.sy

INTRODUCTION

In complex systems such as the unmanned aerial vehicles (UAV), the chances of failure are hazardously high. The streamed
data of the flight missions contain vast knowledge that can be used in defining and predicting potential faults. The data are stored
at a fixed rate in data rows. Each data row contains the values of the UAV variables. The variables are either command (elevator,
rudder, and the aileron command) or sensor readings (altitude, longitude, latitude, and airspeed). To foresee system failure,
anomaly detection algorithms are used. Anomaly detection algorithms find patterns in data that do not follow an expected behavior.
These algorithms are either supervised or unsupervised. The supervised algorithms are trained using datasets with labels for each
instance (normal/abnormal) labels. However, the unsupervised algorithms do not involve any labeling for the datasets, and they
assume that the abnormal patterns are less frequent than normal ones (Chandola et al. 2009).

Received: Mar. 19, 2020 | Accepted: Aug. 13, 2020
Peer Review History: Double Blind Peer Review.
Section Editor: Alison Moraes

This is an open access article distributed under the terms of the Creative Commons license.

https://doi.org/10.1590/jatm.v13.1186
https://orcid.org/0000-0003-4549-780X
https://orcid.org/0000-0001-7337-1513
mailto:ahmad.alos@hiast.edu.sy

J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

Alos A, Dahrouj Z2

Furthermore, the potential faults of the UAV are either: point, contextual, or collective (Chandola at al. 2009). The point fault
arises when the tested value is invalid or out of bounds. The contextual fault occurs when the value of the instance is not relevant
to the current context. The collective fault occurs when consecutive instances are considered invalid as a group when they put
together successively (Sun et al. 2017). Suppose that the UAV is on a low altitude, but the altimeter shows invalid increasing
values. The pilot decides to land the UAV, so he sends wrong commands to the UAV to decrease its altitude. These unsuitable
commands could result in the crash of the UAV. In this example, the altitude command is annotated as the dependent variable,
and the altitude sensor as the tested variable. To generalize, we associate the tested variable with the potentially defected sensor,
while the dependent variable represents the context of the fault.

Our contribution involves using a new platform of multiple deep neural networks (MDNN) to analyze the relationships of
every possible (dependent, tested) couple. The tested variable could be affected by more than one dependent variable, so it is
essential to take into account all the pairs. Using relationships of more than two variables in the multivariate dataset might detect
the fault. However, it will not permit determining the context of the fault (the dependent variable), because the effect of the different
relationships will result in losing track of the context. Thus, each pair (dependent, tested) is considered separately. In addition to
the relationships, it is necessary to analyze the temporal patterns in the dependent, tested relationship. The temporal patterns are
achieved by considering a sliding window technique (Ding et al. 2014). Each sliding window consists of the previous instances of
the dependent variable, and the differential values of the tested one.

The proposed approach reads a few rows of the data iteratively; then, it reshapes the rows into new subdatasets. Each new
subdataset is used to train one DNN of the collection. The trained MDNN platform is used to detect abnormal instances, which
could be potential faults.

The well-known “FLTz” synthetic dataset (Oza 2011) was used. The “FLTz” dataset contains several flights of a fixed-wing
aircraft. Some of the “FLTz” flights were used for training the proposed model, and the rest of the flights were used for testing it.

The proposed model was compared with other well-known approaches such as the KNN (K-nearest neighbor), the One-Class
SVM (support vector machine), and the Kernel SVM. The MDNN algorithm exhibited promising results in all experiments, in
which it detected accurately different types of faults, and worked better than the other algorithms while processing the stuck,
drift, and cut faults.

LITERATURE REVIEW

Over recent years, detecting system faults became the interest of many researchers, where they designed many algorithms
to extract data anomalies to predict faults. Casas et al. (2016) used decision trees to detect anomalies in cellular network data.
Their approach correctly recognized more than 80% of the abnormal instances with no false positives. He et al. (2019) presented
an anomaly detection and mitigation algorithm based on online subspace tracking (“ADMOST”). Their method detected the
outlier instance in the multivariate heterogeneous data stream with high accuracy and mitigated them with low error.

The progress in neural network architectures and machine learning led to a leap forward in performance and efficient
processing. Most of the existing approaches used neural networks to learn the behavior of a training dataset. The learned neural
network predicts the data online. It uses the error of prediction to extract the outliers during flight missions Hundman et al.
(2018), Saurav et al. (2018) and Vinayakumar et al. (2018) presented the efficiency of the deep learning approach and long short-
term memory (LSTM) networks for detecting anomalies for Android malware detection. Their approach obtained 0.987 detection
rate and 0.939 accuracy using an LSTM network with six layers. Wang et al. (2019) built a time series prediction model based on
the LSTM network. They estimated the uncertainty interval to conduct point anomaly detection. Their method scored a recall
rate close to one on two test datasets. Munir et al. (2019) used a deep learning-based approach for anomaly detection in time-
series data. Their technique was accurate even for small deviations in time series cycles. It was capable of detecting point and
contextual anomalies in time series with periodic and seasonality characteristics. Althubiti et al. (2019) applied an optimized model
of LSTM to implement an anomaly detection system. They claimed that the optimized model of LSTM obtained an accuracy of

J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

Using Multiple Deep Neural Networks Platform to Detect Different Types of Potential Faults in Unmanned Aerial Vehicles 3

0.8483. Also, they found that LSTM performed better than support vector machine, multiple perceptron networks, and Naïve
Bayes techniques. Despite the good results, these algorithms do not provide the desired objective, as they do not specifically catch
contextual faults, neither the context of the fault, and this leads to the benefit of the proposed approach.

Multiple neural networks have been utilized previously for different applications. The multiple neural networks give more
reliable results for the occurrence of faults than a single neural network. Zhang (2006) proposed a fully connected architecture of
a multiple neural networks platform. The outputs of the multiple DNNs were combined to give a single overall result. Karjol et al.
(2018) used MDNN for speech enhancement and estimated the speech spectrum as a weighted average of outputs from multiple
DNNs. The used platform is not fully connected as the previous platforms, because fully connected architecture may lead to mixed
relationships, and this could affect the results of the presented model.

