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Abstract 

Uncertainty in manufacturing systems has long been the source of managerial complexity. 
In this paper we discuss the impact of different sources of uncertainty and present a method-
ology to assess their impact on system behavior. We introduce the concept of tradeoff curves 
as a characteristic of a manufacturing system and illustrate their use to make decisions 
concerning the amount and type of capacity necessary to manage the system efficiently, to 
assess the impact of products arrival and processing uncertainties, as well as the conse-
quences of changes in throughput and product mix. The methodology is illustrated with an 
example derived from an actual application in the semiconductor industry. 
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1. Introduction 

uthors have pointed out that modern 
manufacturing systems are becom-
ing very complex to manage due to 
the wide variety of products 

competing for common resources, uncer-
tainty in demand, and reduction of product 
leadtimes. One of the current paradigm in 
the manufacturing environment is to reduce 

complexity, that is, to “simplify life”. 
Several alternatives have been proposed to 
simplify a manufacturing system and hence, 
reduce its complexity. They include: (i) 
product classification, (ii) uncertainty 
reduction, and (iii) knowledge of system 
relationships. The first defines more 
homogeneous product classes in order to 
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treat them in a more specific way. The 
second tries to reduce uncertainty and thus, 
improve the capacity of predicting system 
behavior (more predictable systems tend to 
be less complex). Finally, the third empha-
sizes the importance of deeply understand-
ing relationships in the system in order to 
simplify it. 

In the next section we analyze these three 
alternatives with special focus on the last 
two (sections 2.1 and 2.2, respectively). We 
emphasize the connections among complex-
ity, predictability and uncertainty of a 
system, and discuss endogenous and 
exogenous factors that contribute to 
uncertainty. We are particularly concerned 
with the effects of uncertainty reduction on 
the performance of the system. In general 
manufacturing systems can be seen as 
dynamic systems. As we reduce uncertainty, 
we also reduce the system variability and 
hence, we expect to obtain better perform-
ance measures (e.g., shorter product 
leadtimes, lower work-in-process). The 
effect of uncertainty reduction can then be 
evaluated considering the variation of those 
performance measures. In this context we 
can also visualize the just-in-time (JIT) 
strategy as the limit state of a dynamic 
system from which all uncertainty has been 
eliminated. 

We assume that the manufacturing sys-
tem is modeled as an open queueing network 
where the nodes correspond to the stations 
and the arcs connecting nodes correspond to 
the product flows between stations. Queue-
ing network models have been applied to the 
design of manufacturing systems by several 
authors in this last decade; see e.g. the 
references cited in the recent surveys of 
SURI et al (1993), BUZACOTT & 

SHANTHIKUMAR (1993), HSU et al 
(1993), and BITRAN & DASU (1992); see 
also the discussion in SURI & DE 
TREVILLE (1991). Design decisions should 
consider the tradeoff among performance 
measures for different system configura-
tions. One way to describe this tradeoff is 
with the so called tradeoff curves; we say 
that these curves are the signature of the 
system. 

In this paper we emphasize the impor-
tance of tradeoff curves to the analysis of 
manufacturing systems such as job shops. In 
section 3 we discuss how to generate these 
curves: In section 3.1 we review perform-
ance measure evaluation, in sections 3.2 and 
3.3 we present, respectively, the problem of 
minimizing WIP without adding resources 
to the system and the problem of minimizing 
resources without increasing system WIP, 
and in section 3.4 we discuss how to utilize 
the solutions of these problems to generate 
tradeoff curves. In section 4 we use tradeoff 
curves to analyze the effects of reducing 
network uncertainty (section 4.1), changing 
the throughput (section 4.2), and the product 
mix (section 4.3) of the network. In sections 
5 and 6 we extend this analysis to the cases 
where we have a finite set of discrete 
alternatives for capacity change and where 
we can not approximate each station as a 
single machine. Finally, in section 7 we 
present the conclusions of this paper. 

In order to illustrate the presentation of 
this topic, we chose an example derived 
from a real situation of a job-shop system 
with 10 product classes and 13 stations. We 
generated different tradeoff curves to 
analyze this network as presented in sections 
3, 4 and 5. 

 
2. Complexity Reduction 

ne of the procedures that contributes 
toward reducing the complexity of 
manufacturing systems is the 
classification of products. As we 

define more homogeneous classes, we may 

treat them in a more specific way. In 
marketing this procedure is known as 
market segmentation. Another well-known 
example is the classification of animals in 
zoology. Without classifying them into 

O 
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species we may say that they are living 
creatures, which is not very helpful for 
operational purposes. However, as we 
classify them into species we may be more 
specific about each one. 

The concept of product classification 
plays an important role in the group 
technology approach in manufacturing; see 
e.g. KRAJEWSKI & RITZMAN (1990) and 
KUSIAK (1990). Parts and products with 
similar characteristics are grouped into 
families (or product classes) and processed 
by dedicated groups of machines. These 

similarities may be in size, shape, raw 
materials, operations, sequence of opera-
tions, and other characteristics. The goal is 
to define product classes with similar 
processing requirements to minimize 
machine changeover and setup time. 

Besides product classification, other 
alternatives to simplifying a manufacturing 
system include: (i) uncertainty reduction 
and (ii) knowledge of system relationships. 
In what follows we discuss in more depth 
these two alternatives. 

 
2.1 Uncertainty Reduction 

The complexity of a manufacturing sys-
tem can be measured in different ways. In a 
job-shop system, for example, we may 
measure complexity as the diversity of 
product routings in the network, or the 
diversity of processing times at the stations. 
BITRAN & SARKAR (1994a) proposed the 
predictability of some characteristic of the 
system as a more powerful measure of 
complexity: Less complex systems tend to be 
more predictable. The authors observed 
that: (i) predictability reflects the impact of 
specific features of the system (e.g., the 
more similar the processing times, the more 
predictable is the system), (ii) predictability 
is a useful measure for managers who need 
to predict, for example, when a product will 
be completed at the shop, and (iii) predict-
ability helps organizational learning. As we 
reduce uncertainty, we expect our ability of 
predicting the behavior of the system to 
increase. 

There are many factors that contribute to 
uncertainty. One possible classification is: 
(i) endogenous factors and (ii) exogenous 
factors. Examples of endogenous factors are 
poorly trained operators, machine break-
downs, maintenance failures, shortages, etc. 
These sources of uncertainty may be 
controlled, for example, by investing in 
labor training and process improvement. In 
general we have more control over endoge-
nous factors than exogenous factors. But it 

is also often possible to manage the 
uncertainty of exogenous factors, as 
illustrated in the following example: 
Consider a product with total cycle time of 6 
months (including design and production). 
The planning horizon for its demand 
forecast must be larger than its cycle time, 
let us say 12 months. Hence, its forecast 
uncertainty depends on a 12 month period. If 
we reduce the product cycle time to 3 
months, we may also reduce the planning 
horizon, say to 6 months. Note that now the 
forecast uncertainty should be smaller, since 
it depends on a shorter period. 

There are several creative ways to reduce 
uncertainty and therefore, simplify the 
manufacturing environment. An alternative 
explored in BITRAN & SARKAR (1994a) 
is products partitioning, which relates to the 
concept of focused factory (SKINNER, 
1974). Consider a manufacturing system 
with a large number of product classes. If we 
allocate all classes to a single production 
line, we may reduce system predictability 
due to the effects of class interference at 
stations. Bitran and Sarkar showed that, for 
a given system capacity, we may obtain 
better performance measures by appropri-
ately allocating classes to different produc-
tion lines (or focused factories) instead of 
allocating all classes to a single line. 

