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Introduction

The great biodiversity in forest ecosystems, as well as 
the geographical distribution of plants, result from different 
aspects such as intrinsic species characteristics, slope, soil, 
climate, and water availability of each region (García-
Palacios et al. 2018). However, solar radiation is one of the 
aspects that most influence species composition (Jagodzinski 
et al. 2016, Perot et al. 2017), so light is a limiting physical 
factor to the trees’ establishment and growth in forests (Tang 
& Dubayah 2017, Chou et al. 2018). 

Different environmental factors are decisive for the 
development of adaptive strategies by tree individuals and are 
represented by morphological, anatomical, and physiological 
characteristics, also known as functional traits (Sultan 

2003, Violle et al. 2007). Thus, species coexistence in tree 
communities may be explained by functional trait diversity 
since these traits reflect the plant ecological strategies (Adler 
et al. 2014, McGill et al. 2006). In addition, the plants 
morphological traits are genetically determined but can also 
be strongly influenced by the environment in which they 
are inserted as a form of adaptation, with the interaction of 
genetic and environmental effects acting together to model 
the phenotype (Schlichting 2002, Mizutani & Kanaoka 2017).

Plants ability in changing phenotypic characters as a 
result of interaction with the environment can contribute to 
functional stability, especially when phenotypic plasticity acts 
on characters linked to survival, becoming a very important 
tool for adaptation (Turcotte & Levine 2016, Matesanz & 
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Solar radiation is one of the aspects which most influence species composition, so light is a limiting factor to tree growth in 
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RESUMO - (As condições de luz afetam os atributos funcionais de Myrcia splendens (Sw.) DC. em um fragmento de Mata 
Atlântica, Sudeste, Brasil). A radiação é um dos aspectos que influenciam a composição de espécies, sendo assim, a luz 
é um fator limitante para o crescimento das árvores. O estudo objetivou avaliar as variações morfológicas foliares entre 
indivíduos de Myrcia splendens (Sw.) DC., sob diferentes condições de luminosidade, em uma floresta urbana. O fragmento 
caracteriza-se por possuir uma área sem formação de dossel e uma com regeneração mais avançada. Foram coletados ramos 
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específica e teor de matéria seca das folhas. A análise de variância mostrou que a maioria das características (massa seca, 
área foliar específica, teor de matéria seca das folhas) variaram significativamente. A massa seca, conteúdo de água e área 
foliar apresentaram alta correlação com a massa fresca em ambos os ambientes. A variação morfológica encontrada em M. 
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Ramírez‐Valiente 2019). Thus, these species with plasticity 
potential to traits associated with surviving show adaptive 
strategies in different types of environments since the changes 
produced may result in increased environmental tolerance by 
the species (Fréjaville et al. 2019, Pérez-Ramos et al. 2019).

The leaf is the organ that has a greater exposure to 
environmental variables compared to other plant components 
(Fahn 1986), thus presenting more structural variations (Lewis 
1972, Marques et al. 1999). In addition, the leaf is responsible for 
vital functions such as photosynthesis, breathing, perspiration, 
conduction and tree sap flow. These traits result from the direct 
exposure of the limbus to sunlight rays and absorption of carbon 
dioxide, that are both essential for photosynthesis processes 
(Lewis 1972, Taiz & Zeiger 2004). Therefore, the specialization 
of leaves due to the tree shade tolerance may result in leaves 
adapted to different environmental conditions (sunlight leaves 
and shade leaves) (Menezes et al. 2009).

Leaf functional traits are related to light conditions 
in the environment since these aspects may influence the 
development and caption ability of resources such as water 
and nutrients to the leaf and consequently to the plant (Keenan 
& Niinemets, 2016, Zhang et al. 2020). In addition, leaf traits 
guide understanding of the ecosystem function and structure in 
response to environmental changes (Keenan; Niinemets, 2016).

A representative species considering the tree community 
adaptability in relation to environmental factors, as well as 
intrinsic species characteristics and their components is Myrcia 
splendens (Sw.) DC. This species is considered an endemic 
plant in Brazil, as well as a generalist with wide environmental 
condition adaptation and is consequently present throughout the 
national territory (Amorim & Melo Júnior 2016). M. splendens 
presents great divergence regarding its taxonomy, having 
numerous synonyms (Amorim & Melo Júnior 2016, Flora 
do Brasil 2018). In addition, the species is characterized by 
zoochoric dispersion, in which its fruits are widely appreciated 
and dispersed by the avifauna. The species is classified as 
a pioneer regarding the successional stage, with flowering 
occurring between September and October and the fruiting 
beginning in December. In addition, M. splendens is widely 
used in recovery projects for degraded areas due to its rapid 
growth (Oliva et al. 2018, Schmitt et al. 2018).

