
J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010 287

Marcos Alécio dos Santos Romani*
Instituto de Aeronáutica e Espaço

São José dos Campos − Brazil
marcosaleciomasr@iae.cta.br

Carlos Henrique Netto Lahoz
Instituto de Aeronáutica e Espaço

São José dos Campos − Brazil
lahozchnl@iae.cta.br

Edgar Toshiro Yano
Instituto Tecnológico de Aeronáutica

São José dos Campos − Brazil
yano@comp.ita.br

*author for correspondence

Identifying dependability
requirements for space software
systems
Abstract: Computer systems are increasingly used in space, whether in
launch vehicles, satellites, ground support and payload systems. Software
applications used in these systems have become more complex, mainly due
to the high number of features to be met, thus contributing to a greater
probability of hazards related to software faults. Therefore, it is fundamental
that the specification activity of requirements have a decisive role in the
effort of obtaining systems with high quality and safety standards. In critical
systems like the embedded software of the Brazilian Satellite Launcher,
ambiguity, non-completeness, and lack of good requirements can cause
serious accidents with economic, material and human losses. One way to
assure quality with safety, reliability and other dependability attributes may
be the use of safety analysis techniques during the initial phases of the project
in order to identify the most adequate dependability requirements to minimize
possible fault or failure occurrences during the subsequent phases. This
paper presents a structured software dependability requirements analysis
process that uses system software requirement specifications and traditional
safety analysis techniques. The main goal of the process is to help to identify
a set of essential software dependability requirements which can be added to
the software requirement previously specified for the system. The final results
are more complete, consistent, and reliable specifications.
Keywords: dependability, software systems, requirements, space computer
systems, criticality analysis.

INTRODUCTION

The aerospace systems, which involve critical software,
are increasingly complex due to the great number of
requirements to be satisfied, which contributes to a
higher probability of hazards and risks in a project.
Taking the reports of international space accidents as
experience, most problems caused by software were
related to requirements and to the misunderstanding of
what it should do (Leveson, 2004). Lutz (1992), having
examined 387 software errors during integration and
system tests of the Voyager and Galileo spacecraft, found
that most errors were caused by discrepancies between
the documented requirements and the implementation of
the functioning system. Another identified problem was
the misunderstanding about the interface of the software
with the rest of the system. All the reports of accidents are
related to improper specification practices.

Regarding the Brazilian scenario, there is no official
reporting of space accidents involving software problems.
However, as the complexity of space computer systems
increases with an equivalent raise of presence of functions

implemented by software, there is an increased risk of
accidents that can be caused by problems in computer
system development. According to the recommendations
of the Brazilian Satellite Launcher VLS-1 V03 accident
investigation (DEPED, 2004), the technical commission
proposes that the safety and quality issues should be
improved as a necessary condition for the continuation of
the project.

Problems related to requirements such as ambiguity,
non-completeness and even the lack of non-functional
requirements should be minimized during the development
of space computer systems. Thus, a set of dependability
attributes could be used as a start point to define most
adequate non-functional requirements to minimize the
possible fault or failure occurrences in the engineering
phase of the requirements.

For this work, dependability is the property of a computer
system to provide its services with confidence, and
dependability attributes are the parameters by which
the dependability of a system is evaluated (Barbacci et
al., 1995). During the development of space computer
systems, it is necessary to give relevant importance to
security, safety, reliability, performance, quality and
other dependability attributes. It is believed that the

Received: 17/06/10
Accepted: 01/10/10

doi: 10.5028/jatm.2010.02037810

Romani, M.A.S., Lahoz, C.H.N., Yano, E.T.

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010288

use of these attributes helps the identification of non-
functional requirements to be incorporated into the
system, improving its quality assurance and helping to
minimize the risk levels both in hardware and software
parts.

This paper presents the dependability requirements
analysis process for space software systems (called in
this work as DEPROCESS) (Romani, 2007), which is
based on a dependability attribute set and software safety
analysis techniques, selected according to space standards
such as the European Space Agency (ESA), the National
Aeronautics and Space Administration (NASA), the UK
Ministry of Defence (MOD), the Brazilian Space Agency
(AEB), and other approaches of well known researchers
in this area.

First, the DEPROCESS is presented, emphasizing the
project phase where it is applied and its steps with the
activities to be executed. Also in this section, safety
analysis techniques and dependability attributes used in
the process are mentioned. Then, a case study applied
in embedded software used in a hypothetical space
vehicle is presented. The idea is to show the application
of the process in a functional requirement related to the
vehicle inertial system, which has an important role in its
mission. Finally, there are some considerations about the
application of the process the software requirement that
was analyzed, and conclusions with recommendations for
improving the process are reported.

THE DEPROCESS APPROACH

The DEPROCESS purpose is to identify dependability
requirements at the beginning of software projects using
safety analysis techniques (PHA, SFTA and SFMECA)
and a dependability attributes classification (such as
availability, reliability, safety, and others) specifically
applied to the space area.

According to the lifecycle project phases proposed by
ESA (2009a), the DEPROCESS is applied after the
“system engineering related to software” and before the
“software requirements” and “architecture engineering”
processes. As the input, it uses the system requirements
specified for software, and the output is a set of software
dependability requirements which must be discussed
during the Preliminary Design Review (PDR), for the
analysis of their viability and effective incorporation to
the software in the software requirement specification
document.

The DEPROCESS is composed by four steps, whose
activities are applied to each requirement as described in
Fig. 1.

A project criticality rate must be specified for the whole
project as a way to define the extension of the application
of the process. This extension can vary according to
the strategic conditions of the project, like the available
resources, the execution schedule, and other information
that should be evaluated. This case study was based on
NASA criticality scale (NASA, 2005a) (Table 1).

Assign a criticality rate
for the requirement

Meet the project
criticality rate?

Apply the safety analysis techniques

Identify the dependability attributes

Yes

No

Step 1

Step 2

Step 3

Step 4

DEPROCESS

Software System Requirements
(Requirement 1…n)

Software Dependability Requirements

Requirement n?