METHODOLOGY

The presented method uses a platform of MDNN. The DNN is an artificial neural network (ANN) with multiple hidden
layers that are stacked together (Singh 2017). The ANN is an algorithm used in solving a wide range of problems, including
classification, clustering, and pattern recognition (Ullah et al. 2019). It is a computational system that learns to perform tasks by
training. The ANN is based on a collection of connected nodes called neurons. The neurons of the neural network are aggregated
into layers. Each neuron in a given layer is connected to every neuron in the next layer. The input layer receives data from outside
the network. The output layer generates the output results, and single or multiple hidden layers transform and transfer the data
from the input layers to the output layers. The job of a neuron can be represented mathematically by Eq. 1, which is adapted from
(Singh 2017). Each neuron receives some input signals; then, it multiplies the received inputs (element-wise multiplication) with
corresponding values called weights. Next, the neuron sums the result with a bias value; then, it applies an activation function;
for example, the sigmoid σ function (see Eq. 2).

of the presented model.

METHODOLOGY

The presented method uses a platform of MDNN. The DNN is an artificial neural

network (ANN) with multiple hidden layers that are stacked together (Singh 2017). The

ANN is an algorithm used in solving a wide range of problems, including classification,

clustering, and pattern recognition (Ullah et al. 2019). It is a computational system that

learns to perform tasks by training. The ANN is based on a collection of connected nodes

called neurons. The neurons of the neural network are aggregated into layers. Each neuron

in a given layer is connected to every neuron in the next layer. The input layer receives

data from outside the network. The output layer generates the output results, and single

or multiple hidden layers transform and transfer the data from the input layers to the

output layers. The job of a neuron can be represented mathematically by Eq. 1, which is

adapted from (Singh 2017). Each neuron receives some input signals; then, it multiplies

the received inputs (element-wise multiplication) with corresponding values called

weights. Next, the neuron sums the result with a bias value; then, it applies an activation

function; for example, the sigmoid 𝜎𝜎𝜎𝜎 function (see Eq. 2).

𝑦𝑦𝑦𝑦(𝑥𝑥𝑥𝑥) = 𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤⊙ 𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏) (1)

𝜎𝜎𝜎𝜎(𝑧𝑧𝑧𝑧) = 1
1+𝑒𝑒𝑒𝑒−𝑧𝑧𝑧𝑧 (2)

where 𝑥𝑥𝑥𝑥 is the input vector, 𝑤𝑤𝑤𝑤 is the weight vector, 𝑏𝑏𝑏𝑏 is the neuron bias, ⊙ is the

element-wise multiplication, 𝑓𝑓𝑓𝑓 is the activation function, 𝑦𝑦𝑦𝑦 is the neuron output, and 𝑧𝑧𝑧𝑧

is the input of the activation functions. The neuron sends the results to the next neurons

 (1)

of the presented model.

METHODOLOGY

The presented method uses a platform of MDNN. The DNN is an artificial neural

network (ANN) with multiple hidden layers that are stacked together (Singh 2017). The

ANN is an algorithm used in solving a wide range of problems, including classification,

clustering, and pattern recognition (Ullah et al. 2019). It is a computational system that

learns to perform tasks by training. The ANN is based on a collection of connected nodes

called neurons. The neurons of the neural network are aggregated into layers. Each neuron

in a given layer is connected to every neuron in the next layer. The input layer receives

data from outside the network. The output layer generates the output results, and single

or multiple hidden layers transform and transfer the data from the input layers to the

output layers. The job of a neuron can be represented mathematically by Eq. 1, which is

adapted from (Singh 2017). Each neuron receives some input signals; then, it multiplies

the received inputs (element-wise multiplication) with corresponding values called

weights. Next, the neuron sums the result with a bias value; then, it applies an activation

function; for example, the sigmoid 𝜎𝜎𝜎𝜎 function (see Eq. 2).

𝑦𝑦𝑦𝑦(𝑥𝑥𝑥𝑥) = 𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤⊙ 𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏) (1)

𝜎𝜎𝜎𝜎(𝑧𝑧𝑧𝑧) = 1
1+𝑒𝑒𝑒𝑒−𝑧𝑧𝑧𝑧 (2)

where 𝑥𝑥𝑥𝑥 is the input vector, 𝑤𝑤𝑤𝑤 is the weight vector, 𝑏𝑏𝑏𝑏 is the neuron bias, ⊙ is the

element-wise multiplication, 𝑓𝑓𝑓𝑓 is the activation function, 𝑦𝑦𝑦𝑦 is the neuron output, and 𝑧𝑧𝑧𝑧

is the input of the activation functions. The neuron sends the results to the next neurons

 (2)

where x is the input vector, w is the weight vector, v is the neuron bias, ◉ is the element-wise multiplication, f is the activation
function, y is the neuron output, and z is the input of the activation functions. The neuron sends the results to the next neurons
that are connected to it in the subsequent layers. The weights values are adjusted through the training phase. Training the network
is accomplished in an organized and efficient technique, such as the error back-propagation method, which is widely used in most
ANN prototypes (Wang et al. 2013), and it is explained briefly in (Yu and Wilamowski 2016).

Multiple deep neural network (MDNN)
Figure 1 shows a block diagram of the MDNN method, where it consists of two phases: (1) the building and training phase

and (2) the testing phase. In the first phase, the algorithm collects the variables of the UAV, and form an array of elements.
Each element of this array is a possible (dependent, tested) couple. Then, it builds the MDNN platform by defining one DNN for
each (dependent, tested) couple. Accordingly, the algorithm reshapes the training dataset into a set of subdatasets. The rows of each
subdataset are the values of a sliding window. Each sliding window consists of the previous instances of the dependent variable,
and the differential values of the tested one. The algorithm trains the MDNN platform using the new subdatasets. In the testing
phase, the algorithm reads the instances at each time step, constructs the sliding window for the (dependent, tested) couple, and
uses the trained MDNN platform to detect the abnormal instances; consequently, it predicts the potential faults.

J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

Alos A, Dahrouj Z4

Training
Dataset

Testing
Dataset

Testing Phase

Building and
Training Phase

Read new
instances using
sliding windows

Detecting
Anomalies

Create one
DNN for each
two variables

Train each DNN using
the new constructed
training sub-datasets

Construct new sub-
datasets for training using

sliding windows

Form a table
of variable
couples

Collect the
Variables of
the datasets

MDNN

Figure 1. Block diagram of the MDNN algorithm.

The set of m tested variables is represented by P = {pj : j < m}, and the set of n dependent variables by Q = {qk : k < n}. The values
of each couple (qk, pj) at time step t are (xt

qk
,xt

pj
). The goal is to predict potential faults by extracting the abnormal temporal patterns

of the two variables (qk, pj). To build the new platform of the MDNNs, Algorithm 1 is used. This algorithm starts by declaring NN
as an empty matrix, whose elements will be the new (m × n) DNNs (see Fig. 2).

