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Abstract: The addition of Gurney flap changes the 
nature of flow around airfoil by producing asymmetric Von-
Karman vortex in its wake. Most of the investigations on 
Gurney flapped airfoils have modeled the flow using a quasi-
steady approach, resulting in time-averaged values with no 
information on the unsteady features of the flow. Among 
these, some investigations have shown that quasi-steady 
approach does a good job on predicting the aerodynamic 
coefficients and physics of flow. Previous studies on Gurney 
flap have shown that the calculated aerodynamic coefficients 
such as lift and drag coefficients from quasi-steady approach 
are in good agreement with the time averaged values of these 
quantities in time accurate computations. However, these 
investigations were conducted in regimes of medium to high 
Reynolds numbers where the flow is turbulent. Whether this 
is true for the regime of ultra-low Reynolds number is open 
to question. Therefore, it is deemed necessary to examine 
the previous investigations in the regime of ultra-low Reynolds 
numbers. The unsteady incompressible laminar flow over a 
Gurney flapped airfoil is investigated using three approaches; 
namely unsteady accurate, unsteady inaccurate, and quasi-
steady. Overall, all the simulations showed that at ultra-low 
Reynolds numbers quasi-steady solution does not necessarily 
have the same correlation with the time averaged results 
over the unsteady accurate solution. In addition, it was observed 
that results of unsteady inaccurate approach with very 
small time steps can be used to predict time-averaged 
quantities fairly accurate with less computational cost.

KEYWORDS: Gurney flap, Ultra-low Reynolds number, 
NACA 0008 airfoil, Transient behavior, Incompressible flow, 
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INTRODUCTION

Gurney flap (GF) is a tab of small height deployed at the 
trailing edge of the airfoil normal to the chord line at the pressure 
side. In the present paper, the effect of different numerical 
approaches on the aerodynamic behavior of a NACA 0008 
airfoil equipped with a GF in laminar incompressible flow is 
investigated. GF is a simple device previously used on race 
cars, which is found to be useful in terms of providing the 
required downforce. Liebeck (1978) conducted an experimental 
study of the GF on a Newman airfoil in Douglas Long Beach 
low-speed wind-tunnel at Reynolds number based on cylinder 
diameter (ReD) of 3 × 106. The results showed that the GF 
would provide higher value of maximum lift coefficient (CL), 
increased lift at a specific angle of attack, and reduced drag at a 
specific CL. The author hypothesized that the flow is composed 
of 2 counter-rotating vortices at the back side of the GF and a 
recirculating region upstream the flap. Later, this flow feature 
was also observed at low Reynolds number in a water tunnel 
by Neuhart and Pendergraft (1988). 

Li et al. (2002), Myose et al. (1996), and Giguere et al. (1997) 
studied the effects of GF on the aerodynamic performance of 
various airfoils. Their results showed that the effect of GF is to 
substantially increase the maximum CL and to reduce the stall 
angle. In addition, the zero-lift angle of attack becomes more 
negative with the increase in GF height. Overall, their results 
suggest that the effect of the GF is to increase the effective camber 
of the airfoil. Jeffrey et al. (2000) conducted an experimental study 
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over a single-element wing using laser Doppler anemometry 
along with pressure and force measurements. Based on the 
study performed by these authors, the time-averaged flow 
downstream a GF consists of 2 counter-rotating vortices, but 
the instantaneous flow structure actually consists of a wake of 
alternately shed vortices. Troolin et al. (2006) investigated the 
wake structure using time-resolved particle image velocimetry. 
They showed that 2 distinct vortex-shedding modes exist in the 
wake. The dominant mode resembles a Karman vortex street 
behind an asymmetric bluff body. The second mode is caused 
by the intermittent shedding of recirculating region upstream 
the flap, which becomes more coherent with the increase in 
the angle of attack. Manish et al. employed a compressible 
Reynolds-averaged Navier-Stokes (RANS) solver using Baldwin-
Lomax turbulence model for the prediction of flow over 
NACA 0011 and NACA 4412 airfoils with different GF heights. 
All the computations in their study for NACA 4412 airfoil were 
performed for free-stream Mach number of 0.20 and chord 
Reynolds number of 2.0 million; those for NACA 0011 airfoil 
were carried out for Mach number of 0.14 and chord Reynolds 
number of 2.2 million.

They carried out their computations with the assumption 
that the flow is steady. The computed force coefficients had 
a good correlation with the experiment. But it was observed 
that the difference between numerical and experimental 
results increases with angle of attack and flap height. 
Ashby (1996) conducted experimental and computational 
studies to investigate the effects of lift-enhancing tabs on a 
multi-element airfoil. All of the computations were obtained 
using 2-D, incompressible RANS solver in the steady-state mode 
implementing the Spalart-Allmaras turbulence model. Good 
agreement was achieved between computed and experimental 
results, particularly for cases where no flow separation exists on 
the flap upper surface. However, poor agreement was obtained 
for configurations where significant flow separation exists over 
the flap upper surface. Overall, the computed results predicted 
all of the trends observed in the experimental data quite well. 

Date and Turnock (2002) carried out a detailed computational 
study on the quasi-steady and periodic performance of NACA 
0012 airfoil equipped with GFs with a flap height-to-chord 
ratio of 2 and 4% using the incompressible RANS solver and 
implementing the standard k-ε turbulence model at Reynolds 
number of 0.85 × 106. They showed that the time-averaged 
performance is identical to the performance predicted by 
the quasi-steady solution, showing the same correlation with 

the experimental data. According to their investigation, when 
periodic performance of airfoil is of secondary importance, the 
quasi-steady solution can be used to obtain estimates of airfoils, 
mean performance for practical purposes. According to the 
study performed by Date and Turnock (2002), quasi-steady 
approach has the same prediction of mean performance as time 
accurate computations.

Based on the experimental studies in the literature regarding 
Gurney-flapped airfoils, the addition of flap originates 
vortex shedding, and the flow becomes unsteady (Jeffrey 
et al. 2000; Troolin et al. 2006). As a result, all computations 
should be performed in unsteady mode. Nevertheless, many 
numerical computations assume a steady flow and use steady- 
state computations for the prediction of the flow (Singh et al. 
2007; Ashby 1996; Jang et al. 1992; Ross et al. 1995). To the 
best of our knowledge, all of the studies in the literature are 
performed at medium-to-high Reynolds number flow regimes. 
However, less attention has been paid to the performance of 
GF at ultra-low Reynolds number (Re below 10,000) flow 
regime where the boundary layer, wake characteristics, and 
other flow features are different.

