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Polymerization contraction stress of dental composites is often associated with marginal and interfacial failure
of bonded restorations. The magnitude of the stress depends on the composite’s composition (filler content
and matrix composition) and its ability to flow before gelation, which is related to the cavity configuration and
curing characteristics of the composite. This article reviews the variations found among studies regarding the
contraction stress testing method, contraction stress values of current composites, and discusses the validity of
contraction stress studies in relation to results from microleakage tests. The effect of lower curing rates and
alternative curing routines on contraction stress values is also discussed, as well as the use of low elastic modulus
liners. Moreover, studies with experimental Bis-GMA-based composites and recent developments in low-shrinkage

monomers are described.
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INTRODUCTION

Dimethacrylate-based composites have been used
in dentistry for over 30 years. Developments in filler
technology and initiation systems have considerably
improved their physical properties and expanded their
clinical applications. Notwithstanding, since their early
days, the volumetric shrinkage resulting from the
conversion of dimethacrylate monomers into long,
cross-linked polymeric chains has been identified as a
critical limitation that needed to be addressed™.
Bonding the composite to the cavity walls seemed to
be a reasonable solution for the problem. This quest
prompted prolific research activity on the subject of
dental adhesives and dentin permeability, that brought
remarkable advances such as wet bonding and self-
etching primers. Unfortunately, in spite of the significant
increase in bond strength values reported over the
years, the occurrence of microleakage and gap
formation, mostly at the dentin/composite interface, did
not seem to decrease at a similar rate**2, Concurrently,
research on polymerization kinetics and polymerization
contraction stress began to intensify, producing
enhanced knowledge of the factors influencing the
magnitude of forces developed at bonded interfaces.

Dental composite shrinkage ranges between 2 and
6% by volume®!. Besides volume reduction, chain

growth and cross-linking also result in increased elastic
modulus®*3, During polymerization, there isa moment,
referred to as the gel point, when the composite’s
elastic limit reaches a certain level where its increasing
stiffness does not allow enough plastic deformation
(or flow) in order to compensate for the reduction in
volume. If the composite is bonded to cavity walls,
shrinkage forces will start to build-up, resulting in
stresses on the bond between the composite and the
tooth structure. These forces are not uniformly
distributed along the cavity walls>. The bond strength
between tooth and composite also varies along the
bonded surface®. Therefore, in areas where the
shrinkage forces are higher than the bond strength of
the composite to the dental substrate, a gap will develop,
increasing the chance for post-operative sensitivity and
recurrent caries*®*. A recent study demonstrated that
the percentage of dentinal gaps in a composite
restoration placed “in vivo” may vary between 14%
and 54% of the total interface, depending on the
materials and techniques employed“. Other
consequences of the contraction stress reported in the
literature are the development of enamel cracks®®
and cuspal movement*#288,

The phenomenon of force development in
contracting materials was first described in the dental
literature by Bowen?. In that study, the author
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discussed the influence of the confinement of the setting
material as the main factor associated with contraction
stress. But it was not until studies by Davidson, et al.**
and Feilzer, et al.*” that the subject of polymerization
contraction stress began to be studied in depth. It is
well established that the magnitude of contraction stress
development depends on factors related to the
geometry of the cavity preparation (or the testing
specimen), as well as on compositional and curing
characteristics of the composite.

The most frequent method of measuring contraction
stress is the tensilometer'2. In this test, contraction
stress values vary according to the ratio of the bonded
to the free surface area of the composite. This ratio
has been called the configuration factor, or C-factor®’.
A large unbonded area would facilitate the plastic
deformation of the composite during the early stages
(or the pre-gel phase) of polymerization, reducing the
final stress values®.This concept has been validated,
to a certain extent, by bond strength studies reporting
that the microtensile bond strength to deep dentin was
lower when the specimens were obtained from restored
cavities, compared to specimens obtained from flat
dental substrates’. It was hypothesized that lower
bond strengths were caused by a higher incidence of
gaps at the dentin interface of the cavity due to higher
contraction stresses®. Recently, one study verified that
the volume of the shrinking composite also influences
the stress values®. This supports the findings of a
previous study that showed that the incidence of
marginal gaps in composite restorations was related
to the volume of composite and to the bonded area of
the cavity walls*.