Yes

No

Figure 1:	 Dependability requirements analysis process for
space software systems (DEPROCESS).

Table 1:	 Criticality scale and its effects

Criticality Effect
1 Minor or negligible
2 Significant degradation
3 Subsystem loss
4 Significant loss or degradation of mission
5 Major loss or degradation of mission
6 Complete loss of mission

The sequence of the DEPROCESS four-step execution
for each studied requirement is as follows:

1.	 assign a criticality rate for each requirement: in this
step, a criticality rate is attributed for each software
system requirement, based on the results of the
interviews with the project specialists, in order to
compare the requirement criticality rate to the project
criticality rate.

2.	 select if the requirement will be analyzed: in this step,
it is decided if the requirement will be submitted to
the application of the safety analysis techniques. It is
carried out by comparing the requirement criticality
rate with the project criticality rate before the start of

Identifying dependability requirements for space software systems

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010 289

the application of the process. In case the requirement
is not selected (requirement criticality rate < project
criticality rate), it does not need a dependability
analysis.

3.	 apply the safety analysis techniques: in this step,
the requirement is submitted to the safety analysis
techniques PHA, SFTA and SFMECA, considering
the software interface requirements, functional
requirements, performance requirements, safety
requirements, and so on. As a support to this activity,
keywords (NASA, 2005b) can be useful to find
potential fault events and failure modes due to not
meeting the requirement.

4.	 identify the dependability attributes: in this step,
the dependability attributes are identified. They are
obtained through the comparison of the results of SFTA
and SFMECA techniques as to the potential system
fault events/failure modes. These dependability
attributes will be recommended as dependability
requirements to minimize the occurrence of fault/
failure related to each analyzed requirement. The
dependability requirements shall be evaluated during
the PDR and those considered more relevant must be
incorporated into software requirement specification
document.

DEPENDABILITY EVALUATING TECHNIQUES
FOR THE DEPROCESS

In the third step of DEPROCESS, the safety analysis
techniques are applied to identify the potential fault
events and failure modes, which will be used to help
the identification of the attributes and the dependability
requirements.

These techniques were selected according to two criteria:

1.	 comparative survey of the safety analysis techniques
according to international and Brazilian standard
institutions (NASA, 2005a; NBR 14857-2), shown in
Table 2, and consideration of well proved techniques
used in accident investigations and also their
predictive analysis (DEPED, 2004; Leveson, 1995;
Camargo Junior, Almeida Junior, Melnikof, 1997).

2.	 selection of the specific techniques for software, like
SFTA and SFMECA, considering also the studies
previously carried out in the software for the Brazilian
space vehicles (IAE, 1994; Reis Filho, 1995). Then,
the following safety analysis techniques have been
chosen: Preliminary Hazard Analysis (PHA), Software
Fault Tree Analysis (SFTA) and Software Failure
Modes, Effects and Criticality Analysis (SFMECA).

According to NASA (2005a), PHA identifies and classifies
regarding to severity that potential hazards associate to the
mission due to not meeting the analyzed requirement. SFTA
is a “top-down” analysis, working from hazard (top event)
to possible causes (basic events), using AND and OR logic
gates to connect the events; while SFMECA is a “bottom-
up” analysis searching the failure modes of each function,
their effects while they propagate through the system, and
the hazard criticality rate at the upper level.

When used together, SFTA and SFMECA allow finding
possible failure modes and areas of interest, which
cannot be found by applying only one technique. This
bi-directional analysis can provide limited assurances.
Nevertheless, they are essential to assure that the software
has been systematically examined, and that it satisfies
the safety requirement for software. However, during
the beginning stages of software development, like the
requirement phase, only a preliminary safety analysis can
be executed.

DEPENDABILITY ATTRIBUTES
IDENTIFICATION FOR THE DEPROCESS

In this work, in order to achieve an appropriate set of
dependability attributes for space computer systems as a
whole, all attributes related to the components that interact
with the hardware, the software, or that have some kind
of dependency relation were considered. As proposed by
Firesmith (2006) it was defined an attribute hierarchy
composed by quality factors with common concepts and
related processes. These dependability attributes were
classified in three groups: defensibility, soundness and
quality.

These attributes are also results of researches (Romani,
2007; Lahoz, 2009), and based on Brazilian and

Table 2:	 Safety analysis techniques used by aerospace and defense institutions

Techniques/
Institutions

FMEA/
FMECA FTA SFMECA SFTA HSIA PHA SCCFA

ESA X X X X X X X
NASA X X X X - X -
MOD X - - X - - -
AEB X X - X - X -

Romani, M.A.S., Lahoz, C.H.N., Yano, E.T.

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010290

international standard institutions (NBR 14959; MOD,
2003; ESA, 2004; NASA, 2005a), as well as studies
related to the dependability of some authors in the area
(Kitchenham and Pfleeger, 1996; Camargo Junior, Almeida
Junior and Melnikof, 1997; Firesmith, 2003 and 2006; Rus,
Komi-Sirvio and Costa, 2003; Sommerville, 2004). The
definitions of dependability attributes selected in this work
are presented in section Glossary, at the end of this paper.

Figure 2 shows the hierarchy created for the dependability
attributes selected for space computer systems.

errors, accumulated during its flight, leading it to follow
an unexpected trajectory, and the insertion of the satellite
out of the desired orbit. An inaccurate value was one of
the causes of the accident with Ariane 5 launcher in 1996
(Leveson, 2009). The precision of the navigation software
in the flight control computer (on-board computer)
depends on the precision of the inertial reference system
measurements, but in the Ariane system test facility
this precision could not be achieved by the electronics
creating the test signals. The precision of the simulation
may be further reduced because the base period of the
inertial reference system is 1 versus 6 miliseconds in the
simulation at the system test facility.