The regime of ultra-low Reynolds number has recently 
received special interest and has been the subject of many 
computational and experimental researches. According to the 
studies conducted in this flow regime, it has many applications 
in the analysis of aerodynamics at small physical scales (insect-
sized aircraft), especially flight of Micro-Air Vehicles (MAVs). 
The choice of airfoil plays an important role in the design 
of aircraft suitable for low-speed aerodynamics. Also the 
payload, range, and endurance of the low-speed aircraft are 
limited by the performance of their high-lift systems (Storms 
and Jang 1994). Some investigations conducted a parameter 
study for analysis and design of airfoils suitable for ultra-low 
Reynolds numbers. Kunz (2003), in their computational study of 
ultra-low Reynolds numbers (between 1,000 and 6,000), 
developed an automated optimal design tool for 2-D airfoils 
at ultra-low Reynolds numbers and a hybrid method for 
the automated design and analysis of micro-rotors. Abdo 
(2004), in their study, presented an efficient numerical method 
for the incompressible flows past airfoils at low Reynolds 
numbers. Their analysis was based on a pseudo-time integration 
method using artificial compressibility to accurately solve the 
Navier-Stokes equations. They obtained solutions for airfoils at 
various incidences and very-low Reynolds numbers between 
400 and 6,000. Furthermore, the generation of high lift can 
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lead to steeper take-off ascent, increase in the climb lift-to-drag 
ratio, and fuel economy (Tejnil 1996). Therefore, the choice of 
an efficient high lift device would also be of great importance. 
GF is a good candidate to maintain high-lift coefficient required 
for approach and landing (Storms and Jang 1994) and is a 
mechanically-simple and cost-effective device in contrast with 
other complex multi-element high-lift ones, being used to 
control the flow in combination with other elements (Schatz et 
al. 2004). Thus, the motivation for this study was: (a) to model a 
Gurney-flapped airfoil at ultra-low Reynolds flow regime, since 
the understanding of aerodynamic behavior of the airfoil at this 
Reynolds number would be helpful for the design of low-speed 
aircraft; and (b) to investigate whether steady-state solution 
can still be used to predict mean performance of unsteady flow 
around Gurney-flapped airfoils at ultra-low Reynolds regime. 

To this end, the Mass Corrected Interpolation Method 
(MCIM) algorithm of Alisadeghi and Karimian (2010) is 
employed for the solution of flow over a NACA 0008 Gurney-
flapped airfoil. This method is one of the most robust ones 
for incompressible flow calculation that provides an efficient 
and accurate tool for solving practical engineering problems 
(Alisadeghi and Karimian 2010) and has been previously validated 
for internal flows (Alisadeghi and Karimian 2010), including 
Taylor problem, inviscid converging-diverging nozzle, and the 
lid-driven cavity, as well as for external flows (Khoshlessan 
et al. 2013; Khoshlessan 2013), including steady and unsteady 
flows over a circular cylinder section and unsteady flow over 
a NACA 0012 airfoil. 

Three implicit time-marching approaches are imple-
mented for the prediction of flow over a Gurney-flapped 
airfoil: (a) unsteady accurate, which refers to the solution in 
which linearization iterations are performed at each time step 
(Δt); (b) unsteady inaccurate, which refers to the solution in 
which no linearization iteration is performed at each Δt; and 
(c) quasi-steady, which refers to the solution in which the transient 
term is eliminated from the Incompressible Navier-Stokes (INS) 
equations, i.e. very-large time steps are used. Grid refinement 
and time-step independence studies are conducted to ensure 
the generation of accurate solution. Results obtained from these 
approaches are studied in detail and compared with each other. 
Moreover, the effect of linearization convergence criterion (e) 
on the time accurate solution and the sensitivity of all calcu-
lated parameters to the other values of e are investigated. As it 
will be seen, the present paper concludes that, in contrast to 
high Reynolds numbers flow, the quasi-steady solution cannot 

be used to correctly predict the mean aerodynamic behavior 
of a Gurney-flapped airfoil at ultra-low Reynolds numbers. It 
will be also shown that the unsteady inaccurate approach with 
very-small time steps can be used to fairly predict the time-av-
eraged quantities accurately with 1/3 of computational cost 
needed for unsteady accurate calculations. 

In addition, the governing equations are implicitly 
formulated and solved using direct methods. Two different 
direct solvers are examined here to study their effect on the 
required memory and speed up of the solution. 

NUMERICAL ALGORITHM AND 
GOVERNING EQUATIONS

In this study, the MCIM (Alisadeghi and Karimian 2010) is 
employed for solving 2-D incompressible flows on structured 
grid systems. The present algorithm can be classified among the 
collocated grid schemes in control-volume-based methods in 
which 2 different velocity components at cell faces are defined 
to suppress the possible checkerboard problem in the solution 
domain. In the present approach, conservation equations 
are formed for each control volume throughout the solution 
domain. In addition, a fully-coupled formulation is used. The 
linear system of equations obtained in these algorithms is solved 
using a direct sparse solver. The transient term is modeled using 
a first-order backward difference in time. Convective term is 
linearized by lagging the stream-wise velocity and modeled so 
that it would cause the upstream value of velocity uup to affect 
uip strongly, when convection is dominant. Also, the convective 
term is modeled using a first-order backward differencing in 
the upstream direction. 

The computational domain is discretized into a number of 
quadrilateral elements, and all primitive variables are located 
at the vertices of these elements. A local non-orthogonal 
coordinate system (s,t) is defined inside each element. Medians 
within the element divide it into 4 sub-control volumes (SCVs), 
as shown in Fig 1a. Each SCV is associated with an elemental 
node at its vertex, and each node is surrounded by 4 SCVs 
that form a control volume for the given node. Sub-control 
surfaces (SCSs) are the representative of boundary surfaces of 
the SCVs fallen inside the element, and the integration points 
(ip) are the representative of the midpoint of the SCSs. Diffusion 
fluxes and pressure terms at the integration points are related to 
the nodal variables using bi-linear interpolation. Mass and the 
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convection fluxes at the ip should be also related to the nodal 
values of velocity and pressure.

The volume integral of the transient term is modeled using a 
first-order backward difference in time. Any integral argument, 
i.e. E, F, G, and H, is approximated by its average value over 
the SCS, which is evaluated at its midpoint location (ip). For 
diffusion flux vectors G and H, bi-linear interpolation is used 
to directly evaluate the components of stress tensor (Karimian 
and Schneider 1995, 1994; Karimian 1994). For convective flux 
vectors E and F, pressure is evaluated using bi-linear interpolation, 
and the momentum fluxes are linearized with respect to mass 
fluxes (ρu) and (ρv). Velocity components u and v in 
mass fluxes are called integration point mass-conserving 
velocities, being denoted by a hat, i.e. ρu ˆ and ρv ̂. Other values of u 
and v in the momentum fluxes, which are convected by the mass 
fluxes through the control-volume surface, are called integration 
point convected velocities. Mass-conserving and convected 
velocities are cell-face velocities. Details of the modeling of the 
cell-face velocities are represented in Alisadeghi and Karimian 
(2010) in detail. It should be noted that, since Navier-Stokes 
equations are non-linear by nature, and in order to have a linear 
system of equations, convection terms in momentum equations 
are linearized by lagging the stream-wise velocity. This means 
that the mass fluxes (ρu and ρv) in convection term are calculated 
from previous iteration, which introduces an error to the 
solution. Therefore, it is necessary to perform the linearization 
iteration at each Δt in order to reduce the linearization error to 
the lowest possible amount. The ε used to stop the linearization 
iteration process is given by Eqs. 3 and 4, in which zj is the jth 

unknown variable. For all of the solutions over a circular cylinder 
shown here, ε is set equal to 0.1%.
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Figure 1. Definition of (a) element and (b) control volume 
and sub-control volume.