Morphological variations between sunlight and shade 
areas are expected considering Myrcia splendens (Sw.) DC. 
species occurrence in different environmental conditions since 
light incidence determines the plant growth and establishment. 
Considering the different environmental conditions (sunlight 
and shade), we expect that in the under direct sunlight area 
the foliar traits are related to the protection of leaf tissues and 
reduction of photoinhibition (e.g. higher dry biomass and leaf 
dry matter content and lower specific leaf area). In contrast, in 
shaded area where there is greater canopy formation and plants 
do not receive direct light, leaf traits with an opposite pattern 
are expected, conditioned by the need to intercept and use the 
little available light. In this sense, this study aimed to evaluate 
leaf morphological variations between individuals of the Myrcia 
splendens (Sw.) DC. species under different environmental 
conditions (light and shade) in an urban forest community in 
the municipality of Juiz de Fora, Minas Gerais State (Brazil).

Material and methods

Study area - The data used in this study is from an urban 
fragment located on the Federal University of Juiz de Fora 
campus, in the municipality of Juiz de Fora, Minas Gerais 
State, Brazil. The fragment is called “Mata do ICB” and is 
characterized by having an open canopy area and another 
with an advanced regeneration stage as well as canopy 
formation, in which the light incidence into the understory 
trees is more difficult (Figure 1). In addition, the area is the 
result of abandonment of exotic pasture, followed by natural 
regeneration for at least 50 years (Menon & Carvalho 2012, 
Moreira & Carvalho 2013).

The Juiz de Fora municipality is located in the Zona 
da Mata mountainous areas and the predominant vegetation 
of the fragment is Seasonal Semi-deciduous Forest (IBGE 
2012). The main soil in the region is Dystrophic Red Yellow 
Latosol (FEAM 2011), and the climate is Cwa according to the 
Koppen classification, which is characterized as mesothermal, 
meaning there is a hot and rainy summer and a cold and dry 
winter (Alvares et al. 2013). The region has an altitude of 
approximately 850 meters, mean annual precipitation of 1536 
mm and the mean annual temperature of 18.9 °C.

Sampling and data collection - The data sampling occurred 
during July, 2014 and consisted of collecting Myrcia splendens 
leaves in the “Mata do ICB”, considering the open canopy 
area, and the one with an advanced regeneration stage as well 
as canopy formation. The sun leaves were collected in the area 
where there is no canopy formation and in places where the 
individuals were under direct sunlight. In contrast, the leaves of 
the shade plants were collected from inside the fragment with 
the highest canopy formation, which makes it difficult for the 
understory plants to receive direct light (Figure 2).

Branches from five individuals were collected in each area 
using the criteria selection of height greater than six meters and 
diameter at 1.30 meters above the ground (DBH) greater than 
5 cm. All individuals were at a minimum distance of 10 meters 
from each other and 20 leaves were selected from each tree, 
totaling 100 leaves per area (adapted from Pérez-Harguindeguy 
et al 2013). The leaf collection took place between the second 
and sixth knots in the apex-base direction.

The M. splendens leaves were moistened and packed in 
plastic bags for later measurement of their fresh biomass (g) in 
an analytical scale with an accuracy of 0.001 g. The leaf area 
was measured using the Image J program (Rasband 1997), 
which is specialized in image analysis. Next, photographs were 
taken from a Nikon Coolpix P510 camera and were darkened 
(black and white scale) using the Adobe Photoshop CS6 
program to determine leaf area. The leaves were subsequently 
dried in an oven at 80 °C for 48 hours, thus enabling to measure 
their respective dry biomass (g) (Pérez-Harguindeguy et al. 
2013). The above information was then used to estimate the 
leaf water content as a function of the difference between fresh 
and dry biomass. The leaf dry matter content (LDMC) was 
estimated by dividing the dry biomass by the fresh biomass (mg 
g-1). In addition, the specific leaf area (SLA) was calculated by 
the ratio between leaf area (cm²) and dry biomass (g). These 
traits were selected based on their influence to photosynthetic 
rate, energy and water balance, and light interception by the 
leaves (Evans & Poorter 2001, Valladares & Niinemets 2008).
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Figure 1. Study area location of an urban fragment denominated Mata do ICB, in the municipality of Juiz de Fora, Minas Gerais State, Brazil.