Availability

Availability may be calculated as a function of mean
time to failure (MTTF) and mean time to repair (MTTR).
One example cited by Fortescue, Stark and Swinerd
(2003) is that for a “service” type spacecraft, such as the
telephony/television communications satellite, down time
or “unavailability” constitutes loss of revenue, and hence
the cost benefits of design improvements to increase
reliability can be optimized against their impact on
revenue return. As another example, the lack of navigation
data during a certain period of time of the vehicle control
cycle can destabilize it, in such a way to cause the loss of
the mission. Therefore, subsystems or components of the
vehicle as the on-board computer, the inertial system and
the data bus should be available to perform their functions
in the moment they are requested.

Completeness

The report of the fault that caused the destruction of the
Mars Polar Lander during entry and landing stage in 2000
says that the document of requirements at the system level
did not specify the modes of failure related to possible
transient effects to prematurely identify the touch of the
ship on the ground. It is speculated that the designers
of the software, or one of the auditors could have
discovered the missing requirement if they were aware
of its rationale (Leveson, 2004). This demonstrates that
the non-consideration of the completeness attribute in the
requirements may lead to occurrence of a system failure.

Consistency

During investigation of the American launcher Titan IV
Centaur space accident, occurred in 1999, one of the
causes found arose from the installation procedure of the
inertial navigation system software, where the rolling rate

Failure tolerance

Safety

Security

Simplicity

Survivability

Robustness

Availability

Completeness

Consistency

Correctness

Recoverability

Reliability

Self-description

Stability

Traceability

Accuracy

Efficiency

Maintainability

Modularity

Portability

Testability

Defensibility Soundness Quality

Dependability

Figure 2:	 Attributes and Dependability hierarchy, based on
Firesmith (2006).

In the “defensibility” branch, attributes are related to the
way the system or its component can defend itself from
accidents and attacks. In this group, failure tolerance,
safety, security, simplicity, survivability and robustness
attributes were included.

In the “soundness” branch, attributes are related to the
way the system or its component is suitable for use.
In this group, availability, completeness, consistency,
correctness, recoverability, reliability, self-description,
stability and traceability attributes were included.

In the “quality” branch, other attributes considered as
quality factors relevant to the system or its component
were classified. In this group, accuracy, efficiency,
maintainability, modularity, portability and testability
attributes were included.

Following, based on its definitions, the relevance of
each dependability attribute selected for space computer
systems is discussed.

Accuracy

An inaccurate value resulting from the calculation of
the logic of a spacecraft control may lead to insertion of

Identifying dependability requirements for space software systems

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010 291

-0.1992476 was placed instead of -1.992476. The fault
could have been identified during the pre-launch, but
the consequences were not properly understood and the
necessary corrections were not made because there was not
a verification activity of critical data entry (Leveson, 2009).

Correctness

Leveson (2009) stated that in the Titan/Centaur accident,
there was apparently no checking of the correctness of
the software after the standard testing performed during
development. For example, on the day of the launch, the
attitude rates for the vehicle on the launch pad were not
properly sensing the Earth’s rotation rate (the software was
consistently reporting a zero roll rate) but no one had the
responsibility to specifically monitor that rate data or to
perform a check to see if the software attitude filters were
operating correctly. In fact, there were no formal processes
to check the validity of the filter constants or to monitor
attitude rates once the flight tape was actually loaded into
the Inertial Navigation Unit at the launch site. Potential
hardware failures are usually checked up to launch time,
but it may have been assumed that testing removed all
software errors and no further checks were needed.

Efficiency

Control actions will, in general, lag in their effects on the
process because of delays in signal propagation around
the control loop: an actuator may not immediately respond
to an external command signal (called dead time); the
process may have delays in responding to manipulated
variables (time constants) and the sensors may obtain
values only at certain sampling intervals (feedback
delays). Time lags restrict the speed and extent, with
which the effects of disturbances, both within the process
itself and externally derived, can be reduced. They also
impose extra requirements on the controller, for example,
the need to infer delays that are not directly observable
(Leveson, 2009). Considering a real-time software
system, efficiency is a relevant attribute in the care of their
temporal constraints, and is related to performance, as the
checks from time response, CPU and memory usage. For
example, a function that performs the acquisition and
processing of inertial data to the space vehicle control
system must strictly comply with their execution time, to
ensure proper steering of the spacecraft during its flight.

Failure tolerance

There are many ways in which data processing may
fail – through software and hardware, and whenever

possible, spacecraft systems must be capable of tolerating
failures (Pisacane, 2005). Failure tolerance is achieved
primarily via hardware, but inappropriate software can
compromise the system failure tolerance. During the real-
time software project, it is necessary to define a strategy
to meet the system required level of failure tolerance. If
it is well designed, the software can detect and correct
errors in an intelligent way. NASA has established levels
of failure tolerance based on two levels of acceptable risk
severity: catastrophic hazards must be able to tolerate
two control failures and critical hazards must be able to
tolerate a single control failure (NASA, 2000). Examples
of software failure are the input and output errors of
sensors and actuators. This failure could be tolerated
by checking the data range and forcing the software to
assume an acceptable value. An example of hardware
failure in electronic components is the single-event upset
(SEU), an annoying kind of radiation-induced failure.
SEUs and their effects can be detected or corrected
using some mitigation methods like error detection and
correction (EDAC) codes, watchdog timers, fault rollback
and watchdog processors.

Maintainability

It must be easy for space computer systems to maintain
their subsystems, modules or components during any
phase of the mission, whether on the ground or in
space. The purpose of maintenance can be repair a
discovered error, or allow a system upgrade to include
new features of improvements. As an example, one can
cite the maintenance remotely performed by NASA
on Mars Exploration Rovers Spirit and Opportunity,
launched toward Mars in 2003. According to Jet
Propulsion Laboratory site information (JPL, 2007), the
communications with the Earth is maintained through the
Deep Space Network (DSN), an international network
of antennas that provide communication links between
the scientists and engineers on Earth and the Mars
Exploration Rovers in space and on Mars. Through the
DNS, it was possible to detect a problem in the first weeks
of the mission that affected the Spirit rover software,
causing it to remain in silence for some time, until the
engineers could fix the error. The failure was related to
flash memory and it was necessary a software update to
fix it. It was also noted that if the Opportunity rover had
landed first, it would have the same problem.