All primitive variables are located at the vertices of the 
elements and should be evaluated at the ip to determine the flux 
at each SCS. Using the linear interpolation, any variable and its 
gradients within the element can be calculated. More details 
of the method by which these fluxes are defined at the ip and 
the formation of the system of linearized equations and time-
marching scheme can be found in Karimian and Schneider 
(1995, 1994) and Karimian (1994). Governing equations are 
the INS equations, and its integral form for SCV2 in Fig. 1, for 
instance, is given by:

(1)

(3)

(4)

(2)

where: dV represents volume differential; dsx and dsy 

represent components of the outward vector normal to the 
surface; SCS denotes the inner sub-control surface associated 
with SCV2; Q, E, F, G, and H are defined as follows: 

where: ρ is the density; u is the convected stream-wise velocity; 
v is the convected transverse velocity; μ is the dynamic viscosity.

where:

Three approaches are implemented for all the simulations 
performed in the present study. Comparison between these 
approaches are made for the case of Gurney-flapped airfoil. 
These approaches are as follows:

(a) (b)
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•	 Unsteady accurate solution (UAS), in which linearization 
iterations are performed at each Δt. The ε used to stop 
linearization iteration process is defined by Eqs. 3 and 4. 

•	 Unsteady inaccurate solution (UIS), in which no 
linearization iteration is performed at each Δt.

•	 Quasi-steady solution (QSS), in which the transient 
term is eliminated from the INS equations and is 
considered equivalent to UIS, with Δt → ∞.

Boundary Conditions
Velocity inlet boundary condition is specified at the inflow 

boundary, i.e. u = U∞cosα and v = U∞sinα, where U∞ is the free 
stream velocity. Pressure outlet boundary condition is specified 
at the outflow boundary, i.e. ∂v/ ∂s = 0 and poutflow = P∞. No-slip 
boundary condition is employed at all walls, i.e. velocities are 
set equal to 0 on all boundary nodes. GF is considered as a 
single flat plate without thickness; on its both sides, no-slip 
boundary condition is applied. 

IMPLEMENTATION OF BAND SOLVER AND 
DIRECT SPARSE SOLVER

As mentioned before, in the present numerical study, the 
governing equations are implicitly formulated, which leads to 
the formation of a system of linearized equations that should 
be solved at each Δt (UAS approach). Since the number of 
unknown variables is typically very large, solving the resulted 
coefficient matrix has a significant impact on computational 
time. To reduce the amount of required memory and to speed 
up the convergence rate in the iterative process for the solution 
of the system of equations, the following tasks and their effects 
are examined:

•	 Implementation of band solver. 
•	 Implementation of a direct sparse solver. 
The details about the band solver are not given here and can 

be found in Khoshlessan et al. (2013) and Khoshlessan (2013). 
Only Sparse solver is discussed, as it is used in all simulations. 
It should also be noted that all the simulations are executed in 
serial mode in the present study.

Direct Sparse Solver
Note that the main part of the present study is dedicated 

to unsteady flows. Therefore, very-fine grids are required to 
predict time evolution of the wake and the flow periodicity. As 
a result, the number of unknown variables will be very large, 
which results in a very large coefficient matrix. This leads to a 
noticeable increase in both CPU time and required memory, 
especially when extremely intensive computations are necessary 
to be carried out with small time steps. To handle such cases, 
a direct sparse solver called BLOCKPACK (Karimian 1994) is 
implemented instead of the band solver to solve the renumbered 
band matrix. In order to test the efficiency of the sparse solver, 
the case of unsteady flow over a circular cylinder at ReD = 100 
is examined. Table 1 shows the comparison of CPU time taken 
to complete 7,500 time steps to reach the solution at t = 7.5 s 
using band solver and direct sparse solver.

As illustrated in Table 1, the average time needed for each 
linearization iteration is reduced to 20 s for sparse solver as 
compared to 9 min for band solver. Thus, the amount of CPU 
time taken to complete 7,500 time steps using sparse solver is 
1/27 of that of the band solver (41.67/1,125). As can be seen, 
the implementation of direct sparse solver has led to significant 
speed up in convergence rate and saving in computational time. 

ALGORITHM VALIDATION 

For the validation of the present algorithm, 2 test cases 
are studied. In both, cases results are compared against other 
numerical and experimental results available in the literature 
(Berthelsen and Faltinsen 2008; Russel and Wang 2003; Linnick 
and Fasel 2005; Herfjord 1996; Calhoun 2002; Medjroubi 2011; 
Coutanceau and Bouard 1977; Tritton 1959). All the simulations 
in validation section are performed using the UAS approach. 
The first test case is steady flow over a circular cylinder at 
ReD = 40. Grid refinement study is conducted to ensure that 
there is enough near wall resolution, and the obtained results 
are accurate. The numerical grid used for the simulation is an 

Solver
Average time needed for 

each linearization iteration
Average number of linearization 

iterations in each Δt
CPU Time (h) needed to complete 7,500 

time steps to reach the solution at t = 7.5 s

Band 9 min 1 1,125

Sparse 20 s 1 41.67

Table 1. Comparison of CPU time taken to reach periodic state of unsteady flow over a circular cylinder at ReD = 100 with 
Δt = 10–3 s using band solver and direct sparse solver.
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O-type grid topology, composed of quadrilateral elements. The 
cylinder is located at (x, y) = (D/2, 0), where D is the cylinder 
diameter. The far-field boundary is located at 20 chords (C) away 
from the center of the cylinder in all computations. In this case, 
grid refinement study is performed based on 2 independent 
radial (Nr) and angular (Nθ) directions, and the sensitivity of the 
calculated drag force with change in grid resolution is studied. 
Three different mesh counts with sizes of 220 × 40, 220 × 60, 
and 220 × 80, in Nr, and with sizes of 180 × 60, 220 × 60, and 
260 × 60, in Nθ, are used for this purpose. Drag coefficient (CD) 
calculated from the steady-state solution and the corresponding 
relative error (E) on these grids are reported in Tables 2 and 
3, which are defined as:

medium grid (220 × 60) is enough tin in the angular direction. 
Therefore, the best grid to obtain grid independent results in 
this case is the medium one. 

In the next step, the present results are compared with 
others reported in the literature (Berthelsen and Faltinsen 
2008; Russel and Wang 2003; Linnick and Fasel 2005; Herfjord 
1996; Calhoun 2002; Medjroubi 2011; Coutanceau and Bouard 
1977; Tritton 1959). Drag force and geometrical parameters of 
the steady flow structure around a circular cylinder, defined in 
Fig. 2 and calculated on the 220 × 60 grid, are shown in Table 4, 
where they are compared with other experimental and numerical 

(5)

(6)

Grid Nθ CD Ej,j-1 (%)

1 180 1.5505 --

2 220 1.5483 0.1421

3 260 1.5478 0.0323

Table 2. Angular grid independence study at ReD= 40 (Nθ = 220).

