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Abstract

Gene expression profiles contain the expression level of thousands of genes. Depending on the issue under
investigation, this large amount of data makes analysis impractical. Thus, it is important to select subsets of relevant
genes to work with. This paper investigates different metrics for gene selection. The metrics are evaluated based on
their ability in selecting genes whose expression profile provides information to distinguish between tumor and
normal tissues. This evaluation is made by constructing classifiers using the genes selected by each metric and then
comparing the performance of these classifiers. The performance of the classifiers is evaluated using the error rate in
the classification of new tissues. As the dataset has few tissue samples, the leave-one-out methodology was
employed to guarantee more reliable results. The classifiers are generated using different machine learning
algorithms. Support Vector Machines (SVMs) and the C4.5 algorithm are employed. The experiments are conduced
employing SAGE data obtained from the NCBI web site. There are few analysis involving SAGE data in the literature.
It was found that the best metric for the data and algorithms employed is the metric logistic.
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Introduction

This investigation was developed as part of the

FAPESP/LIRC Clinical Genomics Project, that involves

several Brazilian research groups. The main goal of this

project is to study gene expression in neoplasias and de-

velop approaches that may be relevant to clinical applica-

tions, either to identify disease markers or to define profiles

related to clinical evolution or outcome. This paper investi-

gates metrics to support the biologists in the selection of

genes that could be related to the occurrence of some

neoplasias, based on their expression profiles.

Today, there are several methods to monitor the ex-

pression level of a large amount of genes simultaneously.

These large-scale gene expression analysis methods can be

summarized in two main groups: the tag counting methods

(SAGE, MPSS) and the hybridization-based methods

(cDNA, oligonucleotide microarray). There are also sev-

eral analyses that can be carried out with gene expression

data, involving pairwise or multiple condition analysis

(Claverie, 1999).

In spite of the method employed to acquire the gene

expression data, their analysis involves several aspects that

have been addressed in the literature (Brazma and Vilo,

2000; Dopazo et al., 2001). One of these aspects is gene se-

lection. Gene expression profiles present the expression

level of thousands of genes. Depending on the issue under

investigation, this large amount of data makes the analysis

impractical. Besides, and more importantly, large changes

in a particular phenotype can be due to changes in the ex-

pression of a small subset of its genes. Thus, it is important

to select subsets of relevant genes to work with. In sum-

mary, the interest in a small set of genes can be motivated

by financial, personal workload or experimental reasons.

Gene selection gives the biologists a small set of genes to

make more specific, complex and usually expensive inves-

tigations.

There are several methods reported in the literature

that have been applied to gene selection (Slonim et al.,

2000; Golub et al., 1999; Zhang and Wong, 2001; Ben-Dor

et al., 2000; Ben-Dor et al., 2002; Jaeger et al., 2003;

Claverie, 1999). Most of them are feature-ranking tech-

niques, frequently called scores. In this work, these tech-

niques will be called metrics. Some of these metrics

measure the similarity between the gene expression vector

and the class vector (correlation metrics). Other metrics
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evaluate the difference between the same vectors (distance

metrics). Additionally, there are methods described in the

literature that are based on genetic algorithms (Liu et al.,

2001), feature selection (Inza et al., 2002) and Support

Vector Machines (Guyon et al., 2002; Zhang and Wong,

2001).

Many researchers use filtering rules based on fold dif-

ference criteria to select subsets of genes. For example,

Schena et al. (1996) selected only those genes for which the

ratios between the expression intensities of the two condi-

tions being investigated were higher than twofold (Dopazo

et al., 2001). However, the application of a simple rule,

fold-based, can lead to a high number of false positives

(Claverie, 1999). Slonim et al. (2000) employed a number

of metrics to rank oligonucleotide microarray data, such as

the Pearson correlation coefficient and Euclidean distance,

and proposed a correlation metric that emphasizes the “sig-

nal-to noise” ratio in using the gene as a predictor, called

here Golub’s score. Ben-Dor et al. (2000) examined several

scoring methods for mining relevant genes. They employed

the TNoM and INFO scores, a score based on Logistic

regression and the Golub’s score. For their analysis, they

employed two datasets obtained from oligonucleotide

microarrays and one data set obtained from cDNA micro-

arrays.