Modularity

The partitioning of critical systems in modules provides
advantages, such as easy maintainability and traceability
of the design to code, and allows the distributed software

Romani, M.A.S., Lahoz, C.H.N., Yano, E.T.

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010292

development. Modularity contributes to the verification
and validation process and errors detection during the unit,
component and integration tests as well as maintenance
activities. The modularity facilitates the failure isolation,
preventing their spread to other modules. The independent
development assists implementation and integration. As
an example, a space software configuration item (ICSW)
can be divided into software components (CSW), which
can be divided into units or modules (USW), which
correspond to the tasks to be performed during pre-flight
and flight phases, in the interaction with the communication
interfaces, sensors and actuators, and the transmission of
data to the telemetry system.

Portability

The space software projects can be long-term and, during
its development, there may be situations that require
technological changes to improve the application, and to
overcome problems such as the exchange of equipment
due to the high dependence on product suppliers. For
example, it is desirable that the code can be compiled
into an ANSI standard in the space software systems.
This will enable the code to be run on different hardware
platforms and in any compatible computer system,
making only specific adaptations to be transferred from
one environment to another.

Reliability

The reliability of Space computer systems reliability
depends on other factors like correct selection of
components, correct derating, correct definition of the
environmental stresses, restriction of vibration and thermal
transfer effects from other subsystems, representative
testing, proper manufacturing and so on (Fortescue,
Stark and Swinerd, 2003). Reliability is calculated using
failure rates, and hence the accuracy of the calculations
depends on the accuracy and realism of our knowledge
of failure mechanisms and modes. For most established
electronic parts, failure rates are well known, but the
same cannot be said for mechanical, electromechanical,
and electrochemical parts or man. The author states that,
in modern applications in which computers and their
embedded software are often integrated into the system,
the reliability of the software must also be considered.
One way to define acceptable reliability levels for space
systems is by regulatory authorities and, in the case of
components, by the manufacture industries. An example
of a space system reliability case history was cited by
Pisacane (2005). The Asteroid Rendezvous (NEAR)
spacecraft had a twenty-seven month development time,
a four-year Cruise to the asteroid, and spent one year

in orbit about the asteroid EROS. The spacecraft was
successfully landed on EROS in February 2001 after
one year in orbit. Reliability was maximized by limiting
the number of movable and deployable mechanical and
electromechanical systems.

Recoverability

In the autonomous embedded systems, i.e., that do not
require human operators and interact with sensors and
actuators, failures with severe consequences are clearly
more damaging than those in which repair and recovery
are simple (Sommerville, 2004). Therefore, the embedded
computer systems must be able to recover themselves
during the space mission situations where it is not possible
to perform the maintenance. As an example, in the execution
of a embedded software during the unmanned rocket
flight, it is recommended that the function responsible for
acquiring the data have a mechanism for recovery. In case
of a failure, that does not allow the Inertial System data
reading; it is necessary a recovery mechanism to provide
this information to the control system so that the vehicle
is not driven to a wrong trajectory.

Robustness

In addition to physically withstand the environment to
which they will be submitted, computer systems must
also be able to deal with circumstances outside the
nominal values, without causing the loss of critical data
that undermine the success or safety of the mission. In
case of hardware failure or software errors at run time, the
system critical functions should continue to be executed.
As an example of software robustness assessment, NASA
(2000) mention fault injection, which is a dynamic-type
testing because it must be used in the context of running
software following a particular input sequence and internal
state profile. In fault forecasting, software fault injection
is used to assess the fault tolerance robustness of a piece
of software (e.g., an off-the-shelf operating system).

Safety

According to Fortescue, Stark and Swinerd, (2003),
the overall objective of the safety program is to ensure
that accidents be prevented and all hazards or threats
to people, the system and the mission be identified and
controlled. Safety attribute is applied to all program phases
and embrace ground and flight hardware, software and
documentation. They also endeavor to protect people from
man-induced hazards. In the case of manned spacecraft,
safety is a severe design requirement, and compliance

Identifying dependability requirements for space software systems

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010 293

must be demonstrated prior to launch. Hazards can be
classified as “catastrophic”, “critical” or “marginal”
depending on their consequences (loss of life, spacecraft
loss, injury, damage etc.). Also, the most intensive and
complete analysis can be carried out by constructing a
safety fault tree. The software safety requirements should
be derived from the system safety requirements and
should not be analyzed separately (ESA, 2009a). In the
software space systems, an indicator of criticality for each
module defining the level of associated risk, called safety
integrity level, should be specified. The most critical
modules involve greater strictness in their development
process (NASA, 2004a).

Security

Space systems have as a feature to protect information,
due to the strategic interest of obtaining the technology
of satellite launch vehicles, currently still dominated
by few countries in the world. There should be a strict
control in the access to information in these systems,
because if a change occurs accidentally or maliciously,
this can compromise the success of a mission. Barbacci
et al. (1995) emphasizes that in government and military
applications the disclosure of information was the primary
risk that was to be averted at all costs. As an example
of the influence of this attribute, a remote destruction
command of a spacecraft launch system must be able
to block another command maliciously sent from an
unknown source, which seeks to prevent the vehicle from
being destroyed, when it violates the flight safety plan.

Self-description

Re-use of technology is common in the course of space
programs, that is, many systems or subsystems are reused
in subsequent missions, and so require maintenance or
adjustments. To minimize the possibility of introducing
errors in the project, it is desirable that the computer
system to be reused have a description that allows an easy
understanding. For example, it is recommended that the
code of a software application have comments that explain
the operation of its functions, thus facilitating developers
to carry out future required changes.