The alternative of partitioning products to 
reduce uncertainty can also be applied to 
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situations where the system has a purely 
deterministic behavior. Consider a manufac-
turing system with a large number of 
product classes arriving at a particular 
station, and assume that their interarrival 
times are deterministic. The repetition cycle 
of class arrivals at that station can be fully 
determined since the arrival process is 
deterministic; however, if the cycle length is 
large, an observer at the station may have 
the illusion of a random arrival process. 

For illustration, consider a small example 
with only three product classes, named 1, 2 
and 3, with interarrival times of 2, 3 and 5 
time units at a certain station. The repetition 
cycle of class arrivals has a length of 30 time 

units (i.e., the minimum-common-multiple 
between 2, 3 and 5), presented in table 1. 
The first row indicates the time unit t, 
t=1,...,30, and the second row lists the 
classes arriving at t. Observe that, despite of 
the simplicity of this example, it is not a 
trivial task to identify and memorize the 
repetition cycle of table 1. This phenomenon 
generates a perception of uncertainty at the 
station even if the sequence of class arrivals 
is perfectly predictable. A similar phenome-
non occurs with random generators of 
computers, which generate deterministic 
sequences of numbers with long repetition 
cycles giving us the illusion of a pure 
random generation. 

 
Table 1: Repetition cycle of class arrivals 

 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Class 1 2 1 3 1, 2  1 2 1, 3  1, 2  1 2, 3  
                

t 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Class 1  1, 2  1, 3 2 1  1, 2 3 1 2 1  1, 2, 3 

 
 

The Manufacturing System as a Queueing System 

So far we have discussed the concepts of 
complexity, predictability and uncertainty of 
a manufacturing system, and remarked that 
uncertainty can be reduced in different ways. 
In order to assess the impact of reducing 
uncertainty we consider manufacturing 
systems that can be modeled as a queueing 
network. Consider the simple example of 

one product class and one station depicted in 
figure 1 as a single-stage queueing system 
(the queue corresponds to the waiting line of 
products at the station). We want to analyze 
the effects of reducing uncertainty associ-
ated with the product leadtime (queue time 
plus processing time). 

 
product
arrivals

station

queue

product
departures

λ λ

�
 

Figure 1: Single-stage queueing system 
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Let A and S be two random variables 
representing, respectively, the product 
interarrival times and the service (or 
processing) times at the station. Denote by 
E(A) and E(S), and V(A) and V(S), their 
expected values and variances, respectively, 
and let λ=1/E(A) be the mean product 
arrival rate and µ=1/E(S) be the mean 
service rate at the station. We assume that 
the system is stable (i.e., λ<µ) and is in 
steady-state. 

Consider initially that λ=0.5 and µ=1.0 
products per hour; therefore the mean 
utilization at the station, defined as ρ=λ/µ, is 
equal to 0.5. If product interarrival times and 
processing times were deterministic and 
uniform (e.g., products arrive every 2 hours 
and are processed in 1 hour), we would 
never have waiting lines at the station. But 

as the variances V(A) and V(S) increase, we 
expect longer and more frequent queues. 
Furthermore, as the mean product arrival 
rate increases, the mean utilization also 
increases and the queues become even 
longer and more frequent. For instance, if 
instead of λ=0.5 we have λ=0.95 products 
per hour, the mean utilization jumps to 0.95. 
Figure 2 illustrates the tradeoff curve 
between the mean product leadtime and the 
mean utilization at the station. For simplic-
ity, this curve was generated assuming that 
both the arrival and service processes are 
Poisson; therefore, the leadtime is defined as 
1/[µ(1-ρ)] and is asymptotic in the limit as ρ 
tends to 1 (notice in the figure the leadtime 
jump from 2 to 20 hours as we increase the 
mean utilization from 0.5 to 0.95). 
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Figure 2: Tradeoff curve between mean product leadtime and mean utilization, and impact 
of small perturbations 

 
 

Impact of Small Perturbations 

What is the sensitivity of the system to 
small perturbations? Perturbations may arise 
from unexpected tool failures, energy 
shortages, supply delays, etc., contributing 
to a small reduction in the mean processing 

rate (capacity) of the system. Note that as 
the capacity is reduced, the mean utilization 
increases for the same arrival rate λ. 

Consider the two mean utilization levels 
ρ=0.50 (with leadtime equal to 2 hours) and 
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ρ=0.95 (with leadtime equal to 20 hours) 
depicted in figure 2. Let ∆ be a small 
increment of utilization due to unexpected 
loss of capacity. What are the new leadtimes 
if these two utilization levels are incre-
mented by, let’s say, ∆=0.01? The leadtime 
variation in the first case increases just 
0.041 hours, but in the second case it 
increases 5 hours! Therefore, at high 

utilization, a small perturbation caused by 
unexpected events can trigger a great crisis 
in the system. The physics of manufacturing 
systems is not different from the physics of a 
dynamic system: A broken car at 3:00 am 
and a broken car at 5:00 pm may cause 
much different traffic jams in the same 
tunnel. 
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Figure 3: Impact of uncertainty reduction: Curve 1 (ca=1,cs=1), curve 2 (ca=0.5,cs=0.5) and 
curve 3 (ca=0.1,cs=0.1) 

 
Impact of Uncertainty Reduction 

Several manufacturing systems operate at 
high utilization levels due to high capacity 
acquisition costs. To illustrate, the break-
even point of some semi-conductor factories 
corresponds to a utilization higher than 0.7. 
Under the same utilization, one may reduce 
product leadtime without adding capacity by 
reducing the variability of the system. 

Let’s consider again the example of 
figures 1 and 2. In order to manipulate a 
dimensionless measure of variability, let us 
denote by ca=V(A)/E(A)2 and 
cs=V(S)/E(S)2 the squared coefficient of 
variation, or simply the variability parame-
ters, of A and S. Observe that ca and cs 
correspond respectively to the external 

(interarrival time) and internal (service time) 
variability at the station. The system in 
figure 1 can be approximately described 
with the 4 parameters: {λ, ca, µ, cs}, which 
are then used as input data to generate the 
curve of figure 2. Authors have shown that 
performance measure estimates based on 
these 4 parameters lead to good approxima-
tions; see e.g. WHITT (1993) and 
BUZACOTT & SHANTHIKUMAR (1993). 

As mentioned earlier, we may reduce the 
variances V(A) and V(S) by controlling the 
endogenous and exogenous factors. As we 
reduce V(A) and V(S) and hence the 
variability parameters ca and cs, we obtain 
“flatter” tradeoff curves than the one in 
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figure 2. Figure 3 depicts three curves for 
different values of ca and cs and µ=1; these 
curves were generated based on Kraemer & 
Lagenbach-Belz’s formulae (WHITT, 1983). 
Curve 1 is the same curve of figure 2 with 
ca=1 and cs=1 (Poisson process), and curves 
2 and 3 were generated with ca=0.5 and 
cs=0.5, and ca=0.1 and cs=0.1, respectively. 
Note that, for the same mean utilization 
ρ=0.95, we obtain very different leadtimes 
as a function of system variability (leadtimes 

of 20, 10.42 and 2.65 hours for curves 1, 2 
and 3, respectively). In the limit as ca and cs 
tend to 0, the curve coincides with the 
horizontal axis, corresponding to a purely 
deterministic system with leadtime equal to 
the mean service rate E(S)=1 hour for all ρ, 
0≤ρ<1. In this case we say that all system 
uncertainty was eliminated; note that this 
can be seen as a “perfect” JIT (just-in-time): 
the limit state of a dynamic system when all 
variability is removed. 