Grid Nr CD
Ej,j-1 (%)

1 40 1.5513 --

2 60 1.5505 0.0516

3 80 1.5502 0.0194

Table 3. Angular grid independence study at ReD= 40. (Nr = 60)

In Tables 2 and 3, indices 1, 2, and 3 refer to large, medium, 
and fine grids used for grid independence study. In Table 2, 
E21 and E32 of CD are 0.05 and 0.02, respectively, which are 
very low. The grid refinement study provides details of fine 
mesh (220 × 80) compared to medium (220 × 60) and coarse 
(220 × 40) meshes. Mesh refinement study performed on 
the coarse, medium, and fine grids on CD shows very little 
variation when increasing mesh size, leaning towards their 
limiting trends. Therefore, 60 nodes in radial direction would 
be the best choice here. The first grid node should be located 
at 0.00044D away from the cylinder surface for the mesh to 
be able to capture details of the flow field with this number of 
grid points. With the same argument, one can conclude that, 
based on grid refinement study for fine (260 × 60), medium 
(220 × 60), and coarse (180 × 60) meshes shown in Table 3, the 

Reference L/D a/D b/D  Ѳ(o) CD

Berthelsen and 
Faltinsen (2008) 2.29 0.72 0.6 53.9 1.59

Russel and Wang (2003) 2.29 -- -- 53.1 1.6

Linnick and Fasel 
(2005) 2.28 0.72 0.6 53.6 1.54

Herfjord (1996) 2.25 0.71 0.6 51.2 1.6

Calhoun (2002) 2.18 -- -- 54.2 1.62

Medjroubi (2011) 2.21 0.7 0.59 53.8 1.6

Coutanceau and 
Bouard* (1977) 2.13 0.76 0.59 53.5 --

Tritton* (1959) -- -- -- -- 1.57

Average of other 
numerical results 2.25 0.7125 0.5975 53.3 1.592

Error of the average 
of other numerical 

results with respect to 
experiment (%)

5.6 6.6 1.3 0.4 1.4

Present study 2.25 0.72 0.6 53.8 1.55

Present study with respect 
to experiment (%) 5.6 5.3 1.7 0.56 1.3

Figure 2. Nomenclature of the geometrical parameters for 
the flow over a circular cylinder at ReD = 40 (Berthelsen and 
Faltinsen 2008).

Table 4. Comparison of geometrical parameters for the flow 
over a motionless cylinder at ReD = 40.

*Experimental results.
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results (Berthelsen and Faltinsen 2008; Russel and Wang 2003; 
Linnick and Fasel 2005; Herfjord 1996; Calhoun 2002; Medjroubi 
2011; Coutanceau and Bouard 1977; Tritton 1959). In order to 
compare the efficiency of the present method concerning other 
numerical methods, the average of error in other numerical 
results is calculated. Thus, the error of the average of other 
numerical results as well as the error of the present data, with 
respect to the experiment (%), are compared. As can be seen, 
the relative error of the present results for L/D, a/D, b/D, θ/D, 
and CD are 5.6; 5.3; 1.7; 0.56 and 1.3, respectively, with respect 
to the experiment, where L is the length of the recirculation 
region; a is the length of the center of recirculation region; b is 
the width of the center of recirculation region; θ is the separation 
angle. These errors are less than or about the same amount as 
compared to the relative error in the average of other numerical 
results, i.e. 5.6; 6.6; 1.3; 0.4 and 1.4 with respect to experiment. 
Thus, it can be concluded that the present algorithm predicts 
the details of the steady external flows over 2-D bodies very 
well as compared to other numerical results.

A second test case is performed to validate the present 
algorithm for the solution of unsteady flow that, over a circular 
cylinder at ReD = 100, at which Von-Karman street is produced 
in its wake, is used for this purpose. The same grid of 220 × 60 
points is adopted for the solution of the unsteady flow based 
on the grid study performed in previous section. This case 
is solved with different time steps to ensure Δt independent 
solution. During the transient regime, solution linearization 
iterations are performed at each Δt (refer to Eqs. 3 and 4 for 
definition). Solution is continued until the fully periodic state 
is achieved. Strouhal number (St), mean drag coefficient (CD,m), 
amplitude drag coefficient (CD,a), and amplitude lift coefficient 
(CL,a) are extracted from the numerical results obtained from 
the present solution. Time steps of 10–3; 10–4, and 5 × 10–5s are 
considered here, and the corresponding results are shown in 
Table 5. The change in time step from 10–3 to 10–4 s has altered 
St, CD,m, CD,a, and CL,a by 1.93; 0.44; 3.25 and 1.12%, respectively, 
while a decreasing time step from 10–4 to 5 × 10–5 s has changed 
St, CD,m, CD,a, and CL,a by only 0.175; 0.004; 0.165 and 0.35%, 

respectively. Relative error in the change of parameters listed 
in Table 5 from time step of 10–4 to 5 × 10–5 s are less than 1%. 
If a relative error of less than 1% is fine enough, then the time 
step of Δt = 10–4 s is an appropriate value to accurately capture 
unsteady flow field around a circular cylinder at ReD = 100.

The results are compared with those of the other numerical 
or experimental studies (Russel and Wang 2003; Calhoun 
2002; Ding et al. 2007; Liu et al. 1998; Xu and Wang 2006; 
Williamson 1989) available in the literature in Table 6. In order 
to compare the efficiency of the present method as compared to 
other numerical methods, the average of error in other numerical 
results is calculated. The maximum relative error of the other 
numerical results with respect to their average (%) and the error 
of present data with respect the average of other numerical results 

Case Present study St Ej,j-1(%) CD,m Ej,j-1 (%) CD,a Ej,j-1(%) CL,a Ej,j-1 (%)

1 (Δt = 10–3 s) 0.1678 -- 1.372 -- 0.0127 -- 0.2900 --

2 (Δt = 10–4s) 0.171 1.93 1.378 0.44 0.0123 3.25 0.2868 1.12

3 (Δt = 5 × 10–5s) 0.171 0.175 1.378 0.0 0.0121 0.165 0.2858 0.35

Table 5. Time step independence study for unsteady flow past circular cylinder at ReD = 100.

Reference St CD,m CD,a CL,a

Ding et al. (2007) 0.166 1.356 0.01 0.287
Russel and Wang 

(2003) 0.169 1.38 0.007 0.3

Liu et al. (1998) 0.165 1.35 0.012 0.339
Calhoun (2002) 0.175 1.33 0.014 0.298

Xu and Wang (2006) 0.171 1.42 0.013 0.34
Williamson** (1989) 0.164 -- -- --

Average of other 
numerical results 0.1692 1.3672 0.0112 0.3128

Max. relative error in 
the above results with 

respect to average 
listed above (%)

3.42 3.8 37.5 8.69

Error of the average of 
numerical results with 

respect to experiment (%)
3.2 -- -- --

Present study 
(Δt=10-4s) 0.1711 1.37776 0.0123 0.2868

Error* (%) 1.12 0.77 9.8 8.3
Present study with respect 

to experiment (%) 4.3 -- -- --

Table 6. Unsteady flow past circular cylinder at ReD=100.

*This is error of the results of the present study (Δt = 10-4 s) with respect to 
the average of results listed above; **Experimental study.
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are compared. As can be seen in Table 6, the relative errors 
of the present results for St, CD,m, CD,a, and CL,a with respect 
to the average of other numerical results (Russel and Wang 
2003; Calhoun 2002; Ding et al. 2007; Liu et al. 1998; Xu and 
Wang 2006; Williamson 1989) (1.12; 0.77; 9.8 and 8.3) are less 
than the maximum relative error in other numerical results 
(Russel and Wang 2003; Calhoun 2002; Ding et al. 2007; Liu 
et al. 1998; Xu and Wang 2006; Williamson 1989) and their 
average values (3.42; 3.48; 37.5 and 8.69). 