Algorithm 1. Building MDNN platform.

1: procedure building_MDNN_platform()
2: declare the structure NN [m × n]
3: for each variable qk do
4: for each variable pjdo
5: create a deep neural network NN(qk,pj)

6: Dqk,pj
← Ø

7: for each step t do
8: Wt,h

qk,pj
 ← [xqk

t-h+1, ... ,xt
qk

, Δxpj

t-h+1, Δxt
pj
]

9: add [Wt,h
qk,pj

, class (xt
qk

, Δxt
pj
)] to Dqk,pj

10: end for
11: train network NN(qk,pj) using Dqk,pj

12: N[k,j] ← NN(qk,pj)

13: end for
14: end for
15: return NN (The Multiple Deep Neural Network)
16: end procedure

The algorithm creates a neural network NN(qk,pj) for each (qk, pj) couple. These couples can be nominated with the help of an expert in
the field. Then, the algorithm creates a subdataset Dqk,pj

 using the training dataset. The subdataset Dqk,pj
 is used for training NN(qk,pj). Each row

of Dqk,pj
 consists of the input and the output of the neural network NN(qk,pj). The input Wt,h

qk,pj
 at time step t is a sequential list of the current

and the previous instances of the two variables (qk, pj), and it consists of 2h elements (Eq. 3), where h is the size of the sliding window.

10: end for
11: train network 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗) using 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
12: 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁[𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗] ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗)
13: end for
14: end for
15: return 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(The Multiple Deep Neural Network)
16: end procedure

Figure 2. The MDNN structure.

The algorithm creates a neural network 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗) for each (𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗) couple. These

couples can be nominated with the help of an expert in the field. Then, the algorithm

creates a subdataset 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 using the training dataset. The subdataset 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 is used for

training 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗). Each row of 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 consists of the input and the output of the neural

network 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗). The input 𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ at time step 𝑡𝑡𝑡𝑡 is a sequential list of the current and

the previous instances of the two variables (𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗), and it consists of 2ℎ elements (Eq.

3), where ℎ is the size of the sliding window.

𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ = �𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘

𝑡𝑡𝑡𝑡−ℎ+1, … , 𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡−ℎ+1, … ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 � (3)

 (3)

in Eq. 3: the differential values Δxt
pj
 = xt

pj
 – xpj

t-1 are used to increase the sensitivity of the algorithm for the occurrences of faults in
the Tested variable pj, as suggested by Khalastchi and Kalech (2018).

J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

Using Multiple Deep Neural Networks Platform to Detect Different Types of Potential Faults in Unmanned Aerial Vehicles 5

NN1,1 NN1,2 NN1,j

NNk,1 NNk,2 NNk,j

NN2,1 NN2,2 NN2,j

Figure 2. The MDNN structure.

The training output of the neural network NN(qk,pj) is the class of the point (xt
qk

, Δxt
pj
), where class (xt

qk
, Δxt

pj
) ∈{Zero, One} . Zero is

the abnormal class, and one is the normal class. By combining the input and the output, a row of Dqk,pj
 is constructed. Iteratively

and in the next time steps, the algorithm constructs the next rows of Dqk,pj
. Equation 4 shows the shape of Dqk,pj

.

In Eq. 3: the differential values ∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡−1 are used to increase the sensitivity

of the algorithm for the occurrences of faults in the Tested variable 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗, as suggested by

Khalastchi and Kalech (2018).

The training output of the neural network 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗) is the class of the

point (𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡), where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 � ∈ {𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍,𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑍𝑍𝑍𝑍}. Zero is the abnormal class,

and one is the normal class. By combining the input and the output, a row of 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 is

constructed. Iteratively and in the next time steps, the algorithm constructs the next rows

of 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗. Equation 4 shows the shape of 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗.

𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 = {[𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘

𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 �]: 0 ≤ 𝑡𝑡𝑡𝑡 ≤ 𝑁𝑁𝑁𝑁 − 1} (4)

where 𝑁𝑁𝑁𝑁 is the size of the new subdataset. After creating 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗, the algorithm trains

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗) and assigns it to the element 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁[𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗] to be used in the testing phase.

The mathematical model for a neural network 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁[𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗] is realized using a nonlinear

functional mapping from the values of the input 𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ to the output 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 (Eq. 5).

𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗 ⊙𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡,ℎ + 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗) (5)

where 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗 = {𝜃𝜃𝜃𝜃1, 𝜃𝜃𝜃𝜃2 … ,𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 … } is a vector of all weight values, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗 = {𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2 … , 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 … }

is a vector of all bias values of the neural network. 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 is the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ weight value and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 is

the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ bias value. 𝑓𝑓𝑓𝑓 is a nonlinear function that is determined by the structure of the

neural network 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁[𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗] (Wang et al. 2013). Training the neural network using the

method of error back-propagation allows the system to learn any given mapping of input

 (4)

where N is the size of the new subdataset. After creating Dqk,pj
, the algorithm trains NN(qk,pj) and assigns it to the element NN[k,j]

to be used in the testing phase.
The mathematical model for a neural network NN[k,j] is realized using a nonlinear functional mapping from the values of

the input Wt,h
qk,pj

 to the output yt
k,j

 (Eq. 5).

In Eq. 3: the differential values ∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡−1 are used to increase the sensitivity

of the algorithm for the occurrences of faults in the Tested variable 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗, as suggested by

Khalastchi and Kalech (2018).

The training output of the neural network 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗) is the class of the

point (𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡), where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 � ∈ {𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍,𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑍𝑍𝑍𝑍}. Zero is the abnormal class,

and one is the normal class. By combining the input and the output, a row of 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 is

constructed. Iteratively and in the next time steps, the algorithm constructs the next rows

of 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗. Equation 4 shows the shape of 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗.

𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 = {[𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘

𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 �]: 0 ≤ 𝑡𝑡𝑡𝑡 ≤ 𝑁𝑁𝑁𝑁 − 1} (4)

where 𝑁𝑁𝑁𝑁 is the size of the new subdataset. After creating 𝐷𝐷𝐷𝐷𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗, the algorithm trains

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗) and assigns it to the element 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁[𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗] to be used in the testing phase.

The mathematical model for a neural network 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁[𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗] is realized using a nonlinear

functional mapping from the values of the input 𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ to the output 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 (Eq. 5).

𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗 ⊙𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡,ℎ + 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗) (5)

where 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗 = {𝜃𝜃𝜃𝜃1, 𝜃𝜃𝜃𝜃2 … ,𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 … } is a vector of all weight values, 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗 = {𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2 … , 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 … }

is a vector of all bias values of the neural network. 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 is the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ weight value and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 is

the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ bias value. 𝑓𝑓𝑓𝑓 is a nonlinear function that is determined by the structure of the

neural network 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁[𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗] (Wang et al. 2013). Training the neural network using the

method of error back-propagation allows the system to learn any given mapping of input

 (5)

where wk,j = {θ1, θ2 ..., θi , ...} is a vector of all weight values, bk,j = {b1, b2 ..., bi , ...} is a vector of all bias values of the neural
network. θi is the ith weight value and b is the ith bias value. f is a nonlinear function that is determined by the structure of the
neural network NN[k,j] (Wang et al. 2013). Training the neural network using the method of error back-propagation allows
the system to learn any given mapping of input to output. The back-propagation method is used by the gradient descent
algorithm. The gradient descent algorithm is an iterative optimization algorithm that tries to find the local minimum of the
loss function. The loss function E is calculated using Eq. 6. The descent algorithm calculates the gradient ∇E as the first-order
derivative of the total error function (Eq. 7), which adapted from (Yu and Wilamowski 2016). At each iteration of the gradient
descent method, the values of θi, bi are adjusted using Eq. 8 and 9 (the reader is referred to Yu and Wilamowski [2016] for the
mathematical extraction steps for Eqs. 8 and 9).

to output. The back-propagation method is used by the gradient descent algorithm. The

gradient descent algorithm is an iterative optimization algorithm that tries to find the local

minimum of the loss function. The loss function 𝐸𝐸𝐸𝐸 is calculated using Eq. 6. The descent

algorithm calculates the gradient ∇𝐸𝐸𝐸𝐸 as the first-order derivative of the total error

function (Eq. 7), which adapted from (Yu and Wilamowski 2016). At each iteration of

the gradient descent method, the values of 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 are adjusted using Eq. 8 and 9 (the

reader is referred to Yu and Wilamowski [2016] for the mathematical extraction steps for

Eqs. 8 and 9).

𝐸𝐸𝐸𝐸 = �𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘

𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 ��

2
 (6)

∇𝐸𝐸𝐸𝐸 = � 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃1

, … 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

, 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏1

, … 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖

… �
𝑇𝑇𝑇𝑇
 (7)

∆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = −𝜂𝜂𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

 (8)

∆b𝑖𝑖𝑖𝑖 = −𝜂𝜂𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖

 (9)

where 𝜂𝜂𝜂𝜂 > 0 is the learning rate, which can be adjusted during the training process.

Increasing the learning rate value makes the learning process faster, but it might affect

the sensitivity of the neural network (Yu and Wilamowski 2016). In the testing phase, if

the input vector 𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ outputs an Anomaly, then the algorithm considers the

instance(𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡) as a potential fault (see Fig. 3).

 (6)

to output. The back-propagation method is used by the gradient descent algorithm. The

gradient descent algorithm is an iterative optimization algorithm that tries to find the local

minimum of the loss function. The loss function 𝐸𝐸𝐸𝐸 is calculated using Eq. 6. The descent

algorithm calculates the gradient ∇𝐸𝐸𝐸𝐸 as the first-order derivative of the total error

function (Eq. 7), which adapted from (Yu and Wilamowski 2016). At each iteration of

the gradient descent method, the values of 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 are adjusted using Eq. 8 and 9 (the

reader is referred to Yu and Wilamowski [2016] for the mathematical extraction steps for

Eqs. 8 and 9).

𝐸𝐸𝐸𝐸 = �𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘

𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 ��

2
 (6)

∇𝐸𝐸𝐸𝐸 = � 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃1

, … 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

, 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏1

, … 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖

… �
𝑇𝑇𝑇𝑇
 (7)

∆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = −𝜂𝜂𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

 (8)

∆b𝑖𝑖𝑖𝑖 = −𝜂𝜂𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖

 (9)

where 𝜂𝜂𝜂𝜂 > 0 is the learning rate, which can be adjusted during the training process.

Increasing the learning rate value makes the learning process faster, but it might affect

the sensitivity of the neural network (Yu and Wilamowski 2016). In the testing phase, if

the input vector 𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ outputs an Anomaly, then the algorithm considers the

instance(𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡) as a potential fault (see Fig. 3).

 (7)

to output. The back-propagation method is used by the gradient descent algorithm. The

gradient descent algorithm is an iterative optimization algorithm that tries to find the local

minimum of the loss function. The loss function 𝐸𝐸𝐸𝐸 is calculated using Eq. 6. The descent

algorithm calculates the gradient ∇𝐸𝐸𝐸𝐸 as the first-order derivative of the total error

function (Eq. 7), which adapted from (Yu and Wilamowski 2016). At each iteration of

the gradient descent method, the values of 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 are adjusted using Eq. 8 and 9 (the

reader is referred to Yu and Wilamowski [2016] for the mathematical extraction steps for

Eqs. 8 and 9).

𝐸𝐸𝐸𝐸 = �𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘

𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 ��

2
 (6)

∇𝐸𝐸𝐸𝐸 = � 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃1

, … 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

, 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏1

, … 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖

… �
𝑇𝑇𝑇𝑇
 (7)

∆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = −𝜂𝜂𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

 (8)

∆b𝑖𝑖𝑖𝑖 = −𝜂𝜂𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖

 (9)

where 𝜂𝜂𝜂𝜂 > 0 is the learning rate, which can be adjusted during the training process.

Increasing the learning rate value makes the learning process faster, but it might affect

the sensitivity of the neural network (Yu and Wilamowski 2016). In the testing phase, if

the input vector 𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ outputs an Anomaly, then the algorithm considers the

instance(𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡) as a potential fault (see Fig. 3).

 (8)

J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

Alos A, Dahrouj Z6

to output. The back-propagation method is used by the gradient descent algorithm. The

gradient descent algorithm is an iterative optimization algorithm that tries to find the local

minimum of the loss function. The loss function 𝐸𝐸𝐸𝐸 is calculated using Eq. 6. The descent

algorithm calculates the gradient ∇𝐸𝐸𝐸𝐸 as the first-order derivative of the total error

function (Eq. 7), which adapted from (Yu and Wilamowski 2016). At each iteration of

the gradient descent method, the values of 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 are adjusted using Eq. 8 and 9 (the

reader is referred to Yu and Wilamowski [2016] for the mathematical extraction steps for

Eqs. 8 and 9).