Contraction stress is also determined by
characteristics of the composite. Filler content and resin
matrix composition dictate the amount of volumetric
shrinkage and elastic modulus values of the material®.
Activation mode, type and concentration of initiators
regulate reaction kinetics and degree of conversion®.
The higher the rate of monomer conversion, the faster
the gel point is reached, and the lower is the flow
capacity of the material“. The higher the degree of
conversion, the higher is the composite’s final shrinkage
and its elastic modulus, both of which contribute to
producing higher stresses.

Based on the knowledge accumulated over the
years, different approaches have been proposed to
reduce the magnitude and the effects of the contraction
stress in dental composites. These methods include
the incremental placement technique®’, the
development of light units with gradually increasing
irradiance or pulsed emission® , and the use of low-
modulus intermediate layers®2. Also, modifications of

the current Bis-GMA resin-based composites have
been proposed as a means to reduce the stress values
without compromising the mechanical properties of the
composites?2°. The purpose of this article is to discuss
the available alternatives to reduce polymerization
contraction stress and improve interfacial integrity of
direct and indirect bonded restorations based on the
scientific evidence.

CONTRACTION STRESS MEASUREMENTS

Polymerization contraction stress has been
evaluated by many different methods. Stress
distribution in simulated cavities has been estimated
by finite element analysis®® and photoelastic
analysis®*®. Direct measurements of stress (or strain)
are usually accomplished using strain gauges® or a
tensilometer'2372’_ In the typical test set-up with a
tensilometer (Figure 1), the composite is placed
between two opposing mounting rods (made of metal
or glass), one of which is attached to a load cell and
the other is attached to a movable cross-head on the
testing machine. A feedback system, composed of an
extensometer attached to the rods, is used to maintain
a constant distance between the rods and to simulate
a situation of confinement for the shrinking composite.
In this set-up, the value recorded represents the force
necessary to counteract the axial shrinkage of the
composite and maintain the distance of the rods at its
initial value. The nominal stress is calculated by dividing
the measured force by the cross-sectional area of the
mounting rod.

As in any mechanical test, there is some
controversy about a few aspects of the tensilometer
method. The main point of dispute seems to be the
compliance of the testing system. During the test, some
of the contraction force is dissipated through
deformation of the components of the testing system
(e.g., load cell, mounting rods, adhesive layer). When
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FIGURE 1- Diagram of the contraction stress test set-up
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a feedback system is used, the compliance is reduced
to a near-zero condition, since virtually all the
deformation occurring outside of the extensometer
limits is not taken into account. Some authors believe
that this situation of rigidity overestimates the stress
values, since the compliance of the tooth structure
would prevent the development of such high
stresses®®, When a feedback system is not included
in the testing apparatus, the shrinking composite is free
to pull the rods together and the value registered is the
result of the contraction force exerted by the material.
In this case, the values registered are usually lower
than those found using a feedback system®2L47.69,
Depending on the rigidity of the test set-up, the
relationship between the stress and the ratio of bonded
to unbonded surfaces of the composite specimen (C-
factor) varies. In near-zero compliance set-ups, this
relationship is direct?*”. An inverse relationship has
been observed when non-rigid set-ups were used®*®.

Another important aspect of the contraction stress
test is that only the forces developing uniaxially are
registered. Due to the geometry and boundary
restraints of the specimen, the distribution of forces in
the specimen is rather complex. A finite element study
verified that the forces developed during the contraction
of the composite generate a triaxial stress state, due
to the high aspect ratio of diameter to height of the
specimens®2. Therefore, the contraction values
registered in the tensilometer represent only a fraction
of the forces exerted by the shrinking material on the
system. The thickness of the composite sample also
affects the distribution of the stress. The findings of a
study by Feilzer, et al. *® suggested that in thin composite
films, the contraction vector is strongly influenced by
the boundary restraints. In fact, the above-mentioned
study °2 verified that the end restraints affect the entire
volume of the shrinking composite. Apparently, this
effect is accentuated in thin layers, contributing to an
inverse relationship between film thickness and
contraction stress®.