In the present paper, the authors investigate six met-

rics commonly used to select genes from microarray data,

to select genes based on their expression level obtained

with the SAGE technique. The metrics employed here rep-

resent a combination of those employed by Schena et al.

(1996), Slonim et al. (2000) and Ben-Dor et al. (2000). The

metrics employed in this paper are evaluated according to

their ability in selecting predictive genes. This evaluation is

made by constructing classifiers using as attributes the

genes selected by each metric and then comparing the per-

formance of these classifiers. The classifiers are generated

using Support Vector Machines (SVMs) (Cristianini and

Shawe-Taylor, 2000) and C4.5 (Quinlan, 1993).

In contrast to this paper, the papers found in the litera-

ture that describe metrics for gene selection usually do not

compare a large number of metrics and apply the metrics to

microarray data. There are few analyses involving SAGE

data described in the literature and none with all the metrics

evaluated here. The comparison of all these metrics and

their application to SAGE data are the main contributions

of this work. The comparison of two well-known learning

algorithms for the analysis of the metrics using SAGE data

can also be considered a contribution.

Material and Methods

Data set

The data set employed in the paper was obtained from

the Cancer Genome Anatomy Project - CGAP1. The au-

thors selected 40 libraries containing expression profiles

from normal and cancerous brain tissues. Each library rep-

resents a different tissue or condition and contains the tag,

the frequency of the tag, the associated unigene number and

an annotation about the gene. In order to create the data set

used in the classification experiments, the libraries were

combined in a unique file, with the rows representing a

gene (each row corresponds to a tag-unigene combination)

and the columns representing the tissues or conditions. This

file contains seven columns of normal tissues and 33 col-

umns of cancerous tissues. When a tag is not found in a li-

brary, its frequency is set to 0.

The file generated contains 285,723 tags representing

the genes. In this file, a normalization operation was ap-

plied to the frequencies, to adjust for libraries to have the

same total number of tags. All libraries were adjusted to

have a total of 200,000 tags (new frequency = original fre-

quency * 200,000 / total number of tags). Next, a filter was

applied to the data to remove tags that contain errors and

imprecisions due to SAGE. The genes with expression

level (frequency) smaller than 24 in all libraries were re-

moved from the file. This filtering kept only 7,888 genes.

Table 1 shows a portion of the file generated.

Gene selection

The choice of the approach for gene selection de-

pends very much on the properties the researcher wants to

measure (Dopazo et al., 2001). Most of these approaches

described in the literature are feature ranking techniques,

also called scores or metrics. In this work, these techniques
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Table 1 - Portion of the main dataset.

TAG-UNIGENE Frequencies in the libraries

TTTCTAGGGG-Hs.108969 34,964 0 39,711 24,462

ATGGCTGGTA-Hs.356360 431,227 128,070 189,100 69,624

GTTGTGGTTA-Hs.48516 81,583 23,285 739,382 284,141

CTGTTTAAAC-Hs.3382 23,309 11,642 5,673 0

AGGTCTTCAA-Hs.87409 458,421 0 0 0

ACTGGTACGT-Hs.7381 31,079 0 34,038 13,172

1 http://cgap.nci.nih.gov/



will be called metrics. Some of these metrics measure the

similarity (correlation metrics) and others measure the dif-

ference (distance metrics) between the gene expression

vector and the class vector.

The metrics or scores can be divided into parametric

and nonparametric scores. The parametric scores make as-

sumptions about the form of the statistical distribution of

the scores within each group, while the nonparametric

scores do not make such assumptions, and are more robust

(Ben-Dor et al., 2002).

The nonparametric metrics generally specify a hy-

pothesis in terms of population distributions, rather than

parameters like means and standard deviations. These

metrics are almost as capable of detecting differences

among populations as the parametric scores when normal-

ity and other assumptions need to be satisfied.

Nonparametric scores may be, and often are, more power-

ful in detecting population differences when these as-

sumptions are not satisfied.

In the present work, the authors compare the fold

change criteria (FC), the difference (Diff), the Golub’s,

TNoM and INFO scores, a score based in Logistic regres-

sion (Logistic), the Euclidean distance (Euclidean) and the

Pearson correlation coefficient (Pearson). All these metrics

are detailed in the next subsection.