𝐸𝐸𝐸𝐸 = �𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘

𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡 ��

2
 (6)

∇𝐸𝐸𝐸𝐸 = � 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃1

, … 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

, 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏1

, … 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖

… �
𝑇𝑇𝑇𝑇
 (7)

∆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = −𝜂𝜂𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

 (8)

∆b𝑖𝑖𝑖𝑖 = −𝜂𝜂𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖

 (9)

where 𝜂𝜂𝜂𝜂 > 0 is the learning rate, which can be adjusted during the training process.

Increasing the learning rate value makes the learning process faster, but it might affect

the sensitivity of the neural network (Yu and Wilamowski 2016). In the testing phase, if

the input vector 𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ outputs an Anomaly, then the algorithm considers the

instance(𝑥𝑥𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑡𝑡𝑡𝑡 ,∆𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡) as a potential fault (see Fig. 3).

 (9)

where η > 0 is the learning rate, which can be adjusted during the training process. Increasing the learning rate value makes the
learning process faster, but it might affect the sensitivity of the neural network (Yu and Wilamowski 2016). In the testing phase,
if the input vector Wt,h

qk,pj
 outputs an Anomaly, then the algorithm considers the instance (xt

qk
, Δxt

pj
) as a potential fault (see Fig. 3).

qk pj

h

NNk,j

is Abnormalclass (xtqk,∆x
t
pj)

Fault in pj in context of qk

output

1

2

n

1

2

n

Ti
m

e

Figure 3. Detecting faults using neural network NN[k,j].

RESULTS AND DISCUSSION

The well-known “FLTz” synthetic dataset is used. This dataset is shared by Oza (2011) for public research purposes, and it
contains 20 flights of a fixed-wing aircraft with periods up to 40 min. “FLTz” is a flight simulator used to develop flight control,
planning, and in-flight fault detection (Chu et al. 2010). Each flight includes all stages as takeoff, climb, cruise, and descent.
Each flight consists of 36 variables, and it is recorded at a rate of 1 Hz. The experiments were conducted by employing 14 sensor
readings and four commands. The first 14 sensor readings variables were considered as the tested variables, and all the 18 variables
were considered as the dependent ones. Table 1 shows the variables of the FLTz dataset.

Table 1. The variables of the FLTz dataset (bold variables are the tested ones).

Variable Range Unit Variable Range Unit

Pitch [-0.3,0.3] rad Lateral acceleration [-8,8] m/s2

Airspeed [50,300] m/s Vertical acceleration [-40,40] m/s2

Velocity [100-500] m/s Roll acceleration [-0.3,0.3] rad/s2

Lateral velocity [-10-10] m/s Pitch acceleration [0.15,0.15] rad/s2

Vertical velocity [-20-100] m/s Yaw acceleration [-0.03,0.03] rad/s2

Roll rate [-0.15,0.15] rad/s Left aileron command [-10,10] _

Pitch rate [-0.05, 0.05] rad/s Right aileron command [-10,10] _

Yaw rate [-0.06, 0.06] rad/s Elevators command [-25,25] _

Forward acceleration [-10,15] m/s2 Rudder command [-6,6] _

Using the “FLTz” dataset, a new dataset was generated for the training phase with 40,000 rows by concatenating randomly
multiple flights. Four different flights for testing purposes were used. Each flight was injected by one fault type (impulse, stuck,
cut, and drift) into various variables such as (pitch, pitch rate, and airspeed). Table 2 shows the injected faults in the selected

J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

Using Multiple Deep Neural Networks Platform to Detect Different Types of Potential Faults in Unmanned Aerial Vehicles 7

four flights. The impulse fault means that the sensor shows an offset value added to its actual value in one instance (see Fig. 4
and note the small range of the impulse, which is about [0, 0.07]). The stuck fault occurs when the value of the sensor is stuck
at a specific reading (Fig. 5). The drift fault means that the readings of the sensor increase through time where they should
not (Fig. 6), and the cut fault occurs when the sensor shows unexpected continuous zero reading for a limited period (Fig. 7).

Table 2. The injected faults in the testing flights.

Dataset Fault type Faults count Defected sensor

Flight1 impulse 48 Pitch rate

Flight2 stuck 1085 Airspeed

Flight3 drift 435 Pitch

Flight4 cut 199 Airspeed

0.12

0.08

0.04

0

-0.04P
itc

h
R

at
e

(r
ad

/
s)

0 200 400 600 800 1000 1200
Time (s)

Figure 4. Pitch rate impulse faults.
300

200

100

0A
ir
sp

ee
d

(m
/

s)

0 200 400 600 800 1000 1200
Time (s)

Figure 5. Airspeed stuck faults.
6

4

2

0

-2

P
itc

h
(r

ad
)

99 119 139 159 179 199
Time (s)

Figure 6. Pitch drift faults.
300

200

100

0A
ir
sp

ee
d

(m
/

s)

0 200 400 600 800 1000 1200

Time (s)

Figure 7. Airspeed cut faults.

Multiple experiments were conducted to evaluate the results of the presented approach. The results were compared with
the results of other known algorithms such as KNN, One-Class SVM, and Kernel SVM. All algorithms were tested using the
same flights.

J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

Alos A, Dahrouj Z8

The MDNN platform (Algorithm 1) consisted of 238 DNNs. Each neural network consisted of one input layer, one output
layer, and three stacked hidden layers. In the experiments, the input layer contained 2h = 8 neurons (2h is the length of the input
Wt,h

qk,pj
), the hidden layers structure had [8, 16, 8] neurons in three layers, respectively. Using three hidden layers helped to get

acceptable results. The output layer had one neuron for detecting anomalies.

EVALUATION INDICATORS

To evaluate the anomaly detection algorithms, the following indicators were used: recall or detection rate (Eq. 10), false alarm
rate (FAR) (Eq. 11), and precision (Eq. 12). Precision is an indicator of whether the detected anomalies are trustworthy. Also, the
Score (Eq. 13) was used to evaluate both the precision and the recall (Lee and Kim 2019). (These indicators are widely used in
the area of anomaly detection).

Figure 7. Airspeed cut faults.

Multiple experiments were conducted to evaluate the results of the presented approach.

The results were compared with the results of other known algorithms such as KNN, One-

Class SVM, and Kernel SVM. All algorithms were tested using the same flights.

The MDNN platform (Algorithm 1) consisted of 238 DNNs. Each neural network

consisted of one input layer, one output layer, and three stacked hidden layers. In the

experiments, the input layer contained 2h = 8 neurons (2h is the length of the input

𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ), the hidden layers structure had [8, 16, 8] neurons in three layers, respectively.