A few studies have tried to correlate the results
from contraction stress tests with those from
microleakage tests. Choi, et al.? observed that the
thickness of unfilled resin used to bond the composite
to the glass in the tensilometer was inversely related
to the contraction stress, and also caused a reduction
in microleakage of class V cavities restored in one
single increment. Another study®® compared results of
contraction stress test with microleakage in class |
porcelain inlays placed in cavity preparations with
margins in enamel. It was found that resin cements
present higher contraction stress values and higher
microleakage scores when tested in dual-cure mode

compared to self-cure mode. However, scanning
electronic microscopy analysis was not able to detect
differences in terms of percentage of interfacial gaps.
A third study “ verified a direct relationship between
contraction stress and microleakage in class V cavities
for three commercial restorative composites. It should
be kept in mind that the values obtained from
contraction stress tests represent the average of a
heterogeneous stress distribution, while marginal gap
formation is the result of a localized bond failure.
Moreover, the analysis of sectioned specimens is very
limiting, and may not be representative of the whole
specimen. Therefore, the fact that some correlation
between contraction stress and microleakage could be
observed is a very positive indicator of the validity of
the stress test method.

POLYMERIZATION CONTRACTION
STRESS OF CURRENT COMPOSITES

Studies evaluating the contraction stress of current
commercial composites are summarized in the Table.
Similar to other mechanical tests, the absolute value of
the results from different contraction stress studies are
hardly comparable. Besides differences in compliance
of the testing set-ups, the dimensions of the composite
sample, the period of force monitoring and the direction
of photo-activation may also vary.

Nevertheless, with respect to the compositional
characteristics of composites, it has been observed that
microfill composites tend to develop lower contraction
stress than hybrids®!"2%4 According to Labella et al.,*
microfilled composites present lower elastic modulus but
similar volumetric shrinkage as hybrids, despite the lower
filler content of the former. This apparent contradiction is
explained by the presence of pre-polymerized filler
particles in most of the microfilled composites, which
serves to reduce the amount of resin matrix available to
shrink. As a result, the contraction stress for microfills is
generally smaller than that of more densely filled
composites.

The contraction stress of packable composites has
been evaluated by Chen, et al.?*. All the five packable
materials tested presented significantly higher stresses
than the non-packable control. As the control material
had a similar filler level as the packable composites tested,
the authors suggested that rather than being correlated to
the overall filler content, stress was related to the presence
of large filler particles in the packable composites. It was
supposed that these large fillers contributed to an increase
in the elastic modulus compared to that of the control,
resulting in higher contraction stress. It should be noted,
however, that other studies have shown similar elastic
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modulus and volumetric shrinkage for packable and non-
packable composites®, emphasizing the importance of
the choice of controls in such comparative studies.

Flowable composites present stress values similar to
more densely-filled materials®’. Their low filler content
causes them to develop high volumetric shrinkage,
approaching 6% in some products”®t. This, in spite of
their low elastic modulus, seems to be main cause for
their high contraction stresses. Clinically, this means that
the risk of interfacial debonding for flowable and non-
flowable composites due to shrinkage stress is similar.
Nevertheless, the low elastic modulus of flowable
composites may still be advantageous to maintain the
interfacial integrity of the restoration when faced with
different sources of stress®.