 
2.2 Knowledge of System Relationships 

It is much easier to complicate a system 
than to simplify it. To simplify a system 
requires a profound understanding of its 
structure and relationships among its 

components. The more we simplify a system 
the easier it is to understand it, hence 
creating a cycle that stimulates learning. 

 
Queueing Network Systems 

A manufacturing system is called discrete 
if products are processed individually or in 
batches. A large portion of products are 
processed in discrete systems. These 
systems can often be modeled as open 
queueing networks, where nodes represent 
the stations and arcs represent the product 
flows between stations (figure 4). If the 

product arrival process and/or the service 
process at the stations are stochastic, we 
may have waiting lines of products in front 
of the stations. In general queueing network 
systems are complex (i.e., poorly predict-
able) and the ideal is to simplify them, or if 
possible avoid them. 

 

 

Figure 4: Open queueing network system 
 
In many cases, however, queueing net-

work systems can not be avoided, and 
several performance measures should be 
evaluated in order to analyze them. Exam-
ples of these measures are work-in-process 
(WIP), product leadtimes, number of 
finished products on time, capacity utiliza-

tion, throughput, costs and capital invest-
ments. System designers and managers 
should establish parameters for these 
performance measures as a function of how 
to compete in the market, that is, as a 
function of the corporate strategies. In order 
to describe the relationships between these 
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parameters, we can utilize tradeoff curves 
similar to those of figures 2 and 3. These 
curves (to be discussed in the following 

sections) can be used to analyze strategic 
objectives as a function of the investment 
required. 

 
3. Tradeoff Curve Generation 

very manufacturing system has a 
signature describing the most effec-
tive way of allocating or removing its 
resources. As we mentioned earlier, 

we say that tradeoff curves are the signature 
of the system. They depict the relationship 
among performance measures at each station 
and for the whole network. For example, the 
curves presented in figures 2 and 3 relate to 
only one station and describe the tradeoff 
between the mean product leadtime and the 
mean capacity utilization at the station. 

In this section we discuss how to generate 
tradeoff curves among performance 
measures, in particular, between the 
resources and the WIP of the network (this 

methodology can be easily extended to other 
performance measures, such as product 
leadtimes). For convenience, the resources 
are measured by a cost function of capacity 
defined below. In section 3.1 we discuss 
how to evaluate network performance 
measures; our focus is on WIP. In sections 
3.2 and 3.3 we discuss respectively how to 
minimize network WIP without adding 
resources to the system and how to mini-
mize the resources without changing 
network WIP. As we will see, the solutions 
to these problems correspond to points on 
the tradeoff curve. Finally in section 3.4 we 
discuss how to use these results to generate 
the remaining points on the curve. 

 
3.1 Performance Measures Evaluation 

Performance measures for open queueing 
networks can be evaluated by applying the 
so called decomposition method described 
below. This method computes performance 
measures assuming that the network is in 
equilibrium or steady-state. Consider that 
the following input data are given: 

λ’ k mean external arrival rate of product 
class k 

ca’k squared coefficient of variation of 
external interarrival times of product 
class k 

nkl station that produces the l-th opera-
tion in the routing of class k 

r number of product classes 
nk number of operations in the routing 

of class k 
µj mean processing rate (or capacity) at 

station j 
csj squared coefficient of variation of 

the processing times at station j 
n number of stations in the network. 

Tables 2 and 3 present these parameters 
for a manufacturing network example with 
10 product classes and 13 stations. They are 
derived from a real example of a semi-
conductor factory and was analyzed in 
BITRAN & TIRUPATI (1989b). For 
simplicity, we consider each station j as a 
single machine with mean processing rate µj. 
In section 6 we make some comments of 
how to extend this discussion and consider 
each station as a set of machines. In addition 
to the parameters above, table 3 also 
presents the parameters vj, aj and bj to be 
defined below. Note that the network 
throughput (or mean production rate), 
defined as the sum of all class arrival rates, 
is equal to 10 products per time unit (see 
table 2) (recall that all measures are 
evaluated assuming that the system is in 
steady-state). 

 
Table 2: Input data for the product classes of the network example 

E 
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Class k λ’ k ca’k nkl nk 

1 1.0 0.500 1, 2, 4, 2, 9, 10, 11 7 

2 1.0 0.500 1, 2, 5, 2, 8, 9, 10, 11 8 

3 1.0 0.333 1, 2, 6, 4, 2, 9, 12, 11 8 

4 1.0 0.333 1, 2, 7, 4, 2, 9, 10, 11 8 

5 1.0 0.333 1, 2, 4, 12, 2, 9, 2, 13 8 

6 1.0 0.333 1, 2, 5, 12, 2, 9, 7, 13 8 

7 1.0 0.250 1, 2, 6, 12, 2, 8, 2, 13 8 

8 1.0 1.000 1, 2, 3, 7, 4, 12, 2, 8, 6, 9, 2, 13 12 

9 1.0 1.000 1, 2, 3, 5, 4, 6, 12, 2, 8, 2, 10, 6, 13 13 

10 1.0 0.333 1, 2, 3, 6, 2, 4, 12, 7, 2, 9, 11, 5, 13 13 

total 10.0   93 

 
 

Table 3: Input data for the stations of the network example 
 

Station j µj csj vj aj bj 

1 13.004 0.500 100 5.68 -51.69 

2 27.778 0.250 1612 2.59 -50.40 

3 3.160 0.333 733 74.77 -165.40 

4 10.000 0.500 1052 6.93 -48.53 

5 5.631 0.333 912 12.62 -49.73 

6 9.225 0.250 1683 7.51 -48.54 

7 5.999 1.000 1662 11.11 -46.67 

8 4.500 0.333 1812 27.66 -87.11 

9 10.000 0.333 1730 7.47 -52.27 

10 5.711 0.333 1600 15.34 -61.30 

11 5.441 0.333 1882 27.03 -102.94 

12 7.440 0.500 1486 13.01 -67.74 

13 7.502 0.500 3250 14.22 -74.67 

total 115.391     

 
 
The decomposition method involves 

basically three steps. In the first step all 
products are aggregated into a single class, 

called the aggregate class, and its flow is 
analyzed through the network. The parame-
ters {λj, caj, µj, csj} are determined for each 
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station j from the initial parameters, where 
λj and caj denote respectively the mean 
product arrival rate and the squared coeffi-
cient of variation of product interarrival 
times at station j. These parameters are 
estimated considering the interference 
among product classes at the stations. In the 
second step performance measures of the 
aggregate class are evaluated for each 
station, analyzed as a single queueing 
system. Finally in the third step performance 
measures are evaluated for the network and 

for each product class by decomposing the 
aggregate class. For more details of the 
decomposition method, the readers are 
referred to BUZACOTT & 
SHANTHIKUMAR (1981), WHITT (1983, 
1994), BITRAN & TIRUPATI (1988), and 
BITRAN & MORÁBITO (1994, 1995b). 
Table 4 presents the parameters λj and caj 
computed for the network example of tables 
2 and 3 (the remaining columns of table 4 
are defined below). 