Simplicity

Simplicity is an essential aspect for the software used in
critical systems, since the more complex the software,
the greater the difficulty in assessing its safety (Camargo
Junior, Almeida Junior and Melnikof, 1997). This is a
desirable feature in a space software application because

functions with simple code have expected operation
and are therefore safer than others with difficulties in
their understanding, which can produce indeterminate
results. Software simplicity is also related to the ease
of maintaining its code. For example, IV & V lessons
learned from Mars Exploration Rover project (NASA,
2004b) provided evidence of the importance of this
attribute. According to NASA report, portions of the file
system using the system memory were very complex and
modules have poor testability and maintainability. This
factor contributed to a system level fault that put the
Rover in a degraded communication state and allowed
some unexpected commands. The file system was not the
cause of the problem, but brought the lack of memory to
light and created the task deadlock.

Stability

Space computer systems require high reliability, and their
subsystems and components must continue to perform
their functions within the specified operational level
without causing the interruption of service provision
during the mission, even if the system is operated for
an extended period of time. Examples are the satellites
that depend upon the performance of solar cell arrays
for the production of primary power to support on-board
housekeeping systems and payloads throughout their 7
to 15 years operational lifetime in orbit. The positioning
systems of solar panels must have stable operation during
the long-term missions, so that the satellite keeps the
solar cell arrays towards the sun when going through its
trajectory.

Survivability

The space systems are designed to operate in an
environment with different features from those on
Earth, such as extreme gravity, temperature, pressure,
vibration, radiation, EMI variations etc. Fortescue, Stark
and Swinerd (2003) noted that the different phases in the
life of a space system, namely, manufacture, pre-launch,
launch and finally space operation, have their own
distinctive features. Although the space systems spend
the majority of their lives in space, it is evident that it
must survive on other environments for complete success.
Critical systems should continue to provide their essential
services even if they suffer accidental or malicious
damage. This includes the system being able to resist to
risks and threats, eliminating them or minimizing their
negative effects, besides recognize accidents or attacks to
allow a system reaction in case of their occurrence and
recovery after the loss or degradation due to an accident
or attack (Firesmith, 2003).

Romani, M.A.S., Lahoz, C.H.N., Yano, E.T.

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010294

Testability

A comprehensive spacecraft test program requires the
use of several different types of facilities. These are
required to fulfill the system testing requirements and
may include some facilities like clean room, vibration,
acoustic, EMC, magnetic and RF compatibility
(Pisacane, 2005). In the case of a critical software
system, this feature is crucial, especially during the unit
test, integration, system and acceptance and validation
phases (Camargo Junior, Almeida Junior and Melnikof,
1997). The real-time software application should be
tested as much as its functionality and its performance,
ensuring the fulfillment of its functions during the
mission within the specified time.

Traceability

This attribute is particularly important for computer
system requirements. In a software application, the code
should be linked to the requirement that originated it,
thus enabling the verification through the test cases if
its specified functionalities were correctly implemented.
This also represents the possibility of mapping the safety
requirements in all system development phases.

Based on the definitions of these factors, a table was
elaborated. It generically describes the potential
fault events or failure modes that can result from the
application of the SFTA and SFMECA techniques and
the corresponding dependability attributes recommended
to minimize the occurrence of fault/failure. This table is
used as a reference to execute the last DEPROCESS step,
helping the analyst to identify the dependability attributes
according to each fault/failure obtained. Part of this
reference table is presented in Table 3.

CASE STUDY

The chosen example for DEPROCESS application
was the requirement of “process inertial information
necessary to the control algorithms of the vehicle
system”. This requirement was extracted from the
Software System Specification document (SSS) and it
is related to the control system of a space vehicle. This
system has an inertial system (IS) that communicates,
through a data bus (DB), with the on board computer
(OBC), to periodically provide the vehicle position
and instantaneous acceleration data. In order to acquire
the IS data and their validation to be used by control
algorithms, a software function called ISDA (Inertial
System Data Acquisition) should be used and executed
in less than 10 miliseconds.

In this case study example, the DEPROCESS was applied
in the ISDA function. The lack of this function does not
make possible the inertial data acquisition from the IS,
not allowing the OBC to process the vehicle position and
angular velocity calculations.

Table 3:	 Correspondence between the fault events/failure
modes and the dependability attributes

SFTA and SFMECA results Dependability attributes
Function omits some aspect
in its implementation, which
leads to the occurrence of a
failure in its functioning.

Completeness

Function contains unverified
errors, which leads to the
occurrence of a failure in its
functioning or performance.

Consistency

Function does not maintain
a certain performance level
specified in case of software
failures or violation of the
specified interfaces.

Failure tolerance

Function operates without
of its designated temporal
constraints.

Performance

Function faults generating
incorrect/unexpected results
or effects.

Precision

Function fails in the
reestablishment of its
performance level and in the
recovery of the data directly
affected.

Recoverability

Function whose source
code does not allow
easy understanding of its
functioning.

Self-description

Function does not continue
to satisfy certain critical
requirements due to adverse
conditions.

Survivability

Function was not correctly
validated.

Testability

Function with its general
safety requirements not
mapped in the specification
or in its respective
implementation.

Traceability

Identifying dependability requirements for space software systems

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010 295

Applying the DEPROCESS steps, the following results
were obtained:

1.	 assign a criticality rate for the requirement: for
this case study, it was defined a criticality rate 6
(complete loss of mission). The lack of information
from the IS does not allow that the data related to
position be correctly processed, which can leave
the vehicle out of control and/or head it into an off-
nominal trajectory.

2.	 select if the requirement will be analyzed: as this
requirement has a maximum criticality rate, the
next step was automatically executed. This means
that the project criticality rate did not need to be
considered.

3.	 apply the safety analysis techniques:

3.1.	 PHA – the PHA identified the potential hazard
to the vehicle system, due to not meeting this
requirement: “vehicle out of control during the
flight”. Having the classification of NASA severity
categories (ref. 8) as a reference, shown in Table 4,
it was classified as category I (catastrophic).