Data analyses - Pearson’s correlation coefficient was 
calculated using the R software program (R Core Team 
2017) in order to verify the correlation between the variables 
analyzed. Thus, the classification proposed by Dancey and 
Reidy (2005) was considered to establish the correlation 
degree, in which: r = 0.10 to 0.39 (weak); 0.40 to 0.69 
(moderate); and 0.70 to 1 (strong). The variables which 
showed a high correlation with each other were removed 
in the following analyzes, since both had a high statistical 
dependence on each other.

The means and the respective standard deviations 
were calculated considering the variables selected between 
morphological traits (dry biomass, water content, specific 
leaf area, leaf dry matter content). In addition, an Analysis 
of variance was performed to assess the possible differences 
between the environments, and the means were compared 
by the Mann-Whitney test at 5% probability (p <0.05). All 
analyzes were performed using the Past 1.34 (Hammer et 
al. 2001). Lastly, a Boxplot for each variable according to 
the areas was elaborated using the R software program (R 
Core Team 2017).

Results

Considering the light and shade environmental conditions 
and analyzing the Pearson’s correlation coefficient, we found that 
the functional traits dry biomass (0.91), water content (0.92) and 
leaf area (0.78) with fresh biomass showed greater correlation in 

the sunlight environment. In addition, the leaf area (0.71) showed 
a high correlation with dry biomass (Table 1). 

The shade environment showed the same variables with 
high correlation as the light environment. In addition, the 
LDMC showed negative correlation with leaf area (Table 
1). A positive correlation allows to predict that the traits 
move in the same direction, while a negative correlation 
predisposes that the variables of interest move in opposite 
directions. Thus, the dry biomass, water content, LDMC and 
SLA variables were those which did not show correlation 
between them.

We proceeded an analysis of variance with the variables 
that did not show any correlation with each other (dry 
biomass, water content, LDMC and SLA). These variables 
provide information such as water balance, resistance and 
lifetime of the arboreal individual. We found that most of 
the quantitative morphological traits (dry biomass (p = < 
0.0001), SLA (p = < 0.0001) and LDMC (p = < 0.0001)) 
differed significantly between the two areas. This finding 
indicates some variability within the species occurring in 
the shade and light environments. The water content did not 
present statistical difference between the studied areas (p = 
0.1589) (Figure 3). 

Discussion

Regarding both study areas, the traits which showed 
high correlation between each other were dry biomass, fresh 
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Figure 2. Aspect of the Myrcia splendens (Sw.) DC. leaf in the two sampled areas, Mata do ICB, municipality of Juiz de 
Fora, Minas Gerais State, Brazil. a: Sunlight area; b: Shade area.

Table 1: Pearson’s correlation coefficient between the morphological variables quantified in the light and shade environments 
for the Myrcia splendens (Sw.) DC. species. FB: fresh biomass; DB: dry biomass; WC: water content; LA: leaf area; SLA: 
specific leaf area; LDMC: leaf dry matter content.

Light
FB DB WC LA SLA LDMC

FB 1.00
DB 0.91 1.00
WC 0.92 0.68 1.00
LA 0.78 0.71 0.72 1.00
SLA -0.14 -0.33 0.07 0.40 1.00
LDMC 0.07 0.45 -0.32 -0.02 -0.61 1.00

Shade
FB DB WC LA SLA LDMC

FB 1.00
DB 0.94 1.00
WC 0.95 0.78 1.00
LA 0.87 0.76 0.87 1.00
SLA -0.39 -0.59 -0.16 0.24 1.00
LDMC -0.01 0.30 -0.29 -0.95 -0.61 1.00
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Figure 3. Morphological traits effect in light and shade environments in Mata do ICB, in the municipality of Juiz de Fora, 
Minas Gerais State, Brazil, for the Myrcia splendens (Sw.) DC. species. * Different letters for the same variable represent 
statistically different values (Mann-Whitney test, p <0.05).

biomass, leaf area, SLA and water content. These variables 
are related to water storage capacity, biomass, leaf carbon 
and plant physiology (Ali et al. 2017, Klamerus-Iwan et al. 
2018). Thus, these aspects may be linked to defense and 
protection mechanisms, implying in a greater leaf longevity 
(Boeger & Wisniewski 2003, Edwards et al. 2000). 