 
Table 4: Parameters and performance measures of the network example 

 

Station j λj caj ρj Lj Wj Fj 

1 10.0 0.492 0.769 1.974 197.377 288.325 

2 25.0 0.601 0.900 4.298 6929.058 598.457 

3 3.0 0.760 0.949 10.694 7838.522 223.823 

4 7.0 0.608 0.700 1.569 1650.825 207.700 

5 4.0 0.613 0.710 1.500 1367.930 120.093 

6 6.0 0.583 0.650 1.118 1881.392 191.332 

7 4.0 0.619 0.667 1.715 2850.717 119.836 

8 4.0 0.665 0.889 4.403 7979.090 168.193 

9 8.0 0.642 0.800 2.327 4025.622 224.300 

10 4.0 0.662 0.700 1.489 2382.308 150.240 

11 5.0 0.684 0.919 6.194 11656.346 240.055 

12 7.0 0.614 0.941 9.226 13709.098 216.225 

13 6.0 0.677 0.800 2.653 8620.970 240.110 

total    49.160 71089.253 2988.689 

 
 
We estimate performance measures for 

each station j by substituting the 4 parame-
ters {λj, caj, µj, csj} into the formulas of 
queueing theory. For example, the mean 
utilization at station j, defined as ρj=λj/µj, 
can be easily calculated substituting λj and 
µj. We can also calculate the WIP (in 
monetary value) at station j, defined as: 

Wj = vj Lj(λj, caj, µj, csj) (1) 

where vj is a unit monetary value of an 
arbitrary product at station j, and Lj(λj, caj, 
µj, csj) is the mean number of products (in 
queue and in process) at station j. Each 
value vj is estimated using practical 
experience, or as a weighted average 
proportional to the expected arrival rate and 
expected waiting time of each class (the 
expected waiting time may be computed 
approximately by a procedure given in 
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ALBIN (1986)). Obviously, if vj=1 then Wj 
corresponds to the mean number of products 
at station j. Each value Lj(λj, caj, µj, csj) can 
be estimated by the Kraemer & Lagenbach-
Belz’s formulae (WHITT, 1983). 

Table 3 presents the values of vj and table 
4, the computed values of the mean number 
of products, the WIP, and the mean utiliza-
tion at each station j of the network exam-
ple. Adding the WIP of all stations, we 
obtain the network WIP, equal to 71089 (see 
table 4). 

Another useful performance measure is 
the value of the resources utilized in the 
system, which can be measured by the cost 
of capacity acquisition (or capacity invest-
ment). This cost is a function of the capacity 
at each station j, µj. An example of such a 
cost function is: 

Fj(µj) = aj µj
2 + bj µj + cj (2) 

where aj, bj and cj are known coefficients. 
We are assuming that it is possible to add 
capacity to station j with amounts small 
enough to consider µj as a continuous 
variable. In section 5 we analyze the more 
general case where capacity changes are 
limited to a finite set of discrete alternatives. 

Table 3 presents the values of aj and bj 
for each station of the network example (for 
simplicity, we assume that cj=0). Adding the 
capacity cost of all stations, we obtain the 
network resources. Table 4 presents these 
values utilizing the data of table 3. Note that 
the WIP value 71089 and the resource value 
2989 define the point O depicted in figure 5. 
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Figure 5: Points O, A, B, C, D and efficient frontier 

 
For convenience, we assume that the 

network capacity is homogeneous and 
interchangeable among stations. An 
example is a trained labor-force that can be 
transferred from one station to another. The 

algorithms discussed below can also be 
applied when the capacity of a station is not 
transferable to all other stations. At the end 
of this section we discuss this more general 
case. 

3.2 Efficient Redistribution of Resources 

Let us assume that the system is at point 
O (71089, 2989). Considering the data of 
tables 2 and 3, we can formulate the 

following question: Is it possible to reduce 
the network WIP to under 71089 without 
adding resources to the network? In other 
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words, is it possible to redistribute the 
resources of 2989 (by interchanging capacity 
among stations) such that the network WIP 
is reduced? And if this reduction is possible, 
what is the redistribution that leads to the 
minimum network WIP? 

The optimal resource redistribution 
problem can be solved by an exact iterative 
algorithm proposed in BITRAN & 
SARKAR (1994b). This algorithm, here 
called algorithm 1, starts from the input data 
of tables 2 and 3 and solves a convex 
program at each iteration. In spite of 
utilizing this algorithm in this present paper, 

we will not describe it in more details; its 
complete description can be found in 
BITRAN & SARKAR (1994b) and 
BITRAN & MORÁBITO (1995a). 

Applying algorithm 1 to the network 
example, we obtain point A (49254, 2989) 
depicted in figure 5. Table 5 presents the 
final values of caj, µj, ρj, Lj, Wj and Fj for 
each station. Note that the values of caj in 
tables 4 (point O) and 5 (point A) are almost 
the same in spite of the capacity changes at 
stations. 

 
Table 5: Parameters and performance measures relative to point A 

 

Station j caj µj ρj Lj Wj Fj 

1 0.492 10.604 0.943 8.609 860.861 90.541 

2 0.602 28.041 0.892 3.966 6392.554 623.270 

3 0.761 3.421 0.877 4.279 3136.301 309.222 

4 0.610 8.712 0.804 2.587 2721.365 103.173 

5 0.621 5.081 0.787 2.141 1952.440 73.096 

6 0.589 7.818 0.767 1.787 3007.797 79.567 

7 0.624 5.828 0.686 1.874 3115.223 105.356 

8 0.665 4.999 0.800 2.369 4292.979 255.741 

9 0.643 9.918 0.807 2.415 4178.749 216.376 

10 0.666 5.296 0.755 1.891 3026.341 105.638 

11 0.682 6.050 0.826 2.795 5260.484 366.620 

12 0.611 8.403 0.833 3.101 4607.640 349.405 

13 0.678 7.987 0.751 2.062 6701.743 310.684 

total  112.158  39.876 49254.477 2988.689 
 
 
Point A indicates that we can substan-

tially improve performance (i.e., reduce the 
network WIP from 71089 to 49254) without 
changing the resources (2989). This 
reduction is obtained by appropriately 
redistributing the resources among stations 
(compare tables 4 and 5); it does not imply 

in a process or technology modification. The 
throughput is also maintained, equal to 10 
units of product per time unit (see table 2). 
Figure 6 compares, for each station, the 
resources before (point O) and after (point 
A) the redistribution. 
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Figure 6: Resources for each station at points O and A 
 
 
 
 

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13

stations

W
IP

Point O (71089,2989)

Point A (49254,2989)Series2

Series1

 

Figure 7: WIP for each station at points O and A 
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Figure 8: Utilization for each station at points O and A 

 
 
As we move the system from point O to 

point A, we must “sell” capacity of stations 
1, 4, 5, 6, 7, 9 and 10 in order to “buy” 
capacity for stations 2, 3, 8, 11, 12 and 13. 
Although the network capacity at point O, 
115.4, is different of the network capacity at 
point A, 112.2 (compare tables 3 and 5), 
their cost are exactly the same: 2989. Figure 
7 shows the impact of capacity change on 
the WIP of each station. Note that the WIP 
increases a little at stations 1, 4, 5, 6, 7, 9 

and 10, but decreases substantially at 
stations 3, 8, 11 and 12. 

Figure 8 compares the mean utilization at 
the stations of points O and A. Stations 3, 8, 
11 and 12, with high utilization at point O, 
had their utilization reduced at point A. On 
the other hand, station 1 had its utilization 
substantially increased at point A (from 
0.769 to 0.943); however, the effect on 
network WIP is not so large (from 197 to 
861) since v1 is small compared to other 
stations (see table 3 and figure 7). 