The contraction stress of resin cements has been
measured by Braga, et al.*®. Three dual-cure materials
were evaluated in both dual-cure and self-cure-only
modes. For all of the cements, the contraction stress in
dual-cure mode (4.5 — 6.4 MPa) was higher than that in
self-cure mode (3.4 - 4.0 MPa). The reduced stress in
self-cure mode may have been the result of two
concurrent factors. First, itis likely that there was a delay
in stress build-up within the cements in self-cure mode
due to a slower setting rate and a resultant extended flow
and pre-gel shrinkage stage. Second, a lower degree of
conversion of the cements in the absence of photo-
activation®® should result in a reduction in both the
volumetric shrinkage and the elastic modulus of the
material.

TABLE- Contraction stress of current composites

INFLUENCE OF PHOTO-ACTIVATION
METHODS ON CONTRACTION STRESS

As mentioned previously, the magnitude of the
contraction stress is highly dependent on the
composite’s viscous component. Stress reduction by
viscous flow may occur in two ways. First, the
available free surface of the composite allows the
material to deform when shrinking (external flow).
Second, the longer it takes for the composite to develop
a high elastic modulus, the more time is available for
the polymeric chains to deform and slip into new
positions to adjust to the shrinkage (internal flow),
reducing or delaying contraction stresses build-up. In
other words, if a higher proportion of the total
volumetric contraction takes place while the composite
remains in a non-rigid state, a smaller fraction of the
shrinkage will effectively be responsible for stress
development®.

To some extent, it is clinically possible to reduce
the curing rate of a composite by lowering the intensity
of the light used in the photo-activation. Conversion
rate is proportional to the square root of the power
density (PD = mW/cm?)®, Alternative curing routines
using stepped, pulsed or ramped energy delivery have
been developed with the intent of improving the
interfacial integrity of composite restorations by
reducing the curing rate or the composites, and
therefore, increasing its flow capacity?4°956.91,
However, in order to be effective, these new “soft

Study Configuration Feedback Type of Maximum Stress
Factor” system** composite (MPa)
Bouschlicher et al. (1997) ° c=3 no Hybrid 4.6
Microfill 3.4
Condon and Ferracane (2000)2 C=1 yes Hybrid 55-7.0
Microfill 40-45
Chen et al. (2001)* C=0.33 no Hybrid 2.5
Packable 3.3-46
Lim et al. (2002)% c=3 yes Hybrid 8.8-125
Microfill 7.7
Watts et al. (2003)% C=4.16 no Hybrid 54-7.8
C=6.25 49-7.0
Braga et al. (2003)*" c=3 yes Hybrid 7.4-9.0
Microfill 6.1
Flowable 6.0-9.1

*ratio of bonded to unbonded surfaces of the composite
**indicates the use of a near-zero compliance set-up.
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start” curing methods should be able to significantly
reduce contraction stress and improve marginal
integrity, and without compromising the composite’s
degree of conversion or its mechanical properties.

Studies evaluating alternative curing routines in
terms of contraction stress are few. Bouschlicher and
Rueggeberg *° evaluated one light unit (Trilight, 3M
ESPE) and found lower contraction forces
(approximately 33%), lower curing rate (approximately
20%) and similar degree of conversion for ramped
curing compared to a continuous light activation. In
the same study, the use of a stepped curing mode
(Highlight, 3M ESPE) did not significantly reduce the
contraction force. Lim, et al.® verified stress reductions
between 19% and 30% for three different composites
when a two-step curing technique was compared to a
continuous light exposure with equivalent energy
density. Both methods allowed similar degrees of
conversion. According to the authors, when a two-
step curing routine is adopted, three aspects should be
observed, namely, the initial light intensity, the exposure
time of the initial low-intensity irradiation, and the time
interval between the two irradiations.

Marginal integrity studies on “soft start”
polymerization show contradictory results. While some
studies showed improved marginal integrity with non-
continuous curing methods®®¢8, others did not find
significant differences between those and conventional
(continuous) curing®7. One aspect that remains
unclear is the effect of a non-continuous irradiation on
the polymer structure. It has been hypothesized that
low curing rates may originate longer polymeric chains
and less cross-linking, affecting the mechanical
properties of the polymerS. However, others have
characterized the structure and properties of cross-
linked dimethacrylate polymers cured at low and high
conversion rates, and found no significant difference
in properties or overall conversion®.