Using three hidden layers helped to get acceptable results. The output layer had one

neuron for detecting anomalies.

EVALUATION INDICATORS

To evaluate the anomaly detection algorithms, the following indicators were used:

recall or detection rate (Eq. 10), false alarm rate (FAR) (Eq. 11), and precision (Eq. 12).

Precision is an indicator of whether the detected anomalies are trustworthy. Also, the

Score (Eq. 13) was used to evaluate both the precision and the recall (Lee and Kim 2019).

(These indicators are widely used in the area of anomaly detection).

𝑅𝑅𝑅𝑅𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 (10)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹

 (11)

𝑃𝑃𝑃𝑃𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇

 (12)

𝐹𝐹𝐹𝐹. 𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 2∗𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 (13)

 (10)

Figure 7. Airspeed cut faults.

Multiple experiments were conducted to evaluate the results of the presented approach.

The results were compared with the results of other known algorithms such as KNN, One-

Class SVM, and Kernel SVM. All algorithms were tested using the same flights.

The MDNN platform (Algorithm 1) consisted of 238 DNNs. Each neural network

consisted of one input layer, one output layer, and three stacked hidden layers. In the

experiments, the input layer contained 2h = 8 neurons (2h is the length of the input

𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ), the hidden layers structure had [8, 16, 8] neurons in three layers, respectively.

Using three hidden layers helped to get acceptable results. The output layer had one

neuron for detecting anomalies.

EVALUATION INDICATORS

To evaluate the anomaly detection algorithms, the following indicators were used:

recall or detection rate (Eq. 10), false alarm rate (FAR) (Eq. 11), and precision (Eq. 12).

Precision is an indicator of whether the detected anomalies are trustworthy. Also, the

Score (Eq. 13) was used to evaluate both the precision and the recall (Lee and Kim 2019).

(These indicators are widely used in the area of anomaly detection).

𝑅𝑅𝑅𝑅𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 (10)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹

 (11)

𝑃𝑃𝑃𝑃𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇

 (12)

𝐹𝐹𝐹𝐹. 𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 2∗𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 (13)

 (11)

Figure 7. Airspeed cut faults.

Multiple experiments were conducted to evaluate the results of the presented approach.

The results were compared with the results of other known algorithms such as KNN, One-

Class SVM, and Kernel SVM. All algorithms were tested using the same flights.

The MDNN platform (Algorithm 1) consisted of 238 DNNs. Each neural network

consisted of one input layer, one output layer, and three stacked hidden layers. In the

experiments, the input layer contained 2h = 8 neurons (2h is the length of the input

𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ), the hidden layers structure had [8, 16, 8] neurons in three layers, respectively.

Using three hidden layers helped to get acceptable results. The output layer had one

neuron for detecting anomalies.

EVALUATION INDICATORS

To evaluate the anomaly detection algorithms, the following indicators were used:

recall or detection rate (Eq. 10), false alarm rate (FAR) (Eq. 11), and precision (Eq. 12).

Precision is an indicator of whether the detected anomalies are trustworthy. Also, the

Score (Eq. 13) was used to evaluate both the precision and the recall (Lee and Kim 2019).

(These indicators are widely used in the area of anomaly detection).

𝑅𝑅𝑅𝑅𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 (10)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹

 (11)

𝑃𝑃𝑃𝑃𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇

 (12)

𝐹𝐹𝐹𝐹. 𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 2∗𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 (13)

 (12)

Figure 7. Airspeed cut faults.

Multiple experiments were conducted to evaluate the results of the presented approach.

The results were compared with the results of other known algorithms such as KNN, One-

Class SVM, and Kernel SVM. All algorithms were tested using the same flights.

The MDNN platform (Algorithm 1) consisted of 238 DNNs. Each neural network

consisted of one input layer, one output layer, and three stacked hidden layers. In the

experiments, the input layer contained 2h = 8 neurons (2h is the length of the input

𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑡𝑡𝑡𝑡,ℎ), the hidden layers structure had [8, 16, 8] neurons in three layers, respectively.

Using three hidden layers helped to get acceptable results. The output layer had one

neuron for detecting anomalies.

EVALUATION INDICATORS

To evaluate the anomaly detection algorithms, the following indicators were used:

recall or detection rate (Eq. 10), false alarm rate (FAR) (Eq. 11), and precision (Eq. 12).

Precision is an indicator of whether the detected anomalies are trustworthy. Also, the

Score (Eq. 13) was used to evaluate both the precision and the recall (Lee and Kim 2019).

(These indicators are widely used in the area of anomaly detection).

𝑅𝑅𝑅𝑅𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 (10)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹

 (11)

𝑃𝑃𝑃𝑃𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇

 (12)

𝐹𝐹𝐹𝐹. 𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 2∗𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 (13) (13)

where TP is the true positive (FP) is the false positive (FP), (TN) is the true negative (TN), and (FN) is the false negative (FN).
The algorithm with maximum Recall, Precision, and F.score as well as minimum FAR (Yong et al. 2017) presents better efficiency.

FAULT DETECTION EXPERIMENTS

The proposed approach was compared with other well-known algorithms such as the KNN, the One-Class SVM (support
vector machine), and the Kernel SVM. The K nearest neighbor algorithm KNN is used for classification problems by estimating
the local density of the data points (Ullah et al. 2019). It depends on the distance between the tested value and its nearest
neighbors. Usually, the Euclidean distance is used. The One-Class SVM (support vector machine) finds a boundary that
surrounds the normal instances of the training dataset. For that, it decides that the test instance falls within the region of the
learned boundary, through a linear decision function (For more details of the linear decision functions, the reader is referred
to Chandola et al. [2009] and Bounsiar and Madden [2014]). The SVM algorithm increases its efficiency to perform nonlinear
classification by applying kernel functions (Kernel SVM) (Guo et al. 2015). The kernel functions map pairs of objects to their
similarity. The values of the similarity range between one and zero, where value one is given for maximum similarity, and
value zero is given for no similarity (Das et al. 2010). Commonly, the Gaussian kernel with Euclidean distance measure is used
(Juvonen et al. 2015).

Table 3 shows that the required training time for the Kernel SVM algorithm was the longest; this was because of the computational
complexity of the kernel function (Janakiraman and Nielsen 2016). The training time for the MDNN algorithm was also long
because of the large number of neurons that need to be trained.

J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

Using Multiple Deep Neural Networks Platform to Detect Different Types of Potential Faults in Unmanned Aerial Vehicles 9

Table 3. The total training time for the anomaly detection algorithms.