 
3.3 Efficient Redistribution of WIP 

Let’s assume that the system is again at 
point O (71089, 2989). Considering the data 
of tables 2 and 3, we can formulate the 
following (second) question: Is it possible to 
reduce the network resources to under 2989 
without changing the network WIP of 
71089? In other words, is it possible to 
redistribute the WIP of 71089 (by inter-
changing capacity among stations) such that 
the necessary network resources are 
reduced? And if this reduction is possible, 
what is the redistribution that leads to the 
minimum value of network resources? 

The optimal WIP redistribution problem 
can be solved by an exact iterative algo-

rithm, similar to algorithm 1. This algo-
rithm, here called algorithm 2, solves a 
convex program at each iteration and is 
described in details in BITRAN & 
MORÁBITO (1995a). 

Applying algorithm 2 to the network 
example, we obtain point B (71089, 2278) 
depicted in figure 5, which parameters and 
performance measures appear in table 6. 
Note that, similarly to point A, the values of 
caj at point B (tables 5) are very close to the 
values at point O (table 3) in spite of the 
capacity changes at the stations. 
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Table 6: Parameters and performance measures relative to point B 
 

Station j caj µj ρj Lj Wj Fj 

1 0.492 10.390 0.962 13.114 1311.434 76.112 

2 0.598 26.978 0.927 5.841 9415.943 525.354 

3 0.760 3.275 0.916 6.355 4658.410 260.353 

4 0.607 8.143 0.860 3.730 3923.519 64.327 

5 0.616 4.720 0.847 3.039 2772.018 46.459 

6 0.581 7.215 0.832 2.489 4189.145 40.719 

7 0.617 5.255 0.761 2.686 4463.872 61.536 

8 0.657 4.660 0.858 3.402 6163.572 194.739 

9 0.638 9.270 0.863 3.465 5994.499 157.403 

10 0.657 4.868 0.822 2.664 4262.773 65.111 

11 0.672 5.690 0.879 4.047 7616.165 289.389 

12 0.604 7.923 0.884 4.537 6741.802 279.960 

13 0.668 7.330 0.819 2.946 9576.101 216.651 

total  105.717  58.315 71089.253 2278.113 

 
 
Point B indicates that we can reduce the 

network resources from 2989 to 2278 
without changing the network WIP of 71089 
(compare tables 4 and 6). Similarly to the 
efficient redistribution of resources, the 

efficient redistribution of WIP does not 
imply a process, technology, or throughput 
change. Figure 9 presents for each station 
the WIP obtained before (point O) and after 
(point B) the redistribution. 
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Figure 9: WIP for each station at points O and B 
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Figure 10: Resources for each station at points O and B 
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Figure 11: Utilization for each station at points O and B 
 
 
As we move the system state from point 

O to point B, we “transfer” WIP from 
stations 3, 8, 11 and 12 to other stations 
(compare points O and B in figure 9). This 
transfer is obtained by appropriately 
interchanging capacity between stations 
such that the network WIP of 71089 is 
maintained. Figure 10 illustrates the 

resources at each station after the WIP 
transfer. Note that the resources increase a 
little at stations 3, 8, 11 and 12, but decrease 
by more than half of their initial values at 
stations 1, 4, 6 and 10. The mean utilization 
obtained before and after the WIP redistribu-
tion are depicted in figure 11. 
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3.4 Efficient Frontier 

Algorithms 1 and 2 move the system to a 
point on the tradeoff curve depicted in figure 
5 (recall that points A and B belong to the 
curve). Algorithm 1 moves the system from 
point O to point A by efficiently redistribut-
ing the resources of point O, while algo-
rithm 2 moves the system from point O to 
point B by efficiently redistributing the WIP 
of point O. The remaining points on the 
curve can also be obtained applying 
algorithms 1 and 2 for arbitrary values of 
network resources and WIP. In particular, 
the curve of figure 5 was traced applying 
algorithm 2 to the network WIP values 
40000, 50000, ..., 90000 indicated in the 
figure (see the corresponding dots in the 
figure that originated the curve). 

Alternatively, this curve can also be 
generated with less computational effort 
using a heuristic algorithm proposed in 
BITRAN & TIRUPATI (1989a). The 
algorithm assumes that the system is at a 
point on the curve, and employs a simple 
and intuitive greedy heuristic to find the 
remaining points. This procedure is 
illustrated in the following example: 
Consider that we want to add 100 labor 
hours of capacity to the stations of a 
network. For simplicity, assume that the cost 
of adding 1 hour to any station is constant, 
let’s say $1 (and hence, allocating 100 hours 
is equivalent to allocating $100 to the 
network). The question is: How should we 

distribute this extra capacity to the stations 
such that the network WIP is minimized? 

Given that we can add capacity to the 
stations in small quantities, let’s partition 
these 100 hours in sufficiently small 
increments and add them, one after another, 
according to the following greedy rule: The 
next increment is added to the station that 
results in the largest reduction of the 
network WIP, and so on, until all increments 
have been added to the network. The smaller 
the increments, the more accurate is the 
solution generated by this procedure. The 
complete description of the heuristic 
algorithm can be found in BITRAN & 
TIRUPATI (1989a), and BITRAN & 
MORÁBITO (1994, 1995c). 

The tradeoff curve of figure 5 defines an 
efficient frontier, that is, the minimum 
resource value necessary to produce each 
WIP or, equivalently, the minimum WIP 
produced by each value of resources. Let’s 
take for example point A (49254, 2989) and 
consider that, according to the competitive 
strategy, the system should operate with a 
WIP less than or equal to 40000. What is the 
minimum resource requirement to reduce 
the WIP from 49254 to 40000? As we travel 
through the points on the curve to the left of 
point A, we find point C (40000, 3609). 
Hence, the system needs an additional 
capacity investment of 620 (3609-2989). 

 
Heterogeneous and Non-Interchangeable Capacity 

So far we have assumed that the network 
capacity is homogeneous and totally 
interchangeable between stations. Algo-
rithms 1 and 2 can also be applied when part 
of the capacity µj at station j is not inter-
changeable; in this case it is enough to 
impose a lower bound on the variable µj. 
The more general case where capacity need 
not be homogeneous nor interchangeable 
involves additional considerations. If the 
unit cost of “selling” capacity (i.e., removing 

capacity) is equal to the unit cost of 
“buying” capacity (i.e., adding capacity) at 
each station, then algorithms 1 and 2 can be 
applied without any modification. Other-
wise, they can be still applied but with some 
changes (see the discussion in BITRAN & 
MORÁBITO (1995a) for the particular case 
where the unit disposal cost of a station is a 
fraction of its unit purchase cost). In all 
cases the concepts of points A, B and the 
efficient frontier remain valid. 
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In the next section we assume that the 
efficient redistribution of resources (or WIP) 
has been done and the system state is at a 
certain point on the curve of figure 5, let us 
say at point A (49254, 2989). In the 
preceding discussion we have shown that, 
starting from a point on the curve, we can 

reduce WIP by adding capacity to the 
network. In the sequel we discuss other 
alternatives to reduce WIP, such as uncer-
tainty reduction. The next tradeoff curves to 
be presented were also generated with 
algorithms 1 and 2. 