Again, from the results obtained here, one can conclude that 
the present algorithm predicts excellently the details of external 
unsteady flows over 2-D bodies as well. The relative error of St 
for the present results and the average of other numerical results 
(Russel and Wang 2003; Calhoun 2002; Ding et al. 2007; Liu 
et al. 1998; Xu and Wang 2006; Williamson 1989) are 4.3 and 
3.2, respectively with respect to experimental data (Table 6). 
The comparison presented in Table 6 shows that the present 
algorithm does a good job in predicting the St and aerodynamic 
coefficients for unsteady flow over a circular cylinder.

RESULTS

In this section, the MCIM algorithm of Alisadeghi and 
Karimian (2010) validated before for external flows over 
2-D bodies is used for the analysis of laminar flow over a 
NACA 0008 airfoil fitted with GF. All of the simulations 
presented herein are performed by solving the INS equations 
with the assumption that the flow is laminar over the entire 
domain. Steady solutions are obtained when aerodynamic 
forces converge to their final value. Unsteady solutions 
are obtained after several periodic cycles, where the force 
coefficient time series reach a periodic state. Grid and time 
refinement studies are performed to ensure independent 
solutions. Grid refinement study is first performed in order 
to find proper number of grid points in different directions 
of the computational grid. Discussions on grid refinement 
study are given in the following subsection.

Numerical grid used for the simulation is a structured 
C-type grid topology. Gurney flapped NACA 0008 airfoil is 
located at (x,y) = (C/2,0), and the far-field boundary is located 
at 20C away from the center of the airfoil in all directions. 
Uniform flow over the airfoil is from left to the right in the 
x-direction, and the entire domain is initialized using the undis- 
turbed uniform flow at the far-field inlet boundary condition.

Grid Refinement Study
Grid refinement study is conducted on a Gurney flapped 

airfoil with a flap height of Hf = 4%C, at Reynolds number based 
on chord length (ReC) of 2,000 and angle of attack α = 4°. Grid 
resolution is changed in different regions of computational 
domain independently, i.e. inside the flap region (Nf), in the 
radial direction (Nη), along the chord (Nξ), and in the wake 
(Nζ) to ensure enough grid points in each direction. This will 
be of great importance to capture physics of the flow accurately. 
Figure 3 shows the schematic diagram of the computational 
grid around a Gurney flapped airfoil. 
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Figure 3. Schematic diagram of the computational grid.

It is important to note that the computational time of the 
unsteady accurate solution approach is much higher than 
that of the quasi-steady approach, due to the linearization 
iterations, which should be performed at each Δt in unsteady 
accurate solution approach. Therefore, quasi-steady approach 
is used in all simulations carried out in this section to avoid the 
extremely-intensive computational burden due to time accurate 
computations. Thus, the quasi-steady values of lift and drag 
coefficients are the parameters which their changes due to the 
grid refinement will be monitored in this study. In each test 
case, the number of grid points is changed in one direction, 
while the number of grid points in the other directions is kept 
constant. Grid refinement study is of great importance in order 
to reach an independent and accurate solution. Calculated 
force coefficients along with their relative errors computed on 
12 grids with different resolutions are considered next. Note that, 
in the subsequent sections, the error of the lift coefficient (CL) 
is calculated similarly to error of CD, as defined in Eqs. 3 and 4.

Flap Grid Independence Study
As seen in Table 7, the relative error E21 of CD and CL is 0.3694 

and 1.1894%, respectively, from the coarse grid to the medium 
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one, and E32 of CD and CL is 0.1353 and 0.0744%, respectively, 
from the medium grid to the finest one. From the coarsest 
grid to the finest one, the solution changes, and relative errors 
of both CD and CL are reduced, leaning toward their limiting 
trend. Therefore, Nf =30 would be the best choice here as the 
baseline resolution for all subsequent computations.

Wake Grid Independence Study
As seen in Table 10, the relative errors of CD and CL are 

very small. The relative error E32 of CD and CL is approximately 
0 and 0.0186% from the medium grid to the finest one, and E21 

of CD and CL is approximately 0.0123 and 0.0186% from the 
coarse grid to the medium one. Based on these data, one can 
conclude that CD and CL have reached their limiting values. 
Therefore, the selection of the medium grid with Nζ = 90 is an 
appropriate choice in this case. 

Finally, based on the error reduction achieved through grid 
refinements, a grid with Nf = 30, Nη = 70, Nξ = 100, Nζ = 90 is 
selected for all the subsequent solutions of Gurney flapped 
airfoil. This grid is based on the medium cases which yield 
lift and drag coefficients with very small errors (within 0.2%) 
from the finest grids. Figure 4a shows the C-grid topology 
used for the computations, and Fig. 4b presents details of 
numerical grid used for the simulations in the flap region.

Grid Nf

Nη = 70, Nξ = 100, Nζ = 80

Lift data Drag data

CL
Ej,j-1 CD Ej,j-1

1 20 0.5445 -- 0.08092 --

2 30 0.5381 1.1894 0.08122 0.3694

3 40 0.5377 0.0744 0.08133 0.1353

Grid Nξ

Nf = 30, Nη = 70, Nζ = 80

Lift data Drag data

CL
Ej,j-1 CD Ej,j-1

1 80 0.5371 -- 0.08119 --

2 100 0.5381 0.1858 0.08122 0.0369

3 120 0.5389 0.1485 0.08142 0.2456
Table 7. Flap Grid Independence Study with Hf /C = 4% at 
ReC = 2,000 and α = 4°.

Radial Grid Independence Study
As seen in Table 8, relative errors of CD and CL are very small. 

The relative error E32 of CD and CL is approximately 0.012 and 
0.074% from the medium grid to the finest one, and E21 of CD 
and CL is approximately 0.037 and 0.17% from the coarse grid 
to the medium one. Based on these data, one can conclude 
that CD and CL have reached their limiting values. Therefore, 
Nη = 70 would be the best choice here as the baseline resolution 
for all subsequent computations.

Grid Nη

Nf = 30, Nξ = 100, Nζ = 80

Lift data Drag data

CL
Ej,j-1 CD Ej,j-1

1 60 0.539 -- 0.08119 --

2 70 0.5381 0.1673 0.08122 0.0369

3 80 0.5377 0.0744 0.08123 0.0123

Grid Nζ

Nf = 30, Nη = 100, Nξ = 80

Lift data Drag data

CL
Ej,j-1 CD Ej,j-1

1 80 0.5381 -- 0.08122 --

2 90 0.5382 0.0186 0.08121 0.0123

3 100 0.5383 0.0186 0.08121 0

Table 8. Radial grid independence study with Hf /C = 4% at 
ReC = 2,000, and α = 4°.

Chord Wise Grid Independence Study
As can be seen in Table 9, the relative error E32 of CL is 

approximately 0.1485% from the medium grid to the finest 
one, and E21 of CL is approximately 0.1858% from the coarse 
grid to the medium one, which shows that CL has reached its 
limiting value. Regarding the relative error of CD, we believe 
that, although E32 (0.0002) is larger than E21 (3 × 10–5), both are 
small enough to accept that CD has also reached to its limiting 
value, as can be seen in Table 9. Therefore, selection of the 
medium grid with Nξ = 100 is an appropriate choice in this case. 

Table 9. Chord wise grid independence study with Hf /C = 4% 
at ReC = 2,000, and α = 4°.