Algorithm Training time (ms)

MDNN 10,409,078

KNN 126,257

SVM 104,856

Kernel SVM 17,500,046

The MDNN algorithm scored good results considering all the evaluation indicators (Table 4), where its recall and
precision had the highest values, and its false alarm rate approached zero. Multiple deep neural networks scores were better
than the scores of Kernel SVM and KNN algorithms; for example, the precision of the MDNN algorithm was generally
better. Additionally, in the testing phase, the KNN algorithm was the slowest, while the One-Class SVM was the fastest as
Fig. 8 shows.

Table 4. Results of testing the anomaly detection algorithms.

Algorithm Flights Recall FAR Precision F.Score

MDNN

Flight1 1 0.02 0.96 0.98

Flight2 1 0.14 0.97 0.98

Flight3 1 0.03 0.94 0.97

Flight4 1 0.01 0.96 0.98

KNN

Flight1 1 0 1 1

Flight2 1 0.53 0.89 0.94

Flight3 1 0.02 0.96 0.98

Flight4 1 0.09 0.67 0.8

SVM

Flight1 1 0 1 1

Flight2 1 1 0.8 0.89

Flight3 0.03 0 1 0.05

Flight4 0.02 0 1 0.03

Kernel SVM

Flight1 1 0 1 1

Flight2 1 0.85 0.83 0.9

Flight3 1 0.09 0.84 0.91

Flight4 0.82 0.03 0.86 0.84

70000
60000
50000
40000
30000
20000
10000

0
Flights

Algorithm

FL1 FL2 FL3 FL4

MDNN

FL1 FL2 FL3 FL4

KNN

FL1 FL2 FL3 FL4

SVM

FL1 FL2 FL3 FL4

Kernal SVM

Figure 8. The testing time to perform the algorithms for each dataset.

J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

Alos A, Dahrouj Z10

The One-Class SVM was better in detecting impulse faults in Flight1; however, its false alarm rate was high for stuck faults in
Flight2, and its recall approached zero in the case of the drift in Flight3 and cut faults in Flight4, and this means that One-class
SVM failed to detect faults that have a continuous nature.

In Flight1 (impulse-faults, Fig. 4), the precision of the MDNN algorithm was acceptable (0.96), but it was a bit lower from that
of KNN, SVM, and Kernel SVM, and the reason is the small range of the impulses. In Flight2 (stuck faults), Flight3 (cut faults),
and Flight4 (drift faults), the precision indicator of the KNN, SVM, and Kernel SVM was high. However, the false alarm rate was
high, and this was because it was difficult for these algorithms to separate the significant number of outliers from the normal
instances due to the continuous nature of the faults. For the same reasons, the One-Class SVM showed low detection rate when
processing Flight3 (sensor-drift) and Flight4 (sensor-cut), therefore the F.Score indicator was low too. However, the precision
indicator was high (refer to Eq. 12).

K-nearest neighbor efficiency was similar to the MDNN algorithm in processing Flight3 and Flight4. The reason is the increased
distance of these outliers from the normal instances, which increased the KNN reliability. Note that the MDNN algorithm was
not affected by the continuous nature of the outliers, and this caused the MDNN algorithm (which is a supervised algorithm) to
be better from the other algorithms.

CONCLUSION

In this paper, a novel method is proposed for predicting several types of potential faults by analyzing the relationships between
the variables of the UAV flights and considering the temporal patterns of the previous values. The new method depends on a
platform of MDNN. Each DNN is responsible for detecting anomalies in the instances of a couple (dependent, tested) variables.
The MDNN algorithm worked better than other algorithms while processing the stuck, drift, and cut faults, which have continuous
nature. On the other hand, it was sensitive to the small values of the abnormal impulses, but its precision was a bit lower than
the other algorithms.

Future work includes improvements to make the algorithm faster in the training phase by optimizing the structure of the
neural networks and increase their precision or by enhancing the performance by testing different platforms, such as using one
tested variable versus many dependent variables. Also, new methods could be explored for choosing the appropriate couples of
variables in order to minimize the size of the processed values. Moreover, the new platform can be used to test and compare other
machine learning classifiers, such as long short-memory networks and logistic regression.

AUTHOR’S CONTRIBUTION

Conceptualization: Alos A and Dahrouj Z; Methodology: Alos A; Computational Works: Alos A; Analysis: Alos A and
Dahrouj Z; Writing – Original Draft: Alos A; Writing – Review and Editing: Alos A and Dahrouj Z; Supervision: Dahrouj Z.

DATA AVAILABILITY STATEMENT

The data will be available upon request.

FUNDING

Not applicable.

J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

Using Multiple Deep Neural Networks Platform to Detect Different Types of Potential Faults in Unmanned Aerial Vehicles 11

ACKNOWLEDGEMENTS

Not applicable.

REFERENCES

Althubiti SA, Jones EM, Roy K (2019) LSTM for anomaly-based network intrusion detection. 2018 28th International
Telecommunication Networks and Applications Conference. IEEE; Sydney, Australia. https://doi.org/10.1109/
ATNAC.2018.8615300

Bounsiar A, Madden MG (2014) One-class support vector machines revisited. Paper presented ICISA 2014 - 2014 5th
International Conference on Information Science and Applications. IEEE; Seoul, South Korea. https://doi.org/10.1109/
ICISA.2014.6847442

Casas P, Fiadino P, D’Alconzo A (2016) Machine-learning based approaches for anomaly detection and classification in cellular
networks. Paper presented 8th Traffic Monitoring and Analysis (TMA2016) Workshop. TMA; Louvain La Neuve, Belgium.

Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15. https://doi.
org/10.1145/1541880.1541882

Chu E, Gorinevsky D, Boyd S (2010) Detecting aircraft anomalies cruise flight data. Paper presented AIAA Infotech@
Aerospace 2010. AIAA, Atlanta, USA. https://doi.org/10.2514/6.2010-3307

Das S, Matthews BL, Srivastava AN, Oza NC (2010) Multiple kernel learning for heterogeneous anomaly detection. Paper
presented KDD ‘10: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining. KDD; New York, USA. https://doi.org/10.1145/1835804.1835813

Ding X, Li Y, Belatreche A, Maguire LP (2014) An experimental evaluation of novelty detection methods. Neurocomputing
135:313-27. https://doi.org/10.1016/j.neucom.2013.12.002

Guo X, Denman S, Fookes C, Mejias L, Sridharan S (2015) Automatic UAV forced landing site detection using machine
learning. Paper presented 2014 International Conference on Digital Image Computing: Techniques and Applications. IEEE;
Wollongong, Australia. https://doi.org/10.1109/DICTA.2014.7008097