For the analysis performed, the authors decided to

evaluate subsets of 100, 10 and 4 genes. The gene selection

was carried out in the following way. First, all metrics were

calculated for each gene of the SAGE data set previously

described. Next, the data were sorted according to the rank-

ing provided by each metric. Subsets with the 100, 10 and 4

genes with the best values for each metric were then se-

lected (for each metric, three data sets were produced - with

100, 10 and 4 genes). The best value for the Euclidean dis-

tance, TNoM, INFO and Logistic metrics means the lowest

values. For the FC, Diff, Golub and Pearson metrics, the

highest positive values were chosen as representing the

most hyper-expressed genes and the smallest negative val-

ues were chosen as representing the most hypo-expressed

genes in tumor tissues. Half of the genes selected were hy-

per-expressed and the other half were hypo-expressed

genes. The genes selected generated the data sets employed

later in the training of the machine learning algorithms. The

three data sets generated for each metric are composed of

40 tissues (conditions) as samples and 100, 10 and 4 genes

as attributes or features. Table 2 contains a summary de-

scription of these datasets.

The selection process resulted in 24 data sets (8 met-

rics x 3 number of genes selected). With these data sets, the

authors generated SVM and C4.5 classifiers. The metrics

were evaluated according to the performance of the classi-

fiers. The performance for each dataset in the classification

of new tissues was obtained by performing leave-one-out

crossvalidation (Mitchell, 1997). A good metric is one that

selects the best set of genes to distinguish the classes (nor-

mal and tumor tissues), and a good class distinction is de-

tected by low error rates in the classification of new tissues.

The SVMs were trained with linear kernels. Only this

kernel was employed because results of previous similar

works show the worst results were attained with the Gaussi-

an and polinomial kernels.

Metrics

The metrics FC and Diff refer to the comparison of

two conditions. The dataset analyzed has multiple condi-

tions for each type of tissue (several normal and several tu-

mor tissue libraries). For these metrics, the authors

considered the libraries of each type of tissue as a pool. The

expression level of each gene in a pool is the mean of the

expression levels of the gene in each library.

Let m be the number of genes and n be the number of

samples or tissues. Each gene in the dataset, or gene expres-

sion matrix, can be represented by a gene expression vector

g ∈ Rn. This work centers the discussion in the case where

there are two groups of conditions to be compared. In this

case, there are two classes in which the data samples can be

separated. These classes will be represented here as -1, or

neg (for example, a control condition, such as normal tis-

sues) and +1, or pos (for example, the experimental condi-

tion being investigated, such as cancerous tissues). A class

vector c ∈ {-1, 1}n represents the two-class distinction pre-

sented in the data. The within-class mean, µx, is the mean of

the expression levels of the samples in class x for a particu-

lar gene. The within-class standard deviation, σx, is the

standard deviation of the expression levels of the samples

in the class x for a particular gene.

To calculate the TNoM, INFO and Logistic metrics,

the software scoreGenes2 was employed. Next, each metric

used is briefly described.

• Fold change

This metric involves the calculation of a ratio relating

the expression level of a gene under two experimental con-

ditions. These conditions are, usually, a control and an un-
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Table 2 - Description of the data sets characteristics.

Number of samples Number of features (genes) Percentage of tissues Majority error Missing values

40 100, 10 and 4 17.5% normal

82.5% tumor

17.5% no

2 http://www.cs.huji.ac.il/labs/compbio/scoregenes/



der investigation condition, such as normal and tumor

tissue samples. An arbitrary ratio (usually 2-fold) is then se-

lected as being significant. The cDNA microarray data are

already represented as ratio, because most of cDNA

microarrays involves two-color fluorescence competitive

assays. But when analyzing SAGE or oligonucleotide

microarrays the ratio (or FC) has to be calculated.

When only two experiments are compared, the ratio

can be calculated directly. However, in some cases, there

are several experiments for each of the two classes of inter-

est. In these cases, the mean of the expression values can be

calculated for each class and the ratio can be taken from

these values. The authors are employing the last case, so the

formulas using the mean as the expression values for each

class will be shown.

The metric involving the ratio can be expressed in

three different ways: the ratio itself, the fold change way

and the log of the ratio. Their formulas can be observed in

the Equations 1, 2 and 3, respectively.