Besides the curing rate, another aspect related to
photo-activation that affects contraction stress is the
total energy delivered to the composite (ED = PD x
time = mW x s/cm? = mJ/cm?). The use of high energy
densities to cure composites has been associated with
superior mechanical properties and degree of
conversion”. The relationship between energy density
and degree of conversion, however, is not linear®. In
other words, there is a limit where higher energy levels
do not correspond to significant increases in degree of
conversion or mechanical properties®’. Unfortunately,
the relationship between energy density and post-gel
shrinkage strain was found to be linear®®8, Therefore,
high energy densities translate into higher stress levels,
but do not necessarily result in high degrees of

conversion or superior mechanical properties.

The relationship between degree of conversion
(DC) and contraction stress seems to be more complex.
Apparently, there is a threshold in the DC above which
non-significant increases correspond to significantly
higher stress levelst. Clinically, it is almost impossible
to determine which energy level would provide the best
relationship between degree of conversion, mechanical
properties and contraction stress. Still, it is important
to keep in mind that over-exposing the composite to
photo-activation might increase the risk of marginal
and interfacial debonding, as well a heat buildup within
the tooth.

THE USE OF LOW ELASTIC MODULUS
LINERS AS STRESS-ABSORBING LAYERS

The magnitude of the stresses developed at the
restoration’s interface is related to the compliance of
the surrounding structures. If the substrate to which
the shrinking composite is bonded can yield to
contraction forces, the developed stress is lower*. The
application of a low elastic modulus material to the
cavity walls represents a way to artificially increase
the compliance of the prepared cavity. Besides the
elastic modulus of the liner, the thickness of the applied
layer may also influence the stress relief. The thicker
the layer, the better are the chances of a significant
stress relief®. Finite element analysis studies support
this idea®.

Kemp-Scholte and Davidson *" observed that the
use of a 150 um layer of unfilled resin under a bulk-
cured layer of a high modulus composite significantly
improved marginal sealing of class V restorations and
significantly reduced stress values. More recently, Choi,
etal. 2 verified that the application of layers of unfilled
resin in the range of 100 to 200 wm reduced contraction
stress between 13 and 24% and significantly reduced
microleakage in class V cavities. However, as noted
by the authors, the clinical use of unfilled resin in thick
layers is problematic. First, the material is radiolucent,
what would preclude radiographic diagnosis and,
second, the fluidity of the material would make the
application somewhat difficult in some areas of the
cavity.

The use of low-viscosity (“flowable™) composites
as stress-absorbing layer material has been advocated
by many authors®392, In general, flowable composites
have lower elastic moduli than more densely-filled
materials®#"®. However, the results of microleakage
studies conducted in vitro are contradictory. While
some authors reported lower microleakage with the
use of a pre-polymerized layer of flowable
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composite>*3%  others were not able to detect any
improvement in marginal integrity®°’. Besides
differences in layer thickness among studies, a possible
explanation for this inconsistency is the broad range
of elastic modulus values displayed by flowable
composites. Labella, et al.® reported values between
6.5and 12.5 GPa for 12 different flowable composites.
For comparison purposes, in the same study, the elastic
modulus of an unfilled Bis-GMA resin was 4.6 GPa.
Sabbagh, et al.”® reported values ranging between 1.4
and 4.4 GPa for five low-viscosity materials.

A previous study*’ verified the influence of the
elastic modulus of a pre-cured composite layer on the
contraction stress developed by a subsequent layer of
densely-filled composite. Four flowable composites
were evaluated, with elastic moduli ranging between
4.1 and 8.2 GPa. An unfilled resin (elastic modulus:
2.1 GPa) was also included in the study. In spite of the
high thickness of the pre-cured layer used in the study
(1.4 mm), a large and significant stress relief
(approximately 41%) was observed only with the
unfilled resin as the pre-cured material when compared
to the value obtained with a pre-cured layer built with
a densely-filled composite (elastic modulus: 12.3 GPa).
Only one of the flowable composites allowed a
potentially significant stress relief (approximately 19%).