The leaf water content for the areas showed no statistical 
difference. This fact may be linked to the mesophilic cells 
turgor maintenance, which causes less water loss from the 
leaves (Willadino & Camara 2010). Water preservation is 
important to these leaves since the species is semi-deciduous, 
thus allowing to carry out the vital processes throughout the 
individual’s life (Lorenzi 1998).

The dry biomass exhibited a higher value in the light 
area when compared to shaded area. This result indicates a 
tendency for plants to be investing in a greater amount of 
mechanical tissue than photosynthetic tissues (Vendramini 
et al. 2002). In addition, Myrcia splendens is characterized 
as a species with great phenotypic plasticity capacity. Thus, 
the dry biomass is considered as response to the plant good 
adaptation to different environmental conditions (Amorim 
& Melo Júnior 2016).

We observed a variation in the SLA value between 
the areas, and which was greater in the shaded area. This 
aspect can be explained by the light availability from the 
environment which significantly influences the SLA values, 
considering that there is a positive correlation between 
the SLA and the photosynthetic efficiency by the species 
leaf mass (Evans & Poorter 2001). Also, the SLA value 

difference in an environmental gradient may be related to the 
within-species variability (Carlucci et al. 2014). Therefore, 
the increase in SLA for the shaded environment may favor 
the growth and reproduction of M. splendens in the forest 
understory, where low available irradiation mostly occurs 
in the form of inconstant diffused light beams (Chazdon & 
Pearcy 1991).

The shade leaves tend to be thinner and present less 
concentrated leaf biomass per unit area, which increases their 
SLA and consequently the light interception per unit of leaf 
biomass invested (Valladares & Niinemets 2008). The higher 
SLA value in the shaded environment can also be related 
to the reduction in the investment of structures such as the 
epidermis, which help plants in their protection mechanisms 
against photoinhibition (Pearcy 2007).

The LDMC is a functional parameter which considers 
the aspects of plant growth, acquisition and use of resources, 
as well as carbon assimilation (Wilson et al. 1999, Vile et al. 
2006, Hodgson et al. 2011). Light incidence is a major factor 
in the forest and its high intensity promotes less investment 
in leaf formation and consequently causes a change in the 
resource usage strategy (acquisitive) (Klipel et al. 2021), 
causing a lower LDMC in the light environment (Carreño 
-Rocabado et al. 2012). SLA and LDMC differences in shade 
environment reflect an important trait variation axis from 
conservative and stress-tolerant strategies to acquisitive and 
opportunistic strategies along gradients of light availability 
(Klipel et al. 2021, Wright et al. 2004).
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The results showed that the morphological variables 
of dry biomass, SLA and LDMC had statistical difference 
between the sunlight and shade environments. This fact may 
be explained by the fact that Myrcia splendens species is 
characterized as heliophyte and hygrophyte, meaning that 
it is a plant with great adaptation to intensive insolation 
and moisture (BFG 2018). In addition, the morphological 
plasticity from Myrcia splendens is proven by the species 
anatomic and structural characteristics in which the 
tree individuals will create establishment and survival 
mechanisms according to the ecosystem (Amorim & Melo 
Júnior 2016, Larocca et al. 2015). 

Studies of morphological variation into areas with 
different luminosity conditions showed such similarity to 
the traits found in our study when considering species with 
great adaptability (Borges et al. 2019, Krupek & Lima 2012, 
Silva et al. 2019). In this sense, the adaptative variations of 
Myrcia splendens allow its occurrence in different vegetation 
types, since the individual is able to explore new niches with 
efficiency (Amorim & Melo Júnior 2016). Thus, the species 
is considered as generalist and the pattern found is common 
to other species of this group (Naves & van den Berg 2012).

Conclusions

We have noticed that there is leaf morphological 
variability in the M. splendens species in light and shade 
environments, since this showed statistical difference for the 
dry biomass, SLA and LDMC traits. This finding contributes 
to understanding the development of this species in different 
environmental conditions and contributes to creating growth 
strategies.

Considering the geographic distribution, as well as the 
relevant abundance in the study region, more studies should 
be developed with this species, such as anatomical and 
physiological studies, so that the plant establishment strategy 
can be better explained.
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