 
 

4. Changing the Variability Parameters, Throughput and Product Mix 

he tradeoff curve of figure 5 was 
generated with the data of tables 2 
and 3, where the variability parame-
ters (i.e., the ca’k for all product 

classes and the csj for all stations), the 
throughput and the product mix remained 
fixed. We varied the capacity µj at each 

station and consequently, we varied the 
resources, the WIP and the mean utilization 
at each station. In this section we analyze 
what happens to that tradeoff curve as we 
change the variability parameters, the 
throughput and the product mix of the 
network. 

 
4.1 Changing the Variability Parameters 

In figure 3 we show that as we reduce the 
variability parameters ca and cs of a single-
stage queueing system, we obtain “flatter” 
tradeoff curves between the mean utilization 
and the product leadtime at the station. In 
the limit as ca and cs tend to 0, every 
variability is eliminated, the curve tends to 
the horizontal axis, and the product leadtime 
tends to the expected value of the processing 
time at the station, E(S). We can also extend 
this observation to queueing network 
systems. As we reduce the variability 
parameters ca’k, k=1,...,r, and csj, j=1,...,n, 
we expect the same flattening effect of the 
tradeoff curves between network resources 
and WIP. 

We may reduce the variability parame-
ters, for example, by working closer with 

suppliers, investing in labor training, and 
process improvement. In this way we expect 
to obtain lower WIP levels without addi-
tional capacity investments. An immediate 
question is: Under what conditions uncer-
tainty reduction produces better performance 
(e.g. lower WIP levels) than simply 
investing in capacity expansion? 

Figure 12 presents the tradeoff curve of 
figure 5 (curve 1) next to three other curves 
generated with smaller values of ca’k and 
csj. In the first (curve 2) we reduce by half 
all ca’k values of table 2, in the second 
(curve 3) we reduce by half all csj values of 
table 3, and in the third (curve 4) we reduce 
by half all ca’k and csj values. 

 
 

T 
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Figure 12: Changing the variability parameters: Curve 1 (ca’k,csj), curve 2 (ca’k/2,csj),  
curve 3 (ca’k,csj/2) and curve 4 (ca’k/2,csj/2) 
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Figure 13: Variability parameter changes for small WIP values: Curve 2 (ca’k/2,csj) and 
curve 3 (ca’k,csj/2) 

 
 
Starting from point A (49254, 2989), the 

points B1 (45584, 2989), B2 (40645, 2989) 
and B3 (36948, 2989) can be obtained with 
algorithm 1, and the points C1 (49254, 
2803), C2 (49254, 2537) and C3 (49254, 
2351) with algorithm 2. Consider that the 
system is originally at point A and let’s take, 
for example, the curve 4. Define V as the 
required investment to reduce by half all 

variability parameters. As we invest V, we 
move the system state from point A to point 
B3 and hence, we reduce the WIP to 36948. 
This WIP level could also be attained by 
investing 918 (i.e., 3907-2989) in additional 
network capacity, instead of variability 
reduction, to reach point A3 (36948, 3907). 
The value 918 becomes an upper bound on 
the investment V. Note that with the curves 
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of figure 12 at hand, we can now measure 
the tradeoff between investing in capacity 
versus investing in variability reduction. 

Curve 4 is flatter than curve 3, which is 
flatter than curve 2, which is flatter than 
curve 1. For high utilization levels, the 
effect of reducing csj is more sensible than 
that of reducing ca’k (compare curves 2 and 
3). Nevertheless, we expect the inverse for 

low utilization. In order to illustrate this 
effect, figure 13 presents curves 2 and 3 for 
small WIP values (much less than 30000) 
and hence, low utilization at stations. Note 
that for WIP values less than the crossing 
point between curves 2 and 3, the effect of 
reducing ca’k becomes more sensible than 
that of reducing csj. 

 
Technology Substitution 

As we have seen, utilizing the tradeoff 
curves of figure 12 we can assess the 
tradeoff between adding capacity and 
investing in uncertainty reduction, without 
changing neither the technology, the 
throughput, nor the product mix of the 
network. Now let’s assume that we have an 
alternative technology that allows us to 
produce the same mix of products at the 
same throughput rate. Figure 14 depicts its 

hypotethical curve (curve 5) together with 
the curves of the current technology (curve 
1) and the current technology with uncer-
tainty reduction (curve 4). These two last 
ones correspond respectively to the curves 1 
and 4 of figure 12. Note that now we have a 
new tradeoff analysis: the tradeoff between 
buying this substitute technology versus 
investing in uncertainty reduction in the 
current system. 
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Figure 14: Tradeoff between uncertainty reduction and technology changing: Curve 1 
(ca’k,csj), curve 4 (ca’k/2,csj/2) and curve 5 (new technology) 

 
4.2 Changing the Throughput 

The tradeoff curves also help the analysis 
of throughput changing in the network. 
Figure 15 presents curve 1 of figure 5, 
together with two other curves generated by 
varying the original network throughput, 

equal to 10 products per time unit (table 2). 
In the first (curve 2), we reduce by 10% the 
mean external arrival rates of all product 
classes in the network (so that the network 
throughput becomes 9 products per time 
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unit), and in the second (curve 3), we 
increase them by 10% (11 products per time 
unit). Note in the figure that curve 2 is 
flatter than curve 1, while curve 1 is flatter 

than curve 3. The throughput variation 
apparently translates the curve and the 
smaller the throughput, the flatter is the 
curve. 
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Figure 15: Changing the throughput: Curve 1 (10 products/hour), curve 2 (9 products/hour) 

and curve 3 (11 products/hour) 
 
Starting at point A (49254, 2989), we 

obtain points B1 (32079, 2989) and B2 
(98107, 2989) (the latter does not appear in 
figure 15) with algorithm 1, and points C1 
(49254, 1798) and C2 (49254, 4378) with 
algorithm 2. Consider again that the system 
is at point A and take, for example, curve 3. 

Note that it is unlikely that the system will 
survive the 10% growth of the throughput 
without additional resources (point B2). 
However, even a 50% increase of the current 
resources is not sufficient to maintain the 
same WIP level of point A (point C2). 

 
4.3 Changing the Product Mix 

The effects of changes in the product 
mix, such as removing old products, 
modifying the proportion among products, 
including new products, can also be 
analyzed with the tradeoff curves. Figure 16 
presents curve 1 of figure 5, together with 
three other curves generated by modifying 
the product mix. In the first (curve 2) we 

eliminate product class 1 (i.e., λ1=0), in the 
second (curve 3) we duplicate the mean 
arrival rate of product class 1 (i.e., λ1=2), 
and in the third (curve 4) we introduce a 
new product class (class 11) with the same 
mean arrival rate of class 1 (i.e., λ11=1) but 
with a very different routing. Table 7 
presents the input data for product class 11. 