STRATEGIES FOR STRESS REDUCTION IN
EXPERIMENTAL BIS-GMA-BASED
COMPOSITES

Modifications to the basic components of
composites have been proposed in order to reduce
contraction stress development. The general idea is to
increase the opportunity for stress relief by flow, since
the monomers present are the same found in the
currently commercial composites and, therefore, the
same levels of volumetric shrinkage are expected.

The use of non-bonded nanofillers (40 nm colloidal
silica) was tested as an alternative to provide internal
sites for stress relief without compromising the
mechanical properties of the composite?’. In the
experimental nanofilled composite, close to 50%
reduction in stress was observed when non-functional
silane-treated particles were added compared to the
control material containing particles with a functional
(methacrylate) silane. The experimental hybrid
composite produced 31% less stress when non-
silanated nanofill particles were added. Though it was
not directly observed, the proposed mechanism of
stress relief was that the non-bonded nanofillers would
allow the resin matrix to flow around them and react
without constraint, similar to the mechanism proposed

for the stress reduction in unfilled resins with admixed
porosity?. No reductions in flexural modulus, degree
of conversion or fracture toughness were observed in
these experimental materials*. A recent study®
further investigated the effect of non-bonded nanofiller
and verified that the optimal non-bonded nanofiller
content was independent of the presence of filler
particles of different sizes.

The effect of increased inhibitor concentrations
(BHT, butylated hydroxytoluene) on contraction stress,
degree of conversion and volumetric shrinkage has also
been evaluated®. A significant stress reduction
(approximately 39%) was observed when the BHT
concentration was increased from 0.05% (by weight)
to 1.0%. The inhibitor molecules react with the free
radicals generated by photo-activation, and
polymerization proceeds at a reduced rate until the
inhibitor is completely consumed. This effectively
extends the pre-gel phase. Intermediate inhibitor
concentrations caused significant reductions in curing
rate, but not in contraction stress, suggesting that the
reaction speed must be reduced below a certain
threshold in order to significantly reduce contraction
stress. Degree of conversion and volumetric shrinkage
were not significantly affected. However, further
studies are necessary to verify whether composites
with high inhibitor concentrations have adequate
mechanical properties.

The addition of high-density polyethylene spheres
(HDPE) to hybrid and nanofilled experimental
composites has also been verified as a stress relief
mechanism*. In both cases, the addition of 20 wt% of
HDPE spheres led to significant stress reductions
compared to the respective control groups (between
26% and 29%). In the hybrid composite, the
polyethylene spheres replaced the filler and the stress
reduction seemed to be related to a reduction in elastic
modulus. In the nanofilled composite, the spheres were
added to the control material, without altering the resin-
to-filler ratio. In that case, the stress reduction was
associated to a reduction in volumetric shrinkage.
However, a general trend for lower mechanical
properties with increased HDPE levels was observed,
most noticeably with the hybrid materials.

RECENT DEVELOPMENTS IN LOW
SHRINKAGE MONOMERS

Several approaches have been pursued in the past
to reduce polymerization shrinkage in dental resins.
Expanding monomers based on spiroorthocarbonates
(SOC) were first attempted for dental composites, but
the materials were not successfully commercialized®.
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The addition of SOCs to dimethacrylate resins cured
by free radical polymerization® and to epoxy resins
cured by cationic polymerization®%* have both been
attempted within the past 10 years. Though studies
showed lower shrinkage and subsequently lower
shrinkage stress with the epoxy-based systems, it is
likely that the reductions are related to the lower overall
conversion of monomer to polymer in these systems?.
The radical ring opening approach using unsaturated
spiroorthocarbonates or vinylcyclopropanes (VCP) has
been also pursued to reduce shrinkage in
composites™. Though no commercial product has
been realized from these approaches to date, work is
continuing.