R
pos

neg

=
µ
µ

(1)

FC

R, R 1

1-
1

R
R 1

=
≥

<






,

(2)

LR log R2= (3)

The shortcoming of R is that the hyper-expression, or

induction, and hypo-expression, or repression, are repre-

sented by values of different magnitude. For example, a

two-fold induction will have more weight than a one-half

repression in any comparison. (Dopazo et al., 2001). The

FC and LR metrics overcome this problem. In these met-

rics, the induction and repression have the same magnitude.

The graphics of the three kinds of ratio can be observed in

Figure 1. Equation 3 represents a log2 transformation, but

other logarithms can be applied. In this case, a twofold in-

duction is indicated by the value 1 and a one-half repression

by the value -1.

• Difference

This metric is the difference between the mean of the

expression values of the tumor samples and the mean of the

expression values of the normal samples, as shown by

Equation 4.

Diff pos neg= −µ µ (4)

• Euclidean distance

This metric measures the absolute distance between

two points in space. These points can be two profiles, or, as

in this case, one profile and the class vector. Usually, this

metric does not require the data to be normalized, and con-

siders profiles of genes with the same magnitude to be simi-

lar. However, sometimes, one is looking for genes

expressed at different levels, but with the same overall ex-

pression. For this purpose, the data should be re-scaled and

normalized. In the experiments described in this work,

when a gene expression profile is being compared to the

class vector, the expression values need to be re-scaled to

be comparable to the class vector. The formula of the Eu-

clidean distance is shown in Equation 5. In this work,

g_norm is the gene expression vector re-scaled to the inter-

val [-1, 1] and ci is the class vector where -1 represents tu-

mor tissue and 1 represents normal tissue.

Euclidean
1

n
(g_ norm -c )i i

2

i=1

n

= ∑ (5)

• Pearson correlation coefficient

The formula of Pearson correlation coefficient can be

seen in Equation 6, where g_norm is the gene expression

vector normalized to have zero mean and variance 1 and ci

is the class vector, where -1 represents tumor tissue and 1

represents normal tissue.

Pearson
1

n
g_ norm ci i

i=1

n

= ∑ (6)

This metric usually does not need any transformation

to be applied to the data. But, in this case, the gene expres-

sion vector is normalized because it is being compared to

the class vector, employing a simplified equation. The val-

ues resulting from this metric lie between -1, meaning a

negative correlation, and 1, meaning a positive correlation.

Thus, a value of 0 indicates no correlation between the gene

and the class vector.

• Golub

This is a correlation metric proposed by Golub et al.

(Golub et al., 1999; Slonim et al., 2000). Its formula can be

seen in Equation 7. It measures relative class separation.

This metric reflects the difference between the classes rela-

tive to the standard deviation within the classes. Large val-

ues of Golub indicate a strong correlation between gene

expression and class distinction. The sign of Golub corre-

sponds to g being more highly expressed in the class pos or

neg. The values of this metric are not confined to the range

[-1,1].

Golub
+

pos neg

pos neg

=
−µ µ

σ σ
(7)

Referred to by Ben-Dor et al. (2000) as a Gaussian

separation score, the Golub metric attempts to, using a

654 Faceli et al.

Figure 1 - Curves of the three ratio-based metrics.



Gaussian approximation, measure to what extent the pos

and neg classes are separated. Intuitively, the separation be-

tween two groups of expression values is proportional to

the distance between their mean. This distance has to be

normalized by the standard deviation of the groups. A large

standard deviation indicates points in the group far away

from the mean value and thus the separation would not be

strong.

• TNoM score

The TNoM (Threshold Number of Misclassification)

score (Ben-Dor et al., 2000; Ben-Dor et al., 2002) calcu-

lates a minimal error decision boundary and counts the

number of misclassifications carried out with this bound-

ary.

This score is based on the idea that a gene g is relevant

to the tissue partition if it is over-expressed in one of the

classes. This can be formalized by considering how g’s ex-

pression levels in the class pos relates to its expression lev-

els in the class neg. Let t be a vector of the ordered

expression levels of g (t1 is the minimum and tn is the maxi-

mum expression level of g). A rank vector, v, of g is defined

as a vector of length n where vi is the label associated with ti.

If g is under-expressed in the class pos, then the pos entries

of v are concentrated in the left hand side of the vector and

the neg entries are concentrated at the right hand side. Simi-

larly for the opposite situation. Thus, the relevance of g in-

creases as the homogeneity within the left hand side and

within the right hand side of v increases. On the other hand,

if g is not informative with respect to the given labeling, the

pos and neg in v are interleaved.