3.2.	SFTA – as shown below, the fault trees for the
ISDA function are presented in Fig. 3, from the
root (top event) and expanding until the leaf levels
(pre-conditions to the top event occurrence).

3.3.	SFMECA – as shown below, a SFMECA built
for the ISDA function is presented in Table 5,
according to a model proposed by ESA (2009b).

Table 4: Hazard severity definitions according to NASA

Hazard severity category Definitions
I – Catastrophic Loss of human life or

permanent disability; loss
of entire system; loss of
ground facility; severe
environmental damage.

II – Critical Severe injury or temporary
disability; major system or
environmental damage.

III – Moderate Minor injury; minor
system damage.

IV – Negligible No injury or minor injury;
some system stress, but no
system damage.

Logic error in the
ISDA function

1.1
Performance error in
the ISDA function

1.2

Failure in the
ISDA function

1

1.1.1

Implementation error in
the ISDA function

1.1.2

Logic error in the
ISDA function

1.1

ISDA function
logic test did not
detect the error

1.2.1 1.2.2

Performance error in
the ISDA function

1.2

ISDA function
performance test

did not detect
the error

Timing error
in the ISDA

function

Requirement
design error in the

ISDA function

1.1.2.2

Implementation error in
the ISDA function

1.1.2

Code error in the
ISDA function

1.1.2.1

Figure 3:	 FTA of the ISDA function.

Table 5: SFMECA worksheet for the ISDA function

Failure mode Failure cause Failure effect Criticality Failure detection method/
Observable symptoms

Compensation
provisions

ISDA-1: no
inertial data is
acquired by the
OBC (omission)

ISDA function
not responding

No inertial data is
acquired by the OBC
to process the vehicle
control algorithms

I Monitoring the function
status/Data not received by
the OBC

Create logic
recovery
mechanisms for
the function

ISDA-2: error in
the inertial data
(null, corrupted,
spurious, or
incorrect value)
acquired by the
OBC

Failure during
the execution
of the ISDA
function

Incorrect results
in the calculations
of the inertial
information
processed by the
OBC

I Comparison of the previous
inertial data with the
current trajectory data at
each instant/Trajectory data
out of the specified limit

Create function
logic test
and create
fault tolerance
mechanisms for
incorrect values

ISDA-3: ISDA
function with
incorrect timing

ISDA function
responding after
the specified
time

Inertial data
acquired by the
OBC out of time

II Verify the data input
time in the OBC/Control
actuators being activated
out of the specified time

Create function
performance test

Romani, M.A.S., Lahoz, C.H.N., Yano, E.T.

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010296

4.	 Identify the dependability attributes: the
dependability attributes for the ISDA function
were identified by comparing the basic events
obtained in SFTA (step 3.2) and the failure
causes obtained in SFMECA (step 3.3) with
the list of potential fault events/failure modes
(Table 3).

The recommended dependability requirements for this
case study (Table 6) were based on the recommendations
of NASA (2005b) and from some authors in the critical
system area (Storey, 1996; Laplante, 2004).

The set of non-functional requirements extracted by the
DEPROCESS must be discussed during the Preliminary
Design Review (PDR), for the analysis of their viability
and effective incorporation to the software project in the
software requirement specification document.

Table 6: Attributes and dependability requirements for the ISDA function

Basic event (SFTA)/
Failure causes (SFMECA)

Identified attributes Recommended dependability requirements

Function logic test did not
detect error/Failure during
the execution of the ISDA
function

- Consistency
- Testability
- Failure tolerance

- Verify critical commands before the transmission and after
the reception of the data
- The function should be able to consist, in each time cycle,
the IS acquired values
- Create “black box” test cases, exercising the different
possible sets of inputs and testing the limit values
- Create “white box” test cases to verify the coverage of the
commands, branches, and decisions in the function source code
- The function should be able to tolerate, within a predetermined
time interval, incorrect values acquired by the IS

Code error in the function - Self-description
- Precision

- Create a complete, simple, concise, and direct
documentation, and keep this information always updated
- Make available to the implementers a good program
practice “check list”

Requirement design error
in the function

- Completeness
- Traceability

- Specify the input and output data for the module and the
data that are shared internally or with other modules
- List all possible failures inside the module or in the
associated I/O devices. For each failure module, indicate how
the failure can occur and how it can be detected and treated

Timing error in the
function AND
Function performance test
did not detect the error /
ISDA function responding
out of the specified time

- Consistency
- Performance
- Testability

- Verify the function responding time, the CPU and memory
use during the execution of the function
- Estimate function execution time counting its
macroinstructions or measuring it using a logic analyzer to
capture data or events

ISDA function not
responding

- Survivability
- Recoverability
- Failure tolerance

- The function should be executed “n” times in case of failure
in inertial data acquisition
- For extreme situations, return the program to the previous
state considered safe (soft reset capacity or a watchdog timer)

As the SFTA and the SFMECA are bidirectional
techniques, in this case study it was possible to map
the possible hazards in a detailed and complementary
way. The compensation provisions presented through
the SFMECA provided some information that
helped to define the recommended dependability
requirements.

CONCLUSIONS

It is important to point out that each project that will
apply the DEPROCESS can be tailored to obtain the most
effective result. For example, criticality scale, safety
analysis techniques and dependability attributes set can
be adjusted according to the technical features of the
project. Besides, the previous knowledge about different
safety techniques used by the organization should be

Identifying dependability requirements for space software systems

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010 297

considered with DEPROCESS in order to facilitate the
application of the process and the acquisition of more
significant results. The set of dependability attributes
can and should be discussed and adapted according to
the mission or project profile.

Other relevant factor to be considered during the
DEPROCESS application is the prioritization of the
requirements to be analyzed. If the project criticality rate
is very low, a huge set of requirements were selected,
and it could lead to the impracticable DEPROCESS
application.