Table 10. Wake grid independence study with Hf /C = 4% at 
ReC = 2,000, and α = 4°.

Figure 4. Details of computational grid (a) around the 
section and (b) inside the flap region.

(a) (b)
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Simulations of Fixed Gurney Flapped Airfoil
In the present section, the performance of the quasi-steady 

approach in comparison with unsteady accurate approach will 
be evaluated in the regime of ultra-low Reynolds numbers. 
Different approaches for the prediction of flow over a Gurney 
flapped airfoil will be investigated and compared with 
each other. 

Simulations are carried out for a NACA 0008 airfoil with 
a flap to chord ratio of Hf/C = 4% at angles of attack of 3°, 4°, 
and 7° and at Reynolds number of 2,000 using the 3 approaches 
introduced in the section “Implementation of band solver and 
direct sparse solver”. 

Parameters under consideration in the present study are 
St, mean lift coefficient (CL,m), CD,m, CL,a, and CD,a, reported 
in Tables 11 to 13. All the calculated parameters are obtained 
from CL and CD time series, once the computed flow field has 
converged to a periodic solution. The linearization convergence 
criterion used to stop linearization iteration process for all 
the calculations summarized in Tables 11 to 13 is ε = 0.1%. 
To ensure a Δt independent solution for UAS approaches at 
each angle of attack, variation of St, CL,m, CD,m, CL,a, and CD,a 
is monitored for a variety of time steps to achieve accurate 

transient solutions for the prediction of unsteady flow structure 
and aerodynamics of a Gurney flapped airfoil. 

Time Step Independence Study
Tables 11 to 13 illustrate the sensitivity of the calculated 

quantities using UAS approach to different time steps ranging 
from Δt = 10–3 s to Δt = 10–5 s. As seen in these tables, CL,m, CD,m, 
and St extracted from the numerical results calculated using 
UAS approach show a monotone and asymptotic convergence 
leaning toward their limiting trend as Δt decreases from 
Δt = 10–3 s to Δt = 10–5 s. The relative errors in CL,m, CD,m, and St 
from Δt = 10–3 s to Δt = 10–5 s are reduced from 2.59 to 1.37%, 
0.33 to 0.15%, and 78.9 to 1.53% at α = 3°; 8.5 to 1.16%, 1.33 
to 0.14%, and 16.7 to 1.17% at α = 4°; and 19.03 to 0.74%, 
7.75 to 0.23%, and 10.7 to 0.17% at α = 7°, respectively. The 
E43 of CL,m, CD,m, and St  is 1.37; 0.15 and 1.57% at α = 3°; 
1.16; 0.14 and 1.17% at α = 4°; and 0.74; 0.23 and 0.17% at 
α = 7°, respectively, which are fine enough and in the same 
order of magnitude. 

Moreover, amplitude lift and drag coefficients extracted from 
the numerical results of UAS approach also show a monotone 
and asymptotic convergence as time step decreases from 

Case Δt (s) CL,m Ej,j-1 CL,a × 10-2 Ej,j-1 St Ej,j-1 CD,m Ej,j-1 CD,a × 10-3 Ej,j-1

4 0.00001 0.849753 0.74 0.0830 3.37 1.163 0.17 0.114126 0.23 0.02001 3.7

3 0.00005 0.843436 0.95 0.0802 3.9 1.161 0.26 0.113859 0.29 0.01927 4.8

2 0.0001 0.835436 19.03 0.0771 77.04 1.158 10.7 0.113528 7.75 0.01835 79.3

1 0.001 0.676484 -- 0.0177 -- 1.034 -- 0.104730 -- 0.00380 --

Case Δt (s) CL,m Ej,j-1 CL,a × 10-2 Ej,j-1 St Ej,j-1 CD,m Ej,j-1 CD,a × 10-3 Ej,j-1

4 0.00001 0.60256 1.16 0.6978 15.3 1.5448 1.17 0.08256 0.14 1.2289 15.2

3 0.00005 0.59558 1.20 0.5909 16.9 1.5267 1.75 0.082442 0.16 1.0421 16.3

2 0.0001 0.58844 8.5 0.4908 98.8 1.5000 16.7 0.082306 1.33 0.8721 98.9

1 0.001 0.53822 -- 0.00565 -- 1.2500 -- 0.081215 -- 0.0096 --

Case Δt (s) CL,m Ej,j-1 CL,a × 10-2 Ej,j-1 St Ej,j-1 CD,m Ej,j-1 CD,a × 10-3 Ej,j-1

4 0.00001 0.50659 1.37 0.3215 29.9 1.570 1.53 0.07858 0.15 0.5056 29.6

3 0.00005 0.49963 1.59 0.2253 41.2 1.546 2 0.07846 0.19 0.3561 41.7

2 0.0001 0.49170 2.59 0.1325 99.5 1.515 78.9 0.07832 0.33 0.2075 99.5

1 0.001 0.47897 -- 0.00069 -- 0.319 -- 0.07806 -- 0.001068 --

Table 13. Unsteady accurate solution at ReC = 2,000, α = 7° with Hf /C = 4%, ε = 0.1%.

Table 12. Unsteady accurate solution at ReC  = 2,000, α = 4° with Hf /C = 4%, ε = 0.1%.

Table 11. Unsteady accurate solution at ReC  = 2,000, α = 3° with Hf /C = 4%, ε = 0.1%.

All errors are in percent.
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Δt = 10–3 s to Δt = 10–5 s. The relative errors in CL,a and CD,a 
from Δt = 10–3 s to Δt = 10–5 s is reduced from 99.9 to 29.5% 
and 99.5 to 29.6% at α = 3°; 98.8 to 15.3% and 98.9 to 15.2% at 
α = 4°; and 77.04 to 3.37% and 79.3 to 3.7% at α = 7°, 
respectively. However, the downward trend is dependent on the 
angle of attack. For example, E43 of CL,a and CD,a, is 3.37 and 3.7% 
at α = 7°; 15.3 and 15.2% at α = 4°; 29.9 and 29.6% at α = 3°, 
respectively. This is due to the fact that values of amplitude 
force coefficients are 1- or 2-order of magnitude lower than 
the mean values, i.e. CL,a << CL,m and CD,a << CD,m. Moreover, the 
reason for which the relative errors of CL,a and CD,a at 
α = 3° are higher than those of α = 4° and the relative errors 
of CL,a and CD,a at α = 4° are higher than those of α = 7° is that 
CL,a at α = 3o << CL,a at α = 4o << CL,a at α = 7o  and CD,a at α = 3o << CD,a at α = 4o 
<< CD,a at α = 7o. 

Based on the data obtained in the Δt independence study 
shown in Tables 11 to 13, it was decided that a value of 10–5 s would 
be the proper time-step size for the time accurate computations 
in this Reynolds number. This Δt provides a compromise between 
accuracy and CPU time. Time steps smaller than Δt = 10–5 s 
would noticeably increase the computational time. 