Cycloaliphatic epoxy resins (also called oxiranes),
formulated with polyols, such as polytetrahydrofuran,
have been investigated and proposed as photocurable,
cationic polymerized resins for dental composites with
nearly one-half of the polymerization shrinkage of Bis-
GMA-based resins®. These resins also have the
advantage of no air-inhibited layer and high strength,
but relatively high water sorption. Guggenberger and
Weinmann* recently discussed similar alternatives to
dimethacrylates for dental composite matrices. They
described a family of molecules called siloranes, the
name being derived from the combination of siloxanes
and oxiranes (epoxies). These molecules polymerize
by cationic photoinitiation and produce dental
composites with comparable properties and slightly
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FIGURE 2- Volumetric shrinkage (top) and contraction stress
(bottom) of an oxirane- and a silorane-based composite
compared to two commercial composites

reduced shrinkage compared to Bis-GMA-based
materials. We have evaluated some of the properties
of silorane and oxirane-based composites and have
verified that they do in fact have lower volumetric
shrinkage and lower contraction stress than commercial
Bis-GMA-based composites (Figure 2).

Culbertson, et al.**3! have synthesized esterified
multi-methacrylate  oligomers of  poly
(isopropylidenediphenol) (BPA) and mixed them with
TEGDMA to produce resins with a 10-15% reduction
in polymerization shrinkage compared to Bis-GMA-
based resins. However, these new resins did not cure
as well as the Bis-GMA-based resins, and this again
is the likely reason for their lower contraction. The
contraction stress of these materials has not been
tested, but due to their greater rigidity than Bis-GMA,
it is doubtful that they would have lower shrinkage
stress.

Interesting bismethacrylates with lower shrinkage
than Bis-GMA have been produced by Holter, et al.>*
by reacting various branching molecules at the hydroxy
groups of the Bis-GMA. However, initial results
suggest that these polymers have a low elastic
modulus. While this low modulus and lower shrinkage
would likely result in lower contraction stress than Bis-
GMA-based polymers, the low modulus (50% of Bis-
GMA-based resins) may limit their usefulness as dental
restorative resins. In other studies, Chung, et al.»>%*
developed new trimethacrylate monomers (1,1,1-
Tris[4-(2’-hydroxy-3’-methacryloxyloxypropoxy)
phenyl]ethane (and methane) that produced composites
with slightly reduced polymerization shrinkage and
water sorption than Bis-GMA-based composites, and
with similar conversion and flexural strength.

Other approaches proposed for reducing
polymerization contraction in dental composites include
the development of liquid crystal monomers™ and
cyclopolymerizable di- and multi-functional acrylate
resins®, Culbertson, et al.*> presented the synthesis
of a methacrylated derivative of styrene-allyl alcohol,
MSAA, to be used as a comonomer for dental
composites to improve strength and conversion. In
one study, MSAA was used to replace 20% of the
Bis-GMA in a highly filled Bis-GMA/TEGDMA
composite and showed a 20% reduction in
polymerization contraction stress?. The addition of
large amounts of MSAA has a significant negative
effect on mechanical properties, however.
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CONCLUSION

Polymerization contraction stress has been the
subject of intense research activity over the last few
years. Though most of the factors involved in stress
development have been identified, further studies are
necessary to access the individual contributions of the
composite’s physical properties (namely, volumetric
shrinkage and elastic modulus) and curing kinetics (as
a factor determining stress relief by viscous flow), and
potential interactions between them. Some of the
proposed non-continuous curing routines have been
shown to significantly reduce contraction stress.
However, results of interfacial integrity studies are
inconsistent and, in some cases, stress reduction might
be caused by a lower degree of conversion. Stress
reduction with the use of low elastic modulus liners
seems to require materials with stiffness close to that
of unfilled resins. Apparently, many of the flowable
composites currently available are too rigid to be used
for this purpose. Developing low-shrinkage monomers
that could match other clinically important properties
found in Bis-GMA-based composites is a challenging
task. Nevertheless, some studies have shown promising
results regarding contraction stress reduction.
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