As the DEPROCESS dependability attributes
identification is a qualitative approach, its interpretation
is subjective. A dependability attribute can have
different meanings depending on by whom it is being
evaluated, or even on its importance in the project or
in the organization. For instance, diverse interpretations
for the “simplicity” attribute can induce different
recommendations. One view of simplicity, in computer
program issues, recommended breaking up complex
instructions. Another view of simplicity argues that
segmented code instructions can lead to an increase of
the code length, and consequently impact other quality
attributes. One way to deal with this subjectiveness
interpretation would be mitigate it through more than
one person applying the DEPROCESS and then compare
the results to find out what dependability attributes have
been identified in common.

Dependability attributes can be used to help identification
and analysis of dependability requirements. The use of
selected dependability attributes is an effective way to
guide a requirement development team to discover and
refine requirements. A dependability attribute persuades
an analyst to focus on a dependability issue related to a
functional requirement. As result, the analyst can discover
new issues and identify requirements to deal with these
new demands.

In conclusion, this paper presented a structured and
systematic process that addresses the dependability,
focused on software systems for Brazilian space
vehicles. Through pre-established criteria, such as
the criticality rating scale, proper safety analysis
techniques, and a set of dependability attributes, it
was possible to generate some important information,
such as the dependability requirements. The
purpose of these recommendations is to guarantee
the software functioning, and also the preliminary
survey of possible vulnerable points that should
be investigated in the project as whole in order to
improve its quality.

Glossary

Accuracy
Software attributes that demonstrate the generation of
results or correct effects or according to what has been
agreed upon (Camargo Junior, Almeida Junior and
Melnikof, 1997).

Availability
The ability of an item to be in a state to perform a required
function under given conditions at a given instant of time
or over a given time interval, assuming that the required
external resources are provided (ESA, 2004).

Completeness
Software feature in which there is an omission on some
aspect of its application which can cause the system to
reach an unsafe state (Camargo Junior, Almeida Junior
and Melnikof, 1997).

Consistency
Software feature to contain errors that are not checked,
which can lead the system to an unsafe situation (Camargo
Junior, Almeida Junior and Melnikof, 1997).

Correctness
The degree to which a work product and its outputs are
free from defects since the work product is delivered
(Firesmith, 2003).

Efficiency
It refers to timing aspects that are key factors in a critical
system (Camargo Junior, Almeida Junior and Melnikof,
1997).

Failure tolerance
Software attributes that demonstrate its ability to maintain
a specified performance level in cases of software failures
or violation in the specified interfaces (Camargo Junior,
Almeida Junior and Melnikof, 1997).

Maintainability
The ability of an item, under given conditions of use, to be
retained in, or restored to, a state in which it can perform
a required function, when maintenance is performed
under given conditions and using stated procedures and
resources (ESA, 2004).

Modularity
Software attributes that demonstrate the coupling
degree, i.e., interdependence between its modules and
low cohesion, that is, the module includes two or more
independent functions (Camargo Junior, Almeida Junior
and Melnikof, 1997).

Romani, M.A.S., Lahoz, C.H.N., Yano, E.T.

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010298

Portability
A set of attributes that bear on the ability of software to
be transferred from one environment to another, including
the organizational, hardware or software environment
(Kitchenham, Pfleeger, 1996).

Reliability
The probability with which a spacecraft will successfully
complete the specified mission performance for the
required mission time (Fortescue, Stark, Swinerd, 2003).
The ability of an item to perform a required function
under stated conditions for a specified period of time
(MOD, 2003).

Recoverability
Software attributes that demonstrate its ability to restore
its performance level and recover the data directly affected
in case of failure and the time and effort necessary for it
(ABNT, 2003).

Robustness
The degree to which a system or component can correctly
function in the presence of invalid inputs or stressful
environmental conditions (Rus, Komi-Sirvio and Costa,
2003).

Safety
The possibility of catastrophic failure of systems in such
a way as to compromise the safety of people or property,
or result in mission failure (NASA, 2005a).

Security
Ability of the System to protect itself against accidental or
deliberate intrusion (Sommerville, 2004).

Self-description
Software attributes that allow greater facility of its
understanding and, in future maintenance, reduce the
possibility of introducing new errors (Camargo Junior,
Almeida Junior and Melnikof, 1997).

Simplicity
Critical system software feature to facilitate its safety
evaluation (Camargo Junior, Almeida Junior and
Melnikof, 1997).

Stability
The degree to which mission-critical services continue
to be delivered during a given time period under a given
operational profile regardless of any failures whereby
the failures limiting the delivery of mission-critical
services occur at unpredictable times and root causes
of such failures are difficult to identify efficiently
(Firesmith, 2003).

Survivability
The ability of a computer-communication system-
based application to continue satisfying certain
critical requirements (e.g., requirements for security,
reliability, real-time responsiveness, and correctness)
in face of adverse conditions (Rus, Komi-Sirvio,
Costa, 2003).

Testability
Software attributes that demonstrate the effort needed to
validate the modified software (NBR 14959).

Traceability
It represents the possibility that all the general safety
requirements are perfectly mappable in the software
specification and in its implementation (Camargo Junior,
Almeida Junior and Melnikof, 1997).

REFERENCES

Barbacci, M. et al., 1995, “Quality Attributes, Technical
Report CMU/SEI-95-TR-021”, Pittsburgh, USA:
Software Engineering Institute/Carnegie Mellon
University, 56 p.

Camargo Junior, J.B., Almeida Junior, J.R. and Melnikof,
S.S.S., 1997, “O uso de fatores de qualidade na avaliação
da segurança de software em sistemas críticos”.
Proceedings of Conferência internacional de tecnologia
de software: qualidade de software, 8, Curitiba : CTIS,
pp. 181-185.