Table 14 shows the comparison of CPU time estimated 
using UAS approach to reach periodic state with Δt = 10–4 s at 
ReC = 2,000, with Hf /C = 4%, and ε = 0.1% at different angles 
of attack. The CPU time taken to reach a periodic state is 350, 
275, and 50 for 3°, 4°, and 7°, respectively. As can be seen, there 
is a noticeable difference between the CPU time taken to reach 
a periodic state, at different angles of attack. The computational 
time at low angles of attack is much higher than that of the large 
angles of attack. Note that the unsteadiness and amplitude of 
the oscillation increases as the angle of attack increases. Thus, at 
higher angles of attack, the oscillations dominate uniform flow 
coming from the far-field boundary in a shorter span of time as 
compared to lower angles of attack. As a result, for small angles 
of attack at which the level of unsteadiness is low, forming the 
vortices and establishing periodic oscillations will take more 
time as compared to higher angles of attack. 

Observations
One of the main purposes of the present study is to evaluate 

the possibility of using QSS approach instead of time accurate 
computations for the prediction of performance. Many 
numerical studies used the QSS approach for the prediction of 
flow over a Gurney flapped airfoil with the assumption that QSS 
approach has the capability to predict the flow characteristics 
and the time averaged behavior resulting from time accurate 
computations with a very good accuracy. Table 15 shows 
mean lift and drag coefficient errors of QSS approach, i.e. with 
Δt = ∞, with respect to UAS approach with Δt = 10–5 s. As 
shown in Table 15, QSS approach has predicted the mean lift 
and drag coefficients with errors of 5.5 and 0.67%, 10.6 and 
1.67% and 35.9 and 14.83%, at α = 3°, 4° and 7°, respectively. As 
can be seen, the amount of calculated errors is not negligible, 
and, therefore, QSS approach cannot be used to predict mean 
lift and drag coefficients with the same accuracy as UAS 
approach does. In addition, relative errors increase with the 
angle of attack. For example, the relative error in mean lift and 
drag coefficients has increased from 5.5 to 35.9% and 0.67 to 
14.83%, respectively, by increasing angle of attack from 3° 
to 7°. This is because the QSS approach introduces the average 
of flow properties instead of details of flow transient, while 
UAS approach presents instantaneous flow structure. At higher 
angles of attack, the flow structure is more complicated, and the 
vortices which are the main cause of unsteadiness are larger. 
As a result, the error of QSS approach would be higher with 
respect to UAS approach due to the fact that QSS approach 
ignores the capture of these vortices of flow. 

E*(%)

α = 3° α = 4° α = 7°

Δt  = ∞
CL,m 5.5 10.6 35.9

CD,m 0.67 1.67 14.83

Table 14. Comparison of CPU time taken to reach periodic state using UAS approach with Δt = 10–4 s for unsteady flow over 
a Gurney flapped NACA 0008 airfoil at ReC = 2,000, with Hf /C = 4%, and ε = 0.1%.

α 
(°)

Average time needed for each 
linearization iteration (s)

Average number of linearization 
iterations at each Δt

Overall number of time steps 
to reach the periodic state

CPU time 
(h)

3 20 3 21,000 350

4 20 3 16,500 275

7 20 1 9,000 50

Table 15. Relative error of quasi-steady approach with respect to 
unsteady accurate solution (ReC = 2,000, Hf /C = 4%, ε = 0.1%).

*This is the error of mean values of force coefficients from QSS approach with 
respect to UAS approach at Δt = 10-5 s.
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In addition, the performance of UIS approach in comparison 
with that of the UAS approach is also studied. Table 16 shows 
relative errors of calculated CL,m, CD,m, CL,a, CD,a, and St by 
UIS approach for 3 time steps of 10–3, 10–5, and 5 × 10–5 s with 
respect to those calculated by UAS approach with Δt = 10–5 s. 
Navier-Stokes equations are non-linear by nature, and, in 
order to have a linear system of equations, convection terms in 
momentum equations are linearized with respect to mass fluxes 
ρu and ρv. Therefore, it is necessary to perform the linearization 
iteration at each Δt in order to reduce the linearization error to 
the lowest possible amount. As a result, UIS approach in which 
no linearization iteration is performed does not have the same 
accuracy as the UAS one. 

Table 16 illustrates that, for small time steps, there would be 
no need to perform linearization iterations. This is reasonable since, 
when the Δt gets smaller, the error in flow properties between 
2 successive time steps becomes lower, and, therefore, the 

linearization error decreases. For example, with Δt = 5 × 10–5 s, 
relative errors of calculated CL,m, CL,a, CD,m, CD,a, and St by UIS 
approach with respect to those calculated by UAS approach are 
0.29; 2.02; 0.03; 2.23 and 1.02; 0.29, 0.01, 0.04, 0.2, and 0.89; and 
0.31; 1.3; 0.25; 1.4 and 0.79, at α = 3°, 4° and 7°, respectively. As 
can be seen, all errors are less than or about 2%.

As observed in Table 16, relative errors decrease as Δt 
decreases for all parameters studied. For example, relative 
errors of calculated CL,a by UIS approach with respect to 
those calculated by UAS approach reduce from 80.7 to 2.02, 
15.2 to 0.01, and 5.1 to 1.3 with the decrease in Δt from 
1 × 10–3 s to 5 × 10–5 s at α = 3°, 4° and 7°, respectively. This 
shows the limiting trend of all parameters with the decrease 
in Δt from 1 × 10–3 s to 5 × 10–5 s. Overall, the present results 
show that UIS approach at small time steps in the order of 
Δt = 5 × 10–5 s or lower is comparable with UAS approach 
and capable of predicting aerodynamic coefficients with a 
reasonable accuracy.

Table 17 shows the comparison of CPU time estimated for 
the solution to reach its periodic nature using UAS and UIS 
approaches for the case of unsteady flow over a Gurney flapped 
NACA 0008 airfoil at ReC = 2,000, α = 7°, and Hf /C = 4%.

As illustrated in Table 17, the amount of CPU time 
taken to solve the flow using the UIS approach (100) is 
approximately 1/3 of that of UAS approach (340). As can be 
seen, UIS approach at small time steps is capable of producing 
time-averaged data with less CPU time than UAS approach. 
Therefore, using UIS approach with small time steps, such 
as Δt = 5 × 10-5 s, can lead to savings in computational cost.

Effect of Linearization Convergence 
Criterion on the Solution

The linearization convergence criterion used to stop 
linearization iteration process was 0.1% in all the simulations 
presented in the previous sections. In order to ensure that the 
linearization convergence criterion used to stop linearization 
iteration process is small enough, simulations of UAS approach 
are carried out for 3 angles of attack of α = 3°, 4°, and 7° with 

α (°)
E*(%)

Δt = 0.001 Δt = 0.0001 Δt = 0.00005

3

CL,m 5.3 0.65 0.29
CL,a 80.7 5.1 2.02
CD,m 0.63 0.09 0.03
CD,a 81.01 5.4 2.23
st 20.4 2.5 1.02

4

CL,m 5.3 0.65 0.29
CL,a 15.2 0.54 0.01
CD,m 0.75 0.08 0.04
CD,a 15.4 0.41 0.2
st 19.1 2.4 0.89

7

CL,m 8.6 0.72 0.31
CL,a 5.1 2.5 1.3
CD,m 4.8 0.58 0.25
CD,a 4.4 3.4 1.4
st 16.8 1.92 0.79

Table 16. Errors of unsteady inaccurate solution with respect to 
unsteady accurate solution (ReC = 2,000, Hf /C = 4%, ε = 0.1%).

*This is the error with respect to Δt = 10-5 s results from unsteady accurate solution.