He Y, Peng Y, Wang S, Liu D (2019) ADMOST: UAV Flight data anomaly detection and mitigation via online subspace
tracking. IEEE Trans Instrum Meas 68(4):1035-1044. https://doi.org/10.1109/TIM.2018.2863499

Hundman K, Constantinou V, Laporte C, Colwell I, Soderstrom T (2018) Detecting spacecraft anomalies using LSTMs
and nonparametric dynamic thresholding. KDD ‘18: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. KDD; New York, USA. https://doi.org/10.1145/3219819.3219845

Janakiraman VM, Nielsen D (2016) Anomaly detection in aviation data using extreme learning machines. Paper presented 2016
International Joint Conference on Neural Networks. IEEE; Vacouver, Canada. https://doi.org/10.1109/IJCNN.2016.7727444

Juvonen A, Sipola T, Hämäläinen T (2015) Online anomaly detection using dimensionality reduction techniques for HTTP
log analysis. Comput Netw 91:46-56. https://doi.org/10.1016/j.comnet.2015.07.019

Karjol P, Kumar MA, Ghosh PK (2018) Speech Enhancement using multiple deep neural networks. Paper presented 2018
IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE; Calgary, Canada. https://doi.org/10.1109/
ICASSP.2018.8462649

https://doi.org/10.1109/ATNAC.2018.8615300
https://doi.org/10.1109/ATNAC.2018.8615300
https://doi.org/10.1109/ICISA.2014.6847442
https://doi.org/10.1109/ICISA.2014.6847442
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.2514/6.2010-3307
https://doi.org/10.1145/1835804.1835813
https://doi.org/10.1016/j.neucom.2013.12.002
https://doi.org/10.1109/DICTA.2014.7008097
https://doi.org/10.1109/TIM.2018.2863499
https://doi.org/10.1145/3219819.3219845
https://doi.org/10.1109/IJCNN.2016.7727444
https://doi.org/10.1016/j.comnet.2015.07.019
https://doi.org/10.1109/ICASSP.2018.8462649
https://doi.org/10.1109/ICASSP.2018.8462649

J. Aerosp. Technol. Manag., São José dos Campos, v13, e1321, 2021

Alos A, Dahrouj Z12

Khalastchi E, Kalech M (2018) A sensor-based approach for Fault detection and diagnosis for robotic systems. Auton Robot.
42:1231-1248. https://doi.org/10.1007/s10514-017-9688-z

Lee S, Kim HK (2019) ADSaS: Comprehensive real-time anomaly detection system. Paper presented WISA 2018 International
Workshop on Information Security Applications. Jeju Island, Korea. https://doi.org/10.1007/978-3-030-17982-3_3

Munir M, Siddiqui SA, Dengel A, Ahmed S (2019) DeepAnT: A deep learning approach for unsupervised anomaly detection
in time series. IEEE Access 7:1991-2005. https://doi.org/10.1109/ACCESS.2018.2886457

Oza N (2011) FLTz flight simulator. NASA Dash Link. [accessed Jun 06 2020]. https://c3.ndc.nasa.gov/dashlink/resources/294/

Saurav S, Malhotra P, Vishnu TV, Gugulothu N, Vig L, Agarwal P, Shroff G (2018). Online anomaly detection with
concept drift adaptation using recurrent neural networks. Paper presented CoDS-COMAD ‘18 Proceedings of the ACM
India Joint International Conference on Data Science and Management of Data. ACM, New York, USA. https://doi.
org/10.1145/3152494.3152501

Singh A (2017) Anomaly Detection for Temporal Data Using Long Short-Term Memory (LSTM) (Master’s thesis). Stockholm:
Kth Royal Institute of Technology School of Information and Communication Technology.

Sun R, Cheng Q, Wang G, Ochieng WY (2017) A novel online data-driven algorithm for detecting UAV navigation sensor
faults. Sensors 17(10):2243. https://doi.org/10.3390/s17102243

Ullah I, Fayaz M, Kim D (2019) Improving accuracy of the Kalman filter algorithm in dynamic conditions using ANN-based
learning module. Symmetry 11(1):94. https://doi.org/10.3390/sym11010094

Vinayakumar R., Soman KP, Poornachandran P, S. Kumar SS (2018) Detecting Android malware using long short-term
memory (LSTM). J Intell Fuzzy Syst 34(3):1277-1288. https://doi.org/10.3233/JIFS-169424

Wang B, Wang Z, Liu L, Liu D, Peng X (2019) Data-driven anomaly detection for UAV sensor data based on deep learning
prediction model. Proceedings. Paper presented 2019 Prognostics and System Health Management Conference. IEEE; Paris,
França. https://doi.org/10.1109/PHM-Paris.2019.00055

Wang L, Haofei Z, Jia S, Ling L, Sohail C (2013) An ARIMA-ANN hybrid model for time series forecasting. Syst Res Behav
Sci 30(3):244-259. https://doi.org/10.1002/sres.2179

Yong D,Yuanpeng Z, Xu Y, Yu P, Datong L (2017) Unmanned aerial vehicle sensor data anomaly detection using kernel
principle component analysis. Paper presented IEEE 2017 13th International Conference on Electronic Measurement and
Instruments. IEEE; Yangzhou, China. https://doi.org/10.1109/ICEMI.2017.8265777

Yu H, Wilamowski BM (2016) Levenberg-Marquardt training. In: Wilamowski BM, Irwin JD, editors. 2th ed. The Industrial
Electronics Handbook: Intelligent Systems, 46:1404–9. Boca Raton: CRC Press.

Zhang, J (2006) Improved On-line process fault diagnosis through information fusion in multiple neural networks. Comput
Chem Eng 30(3):558-571. https://doi.org/10.1016/j.compchemeng.2005.11.002

https://doi.org/10.1007/s10514-017-9688-z
https://doi.org/10.1007/978-3-030-17982-3_3
https://doi.org/10.1109/ACCESS.2018.2886457
https://c3.ndc.nasa.gov/dashlink/resources/294/
https://doi.org/10.1145/3152494.3152501
https://doi.org/10.1145/3152494.3152501
https://doi.org/10.3390/s17102243
https://doi.org/10.3390/sym11010094
https://doi.org/10.3233/JIFS-169424
https://doi.org/10.1109/PHM-Paris.2019.00055
https://doi.org/10.1002/sres.2179
https://doi.org/10.1109/ICEMI.2017.8265777
https://doi.org/10.1016/j.compchemeng.2005.11.002