 
Table 7: Input data of product class 11 

 

Class k λ’ k ca’k nkl nk 

11 1.0 0.500 13, 1, 11, 3, 9, 5, 7 7 
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Note that curve 2 corresponds to a 
throughput of 9 products per time unit, 
while curves 3 and 4 to a throughput of 11 
products per time unit. Curve 2 is flatter 
than curve 1, whereas curve 1 is flatter than 
curves 3 and 4. This result is consistent with 
our discussion of throughput changing in 
section 4.2. However, curve 3 is flatter than 
curve 4 in spite of having the same through-

put (recall that in curve 3 we duplicate the 
mean arrival rate of class 1 and in curve 4 
we introduce class 11 with the same mean 
arrival rate, variability parameter and 
number of operations of class 1). This shows 
that, in this example, the routing of class 11 
produces higher WIP than the routing of 
class 1. 
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Figure 16: Changing the product mix: Curve 1 (original curve), curve 2 (class 1 deleted), 

curve 3 (class 1 duplicated) and curve 4 (class 11 added) 
 

 
Starting at point A (49254, 2989), we 

obtain points B1 (36607, 2989), B2 (77768, 
2989) and B3 (103211, 2989) (points B2 
and B3 do not appear in figure 16) with 
algorithm 1, and points C1 (49254, 2184), 
C2 (49254, 3973) and C3 (49254, 4435) 
with algorithm 2. Note that if we eliminate 
product class 1, we reduce the mean 
utilization of the original network, and the 
effect on network WIP corresponds to the 

horizontal distance between points A and 
B1. On the other hand, if we duplicate 
product class 1 or introduce product class 
11, we raise the mean capacity utilization, 
yielding to a substantial increase in the 
network WIP, as shown by points B2 and 
B3. Similar results were found in section 4.2 
as we increased by 10% the throughput of 
the network (compare figures 15 and 16). 

 
 

5. Discrete Alternatives for Capacity Changes 

n sections 3 and 4 we have assumed that 
capacity can be added or removed from 
each station by amounts small enough to 
consider the total capacity at the station, 

µj, as a continuous variable. This is not 

always valid. In this section we briefly 
analyze the more general case where 
capacity changes at each station is limited to 
a finite set of discrete alternatives. In a 
previous paper, BITRAN & TIRUPATI 

I 
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(1989b) presented a heuristic algorithm that 
considers capacity at each station as a 
discrete variable. The algorithm utilized in 
this section, here named algorithm 3, is an 
extension of that algorithm. Basically it is an 
iterative algorithm that, at each iteration, 
solves an integer linear program and updates 
the variability parameters; for a complete 
description of algorithm 3 the readers are 
referred to BITRAN & MORÁBITO 
(1995a). 

Consider that, instead of choosing any 
value for the capacity µj, we are limited to a 
finite set of nj discrete alternatives at each 
station j. This set is described by the vector 
{ µj1, µj2, ..., µj,nj}, where µji denotes the 
capacity at station j under alternative i and 
satisfies µji>λj for all i. Table 8 presents a 
set with 5 possible capacity alternatives for 
each station of the network example. Note 
that the first alternative corresponds to point 
O of figure 5 (compare to table 3). 

 
Table 8: Five discrete alternatives for capacity changes at each station 

 

Station j 1 2 3 4 5 

1 13.004 10.5 11.0 14.0 15.0 

2 27.778 26.0 27.0 28.0 30.0 

3 3.160 3.5 3.5 4.0 4.5 

4 10.000 7.5 8.0 9.0 11.0 

5 5.631 4.5 4.7 5.0 6.0 

6 9.225 6.5 7.0 9.0 12.0 

7 5.999 5.0 5.5 6.0 6.5 

8 4.500 4.5 5.0 5.5 6.0 

9 10.000 8.5 9.0 10.0 11.0 

10 5.711 4.5 4.7 5.0 6.0 

11 5.441 5.3 5.6 5.9 6.0 

12 7.440 7.5 8.0 8.5 9.0 

13 7.502 6.5 7.0 7.5 8.0 

total 115.391     

 
 
Each alternative i, i=1,...,nj, requires the 

resource level Fji(µji) at station j, defined 
similarly to expression (2) as: 

 
Fji(µji) = aj µji

2 + bj µji + cj 
 
Note that for each alternative we can 

calculate the resource requirements at the 
station. After choosing a capacity alternative 
for each station j, we may apply the 
decomposition method (section 3.1) to 

obtain the 4 parameters {λj, caj, µj, csj}. Let 
us assume that we chose alternative i at 
station j (i.e., µj=µji) and so, we obtain {λj, 
caj, µji, csj}. Using these parameters we can 
also calculate the WIP at station j under 
alternative i, Wji, defined similarly to 
expression (1) as: 

 
Wji = vj Lji(λj, caj, µji, csj) 

where, as before, vj is a given monetary 
value of an arbitrary product at station j, and 
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Lji(λj, caj, µji, csj) is the mean number of 
products (in queue and in processing) at 
station j under alternative i. Lji can be 
calculated in the same way as Lj in expres-
sion (1). Note that, once we have chosen an 
alternative at each station, we may obtain 
the WIP for each station and for the whole 
network. We can use algorithm 3 mentioned 
above to search for the best capacity choice 
at the stations. 

Applying algorithm 3 to the network 
example of the previous sections (with the 5 
available alternatives of table 8), we obtain 
point D (70927, 2359) indicated in figure 5 
and presented in table 9. Note that the 
algorithm selected different alternatives for 
the stations (see the second column of the 
table). The columns caji, µji, ρji, and so on, 
indicate the parameters and performance 
measures at station j under alternative i 
relative to point D. 

 
Table 9: Parameters and performance measures of point D 

 

Station j Alt. i caji µji ρji Lji Wji Fji 

1 2 0.492 10.500 0.952 10.315 1031.498 83.475 

2 3 0.598 27.000 0.926 5.782 9321.135 527.310 

3 2 0.760 3.500 0.857 3.652 2676.847 337.032 

4 3 0.610 8.000 0.875 4.229 4448.631 55.280 

5 4 0.619 5.000 0.800 2.285 2084.087 66.850 

6 3 0.584 7.000 0.857 2.954 4971.318 28.210 

7 3 0.622 5.500 0.727 2.266 3765.365 79.392 

8 1 0.660 4.500 0.889 4.386 7947.184 168.120 

9 3 0.637 9.000 0.889 4.300 7438.939 134.640 

10 4 0.654 5.000 0.800 2.348 3756.943 77.000 

11 3 0.671 5.600 0.893 4.597 8651.750 271.197 

12 3 0.606 8.000 0.875 4.216 6265.355 290.720 

13 4 0.666 7.500 0.800 2.637 8568.902 239.850 

total   106.100  53.967 70927.955 2359.077 

 
 
Note that the caj values at point D, as 

well as at point B, are very close to the caj 
values at point O (compare tables 4, 6 and 
9). The value of the required resources at 
point B, 2278, becomes a lower bound on 
the value of the required resources at point 
D (equal to 2359). 

Similarly to algorithm 2, we can also 
apply algorithm 3 to trace the efficient 
frontier of the problem with discrete 
alternatives for capacity changes. Naturally 
this efficient frontier now is not defined as a 
continuous curve anymore, but as a set of 
discrete points. 

 
 

6. Multiple Machines 
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n sections 3, 4 and 5 we defined the 
capacity at each station as the mean 
processing rate µj. We considered each 

station j as a “single machine”, or a set of 
machines, operators, tools, etc., that can be 
approximated by a single machine with 
mean processing rate µj. This approximation 
is not always reasonable. We may have 
situations where we must describe the 
capacity at each station as a set of machines, 
each one with a given mean processing rate. 

In the case where we have identical ma-
chines at each station (i.e., with the same 
mean processing rate), algorithms very 
similar to algorithms 1, 2 and 3 can be 
applied. Such algorithms consider the 

decision variable at each station as the 
number of machines, instead of the mean 
processing rate. Furthermore, performance 
measures such as the WIP defined in 
expression (1) must be redefined according 
to the multi-machine formulas of queueing 
theory. For more details of these algorithms, 
see e.g. BOXMA et al (1990), VAN VLIET 
& RINNOOY KAN (1991), BITRAN & 
TIRUPATI (1989b), and BITRAN & 
MORÁBITO (1994, 1995c). 