Aproach
Average time needed 
for each linearization 

iteration (s)

Average number of 
linearization iterations in 

each Δt

Overall number of time 
steps to reach the 

periodic state

CPU Time
(h)

UIS 20 1 18,000 100
UAS 20 1 61,000 340

Table 17. Comparison of CPU time taken to reach periodic state using UAS (ε = 0.1%, with and Δt = 10–5 s) and UIS 
(Δt = 5 × 10–5 s) for unsteady flow over a Gurney flapped NACA 0008 airfoil at ReC = 2,000, α = 7°  with Hf /C = 4%.
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linearization convergence criterion values of ε = 0.1, 0.01, and 
0.001% at Δt = 10–5 s. The errors indicated in Fig. 5 are defined as: 

(7)

(8)

where: indices 1; 2 and 3 refer to the linearization convergence 
criterion used for each simulation, i.e. ε = 0.1; 0.01 and 0.001%. 
Note that errors of St, CL,a, CD,m, and CD,a are calculated similarly 
to the error of CL,m, as defined in Eqs. 7 and 8. Figure 5a shows 
sensitivity of mean lift and drag coefficients calculated from 
UAS approach to convergence criterion. The relative errors 
of E21 of CL,m and CD,m for 3 angles of attack α = 3°, 4°, and 7° 
are 0.19; 0.19 and 0.06% as well as 0.03; 0.012 and 0.009%, 
respectively. The relative errors of E32 of CL,m and CD,m are all 
very small and approximately zero. As can be seen, mean lift 
and drag coefficients have negligible changes with linearization 
convergence criterion and, overall, from ε = 0.1% to ε = 0.01%, 
their changes are less than 0.2%.
Figure 5b shows sensitivity of Strouhal number calculated from 
UAS approach to convergence criterion. The relative error of E21 
of St for three angles of attack of α = 3°, 4°, 7°, is 0.13; 0.05, and 
0.08%, respectively. The relative errors of E32 are 0 for all angles 
of attack. As observed, the St also has negligible changes with 
linearization convergence criterion and, overall, its changes are 
less than 0.2%, similarly to what has been predicted for mean 
lift and drag coefficients. 
Figure 5c shows sensitivity of amplitude lift and drag coefficients 
calculated from UAS approach to convergence criterion. The 
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Figure 5. Linearization convergence criterion independence study at Δt = 10–5 s using UAS for unsteady flow over a Gurney 
flapped NACA 0008 airfoil at ReC = 2,000, with Hf = 4%C, and α = 3°, 4°, and 7°. (a) Mean values of lift and drag coefficients; 
(b) Strouhal number; (c) Amplitude of lift and drag coefficients.

relative errors of E21 of CL,a and CD,a for 3 angles of attack 
of α = 3°, 4°, 7°, are 6.2; 3.32; 0.85% and 5.84; 3.31; 0.81%, 
respectively. The relative errors of E32 of CL,a and CD,a are all 
very small and approximately zero. As seen amplitude lift 
and drag coefficients have different behavior from mean 
lift and drag coefficients and Strouhal number. The changes 
in relative errors of CL,a and CD,a from ε = 0.1% to ε = 0.01% 
(E21) are noticeable and dependent on the angle of attack. 
As seen in Fig. 5c, the relative errors of E21 of CL,a and CD,a 

decreases when the angle of attack increases. Indeed, amplitude 
lift and drag coefficients at low angles of attack (α = 3°, 4°) 
are subjected to major changes, i.e. 6.2 and 3.32%; and 5.84 
and 3.31%, respectively, than higher angles of attack (α = 7°), 
which is 0.85 and 0.81%, respectively. This is expected since 
CL,a at α = 3o << CL,a at α = 4o << CL,a at α = 7o  and CD,a at α = 3o << CD,a at α = 4o 

<<CD,a at α = 7o.
The tests carried out on the effect of linearization convergence 
criterion ε show that the relative errors of E21 of CL,m, CD,m and 
St undergo minor changes and are all less than 0.2%. However 
relative errors of E21 of CL,a and CD,a have considerable changes, 
and their changes are dependent on the angle of attack. Overall 
the relative errors of E32 are approximately zero for all parameters 
at all angles of attack. All in all, it can be concluded that if error 
of less than 7% is fine enough, then, linearization convergence 
criterion of ε=0.1% is also an appropriate value to accurately 
capture unsteady flow field around a Gurney-flapped airfoil 
at ReC = 2,000, with Hf /C = 4% and Δt = 10–5 s. Nevertheless, 
Δt = 10–5 s and ε = 0.01% are proper to be used in the computations 
when transient behavior of the airfoil and amplitude force 
coefficients are of primary interest.

(a) (b) (c)
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CONCLUSION

A detailed study into the aerodynamic behavior of a Gurney 
flapped NACA 0008 airfoil with a flap height of Hf /C = 4% at 
angles of attack of 3°, 4°, and 7°, and at ultra-low Reynolds 
number of ReC = 2,000 was conducted using a control volume 
based finite-element collocated scheme. In order to reduce the 
amount of required memory and to speed up the convergence 
rate two solver namely band solver and direct sparse solver were 
examined and their performances were compared with each 
other. The results showed that the amount of CPU time taken 
to solve the flow using the sparse solver is 1/27th of that of the 
band solver. Hence, the sparse solver with node renumbering 
was used for all computations throughout the present research.

The Δt independence study carried out here demonstrated 
the importance of proper time-step size selection. All the 
parameter showed a monotone and asymptotic convergence 
as Δt decreased. Δt independence study showed that, when 
the value of 10–5 s was employed for the calculations, CL,m, 
CD,m and St were predicted with a very good accuracy and the 
calculated relative errors were very small. However, the relative 
errors of CL,a and CD,a were higher in comparison with those 
of CL,m, CD,m and St, depending on the angle of attack. Overall 
the obtained accuracy with Δt = 10–5 s is satisfactory providing 
a compromise between accuracy and CPU time. 

Our investigation in this paper showed that for a Gurney 
flapped airfoil QSS approach is not able to predict the time 
averaged behavior resulting from UAS approach. The predicted 
QSS mean parameters showed remarkable discrepancy from 
those calculated by UAS approach at the regime of ultra-low 

Reynolds numbers. This is in contrast to what was reported 
in the literature for Gurney flapped airfoil at higher Reynolds 
numbers where the flow is turbulent.

Moreover, the present study revealed that results obtained 
from UIS approach at sufficiently small time steps, were 
comparable with the results of UAS approach. UIS approach 
was capable of producing time accurate results with a reasonable 
accuracy and less CPU time than computationally intensive 
time accurate simulations. 

Finally, simulations of UAS approach at the Δt of 10–5 s on 
the effects of linearization convergence criterion demonstrated 
that CL,m, CD,m and St are not affected by the linearization 
convergence criterion. However, CL,a and CD,a changed with 
linearization convergence criterion, and their changes were 
dependent on the angle of attack. Overall, if error of less than 
7% is fine enough, then, linearization convergence criterion of 
ε = 0.1% is a proper value to capture unsteady flow field around 
a Gurney flapped airfoil. Nevertheless, ε = 0.01% is the proper 
one to be used in the computations especially when transient 
behavior of the airfoil and amplitude force coefficients are of 
primary interest.
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