Departamento de Pesquisas e Desenvolvimento
(DEPED), Ministério da Defesa, Comando da
Aeronáutica, 2004, “Relatório da investigação do
acidente ocorrido com o VLS-1 V03, em 22 de agosto
de 2003, em Alcântara, Maranhão”, [cited November
06, 2006], Available at: http://www.iae.cta.br/VLS-1_
V03_Relatorio_Final.pdf

European Space Agency (ESA), 2004, European
Cooperation for Space Standardization “ECSS-P-001-B,
Glossary of Terms”, The Netherlands: ESA.

European Space Agency (ESA), 2009a, European
Cooperation for Space Standardization “ECSS-E-ST-40C,
Space Engineering – Software”, The Netherlands: ESA.

European Space Agency (ESA), 2009b, European
Cooperation for Space Standardization “ECSS-Q-ST-80C,
Space Product Assurance – Software Product Assurance”,
The Netherlands: ESA.

Firesmith, D.G., 2003, “Common Concepts Underlying
Safety, Security, and Survivability Engineering,

Identifying dependability requirements for space software systems

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010 299

Technical Note CMU/SEI-2003- 033”, Pittsburgh,
USA: Software Engineering Institute/Carnegie Mellon
University, 70 p.

Firesmith, D.G., 2006, “Engineering Safety-Related
Requirements for Software-Intensive Systems”,
Proceedings of the 28th International Conference on
Software Engineering, ACM SIGSOFT/IEEE, Shangai,
China, pp. 1047-1048, 2006.

Fortescue, P., Stark, J. and Swinerd, G., 2003, “Spacecraft
systems engineering”, 3rd Ed., London: John Wiley &
Sons, 678 p.

Instituto de Aeronáutica e Espaço (IAE), 1994, “Plano
de Confiabilidade do Software Aplicativo de Bordo
(SOAB) para o Veículo Lançador de Satélites VLS PT-01
– Preliminar – (PCS-P)”.

Jet Propulsion Laboratory (JPL), 2007, “Mars Exploration
Rover Mission – Communications with Earth”, [cited
May 15, 2009], Available at: http://marsrovers.nasa.gov/
mission/communications.html

Kitchenham, B., Pfleeger, S.L., 1996, “Software
Quality: the elusive target”, IEEE Software, Vol. 13,
N° 1, pp.12-21.

Lahoz, C.H.N., 2009, “Elicere: o processo de
elicitação de metas de dependabilidade para sistemas
computacionais críticos: estudo de caso aplicado a
Área Espacial.” PhD thesis, Universidade de São
Paulo, São Paulo.

Laplante, P.A., 2004, “Real-Time Systems Design and
Analysis”. 3rd Ed. New York: John Wiley & Sons.

Leveson, N.G., 2009, “Engineering a safer world. System
safety for the 21st century (or Systems thinking applied
to safety)”, Aeronautics and Astronautics Engineering
Systems Division. Massachusetts Institute of Technology,
[cited May 13, 2009], Available at: http://sunnyday.mit.
edu/book2.pdf

Leveson, N.G., 1995, “Safeware: system safety and
computers”. New York: Addison-Wesley.

Leveson, N.G., 2004, “The role of software in spacecraft
accidents”. AIAA Journal of Spacecraft and Rockets, Vol.
41, N° 4, pp. 564-575.

Lutz, R.R., 1992, “Analyzing software requirements
errors in safety-critical, embedded systems. Technical

Report 92-27”. Ames, Iowa, USA: Department of
Computer Science, Iowa State University of Science and
Technology.

NASA, 2000, “Software fault tolerance: a tutorial,
technical memorandum NASA/TM-2000-210616”,
Hampton, USA: Langley Research Center.

NASA, 2004a, “Software Safety Guidebook, NASA-GB-
8719.13”, [cited October 19, 2006], Available at: http://
www.hq.nasa.gov/office/codeq/doctree/871913.pdf

NASA, 2004b, “IV&V Lessons Learned – Mars
Exploration Rovers and the Spirit SOL-18 Anomaly:
NASA IV&V Involvement”, [cited May 14, 2009],
Available at: http://www.klabs.org/mapld04/presentations/
session_s/2_s111_costello_s.ppt

NASA, 2005a, “Software Assurance Guidebook, NASA-
GB-A201”, [cited August 25, 2006], Available at: http://
satc.gsfc.nasa.gov/assure/agb.txt

NASA, 2005b, “Software Fault Analysis Handbook:
Software Fault Tree Analysis (SFTA) & Software Failure
Modes, Effects and Criticality Analysis (SFMECA)”,
[cited May 07, 2007], Available at: http://sato.gsfc.nasa.
gov/guidebook/assets/SQI_SFA_Handbook_05022005.
doc

Pisacane, V.L., 2005, “Fundamentals of Space Systems”,
2nd

Reis Filho, J.V.B., 1995, “Uma abordagem de Qualidade
e Confiabilidade para Software Crítico”. Masters
dissertation, Instituto Tecnológico de Aeronáutica.

Romani, M.A.S., 2007, “Processo de Análise de
Requisitos de Dependabilidade para Software
Espacial”. Masters dissertation, Instituto Tecnológico de
Aeronáutica.

Rus, I., Komi-Sirvio, S., Costa, P., 2003, “Software
dependability properties: a survey of definitions,
measures and techniques. Technical Report 03-110.
High Dependability Computing Program (HDCP)”,
Maryland: Fraunhofer Center for Experimental Software
Engineering.

Sommerville, I. “Software Engineering”, 2004, 7th Ed.
Glasgow, UK: Addison-Wesley.

Storey, N., 1996, “Safety-Critical Computer Systems”.
Boston: Addison-Wesley Longman.

Romani, M.A.S., Lahoz, C.H.N., Yano, E.T.

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.3, pp. 287-300, Sep-Dec., 2010300

UK Ministry of Defence (MOD), 2003, “Reliability and
Maintainability (R&M) – Part 7 (ARMP -7), NATO R&M
Terminology Applicable to ARMP’s, Defence Standard
00-40 Part 7”.