The more general case when we may 
have distinct machines at the same station 
involves additional difficulties, and is a 
topic for future research. 

 
 

7. Conclusions 

n this paper we emphasized the applica-
tion of tradeoff curves to the analysis of 
discrete manufacturing systems. Initially 
we discussed the importance of reducing 

uncertainty and understanding system 
relationships. We presented the manufactur-
ing environment as a dynamic system, and 
modeled it as an open queueing network. 

In order to generate tradeoff curves be-
tween network WIP and resources, we 
solved optimization problems of these 
measures applying algorithms known in the 
literature. To illustrate we presented several 
tradeoff curves for a manufacturing network 

example of a semi-conductor factory, and 
used them to analyze the effects of uncer-
tainty reduction, throughput variation and 
product mix changes. 

Tradeoff curves describe the relationship 
between performance measures, and can be 
effectively used to analyze strategic 
objectives as a function of the resources 
required to meet specific goals. Therefore, 
we can design a new manufacturing system 
or redesign an existing one in such a way to 
reflect our decision of how to compete in the 
market. 

 
 

Acknowledgments 

The authors would like to thank Luis A. C. 
Pedrosa of the Sloan School of Management 
and the three referees for their helpful 

comments. This research was partially 
supported by a post-doctoral fellowship 
from FAPESP (grant #93/0891-7). 

 
 
 
 
 

References: 

I 

I 



GESTÃO & PRODUÇÃO   v.3, n.2, p. 108-134, ago. 1996  

 

133 

ALBIN, S.L.:  “Delays for customers from different 
arrival streams to a queue”. Mgmt. Sci. 32, 329-
340, 1986. 

BITRAN, G.R. & DASU, S:  “A review of open 
queueing network models of manufacturing 
systems”. Queueing Syst. 12, 95-134, 1992. 

BITRAN, G.R. & MORÁBITO, R.:  “Open 
queueing networks: Optimization and perform-
ance evaluation models for discrete manufacturing 
systems”. WP#3742-94, Sloan School of Man-
agement, MIT, 45p., 1994 (to appear in Produc-
tion and Operations Management). 

BITRAN, G.R. & MORÁBITO, R.:  “Manufacturing 
systems design: Tradeoff curve analysis”. 
WP#3805-95, Sloan School of Management, 
MIT, 33p., 1995a (submitted to Production and 
Operations Management). 

BITRAN, G.R. & MORÁBITO, R.:  “Um exame 
dos modelos de redes de filas abertas aplicados a 
sistemas de manufatura discretos: Parte 1”. 
Gestão & Produção 2(2), 109-220, 1995b. 

BITRAN, G.R. & MORÁBITO, R.:  “Um exame 
dos modelos de redes de filas abertas aplicados a 
sistemas de manufatura discretos: Parte 2”. 
Gestão & Produção 2(3), 297-320, 1995c. 

BITRAN, G.R. & SARKAR, D.:  “Targeting 
problems in manufacturing queueing networks - 
An iterative scheme and convergence”. EJOR 76, 
501-510, 1994a. 

BITRAN, G.R. & SARKAR, D.:  “Focused factory 
design: Complexity, capacity and inventory 
tradeoffs”. Technical Memorandum, AT&T Bell 
Lab., 36p., 1994b. 

BITRAN, G.R. & TIRUPATI, D.:  “Multiproduct 
queueing networks with deterministic routing: 
Decomposition approach and the notion of 
interference”. Mgmt. Sci. 34(1), 75-100, 1988. 

BITRAN, G.R. & TIRUPATI, D.:  “Tradeoff curves, 
targeting and balancing in manufacturing queue-
ing networks”. Oper. Res. 37, 547-564, 1989a. 

BITRAN, G.R. & TIRUPATI, D.:  “Capacity 
planning in manufacturing networks with discrete 
options”. Annals of Oper. Res. 17, 119-
136,1989b. 

BOXMA, O.J.; RINNOOY KAN, A.; VAN  
VLIET, M.:  “Machine allocation problems in 
manufacturing networks”. EJOR 45, 47-54, 1990. 

BUZACOTT, J.A. & SHANTHIKUMAR, J.G.:  
Stochastic models of manufacturing systems, 
Prentice-Hall, Englewood Cliffs, NJ, 1993. 

HSU, L.F.; TAPIERO, C.S.; LIN, C.:  “Network of 
queues modeling in flexible manufacturing 
systems: A survey”. RAIRO 27(2), 201-248, 1993. 

KRAJEWSKI, L.J. & RITZMAN, P.L .: Operations 
management: Strategy and analysis, 2nd.ed., 
Addison-Wesley, Reading, MA, 1990. 

KUSIAK, A.:  Intelligent manufacturing systems, 
Prentice-Hall, Englewood Cliffs, NJ, 1990. 

SKINNER, W.:  “The focused factory”. Harvard 
Bus. Rev., May-June, 113-121, 1974. 

SHANTHIKUMAR, J.G. & BUZACOTT, J.A.: 
“Open queueing network models of dynamic job 
shops”. Int. J. Prod. Res. 19, 255-266, 1981. 

SURI, R. & DE TREVILLE, S.:  “Full speed ahead: 
A look at rapid modeling technology in operations 
management”. OR/MS Today 18, 34-42, 1991. 

SURI, R.J.; SANDERS, L.; KAMATH, M.:  
“Performance evaluation of production net-
works”. Handbooks in OR/MS, S. C. Graves (ed.), 
vol 4, Elsevier, North-Holland, Amsterdam, 1993. 

VAN VLIET, M. & RINNOOY KAN, A.:  “Machine 
allocation algorithms for job shop manufactur-
ing”. Journal of Intelligent Manufacturing 2, 83-
94, 1991. 

WHITT, W.: “The queueing network analyzer”. Bell 
Syst. Tech. J. 62, 2779-2815, 1983. 

WHITT, W.: “Approximations for the GI/G/m 
queue”. Production and Oper.Mgmt. 2(2), 114-
161, 1993. 

WHITT, W.: “Towards better multi-class parametric 
decomposition approximations for open queueing 
networks”. Annals of Oper.Res. 48, 221-248, 
1994. 

 
 
 
 
 

UMA VISÃO GERAL DA ANÁLISE DE CURVAS DE TRADEOFF  
NO PROJETO DE SISTEMAS DE MANUFATURA 

 
Resumo 
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Incerteza nos sistemas de manufatura tem sido há muito tempo fonte de complexidade 
gerencial. Neste artigo discutimos o impacto de diferentes fontes de incerteza e apresentamos 
um metodologia para avaliar tal impacto no comportamento do sistema. Introduzimos o 
conceito de curvas de tradeoff como uma característica de um sistema de manufatura e 
ilustramos sua utilização para tomar decisões com respeito à quantidade e tipo de 
capacidade necessária para gerir o sistema eficientemente, para avaliar o impacto de 
incerteza na chegada e processamento de produtos, assim como as conseqüências de 
mudanças na taxa média de produção e no mix de produtos. A metodologia é ilustrada com 
um exemplo derivado de uma aplicação real numa indústria de semicondutores. 

 
Palavras-chave: análise de curvas de tradeoff, projeto de sistema de manufatura, 

redes de filas abertas, otimização e avaliação de desempenho. 

 