The TNoM score comes from a natural way of defining

the homogeneity on the two sides and then combining them

into one score. The score of v corresponds to the maximal

combined homogeneity over all possible ways to break v in

two parts, a prefix x, consisting of mostly pos and a suffix y,

consisting of mostly neg, or vice versa. The TNoM score of v

corresponds to the partition that best divides v into a homo-

geneous prefix x and a homogeneous suffix y.

The MinCardinality (MC) of a pos-neg vector x is the

cardinality of the minority symbol in x, as can be seen in

Equation 8, where #s(x) is the number of times a symbol s

appears in the vector x. The TNoM score can be seen in the

Equation 9.

MC = min(# neg(x), #pos(x)) (8)

TNoM (v)= min
:x y v=

(MC(x), MC(y)) (9)

• INFO score

This score, similarly to TNoM, measures the level of

homogeneity of the partitions of the rank vector of g. How-

ever, it does not count the number of misclassified samples.

Instead, it uses the notion of conditional entropy. Let w be a

vector composed of pos and neg samples, and let p denote

the fraction of the pos entries in w. The entropy of w is de-

fined according to Equation 10.

H(w) = -p log p - (1 - p) log (1 - p) (10)

The entropy measures the information in the vector w.

This quantity is non-negative, and equal to 0 if and only if

p = 0 or p = 1, that is, if w is homogeneous. The maximal

value of H(w) is 1 when w is composed of an equal number

of pos and neg labels.

The INFO score of v is defined to be the minimal

weighted sum of the entropies of a prefix-suffix division, as

can be seen in Equation 11, where . is the length of the

vector. This is the conditional entropy of the rank vector

given the partition of the samples in two groups (x and y).

INFO(v) = min
:x y v=

+








x

v
H(x)

y

v
H(y) (11)

• Logistic

This metric is based on Logistic regression, as de-

scribed by Ben-Dor et al. (2000). The main idea of this met-

ric is to have the probability of both labels close to 0.5,

when the expression values are close to the decision thresh-

old and confident for extreme expression values. The con-

ditional probability is either 0 or 1. Such conditional

probabilities can be represented by the logistic family:

l (pos x:a, b) it(ax b)log it = +log (12)

where logit(z) is the logistic function in Equation 13.

log it(z)
1

1 e z
=

+ −
(13)

To score a gene using this metric, it is necessary to

find the parameters a and b that minimize the logloss func-

tion. This can be carried out by gradient based non-linear

optimization.

Learning algorithms employed

The algorithms employed in this work to classify the

tissue samples produced by SAGE technique are Support

Vector Machines (SVMs) (Cristianini and Shawe-Taylor,

2000) and the C4.5 algorithm (Quinlan, 1993).

SVMs represent a class of learning algorithms based

on the Statistical Learning Theory. Their formulation re-

sults in a quadratic optimization problem and involves the

principle of Structural Risk Minimization (SRM), which

minimizes the “generalization” error. These characteristics

give the SVMs algorithms an usually high generalization

capacity. SVMs construct a separating hyperplane as the

decision surface by maximizing the margin of separation

between the positive and negative examples. In order to

deal with nonseparable data, a kernel function is employed

to map the original input space into a higher dimensional

feature space. The separating hyperplane is constructed in

this feature space. The classification of a new sample is ob-
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tained by projecting it from the input space to the feature

space and classifying it based on its position relative to the

separating hyperplane.

C4.5 is a learning algorithm that generates models in

the form of decision trees. It builds a decision tree from

training data by applying a divide-and-conquer strategy

and employing a greedy approach that uses a gain ratio as

its guide. It chooses an attribute for the root of the tree, di-

vides the training instances into subsets corresponding to

the values of the attribute and test the gain ratio on this at-

tribute. This process is repeated for all input attributes of

the training patterns. C4.5 chooses the attribute that gains

the most information to be at the root of the tree. The algo-

rithm is applied recursively to form sub-trees, terminating

when a given subset contains instances of only one class

(Quinlan, 1993).

Results

Table 3 presents the error rates obtained in the evalua-

tion of the classifiers generated with each metric and num-

ber of genes selected. From this table, it can be observed

that most of the lowest errors were achieved with the Logis-

tic metric (with 100 and 4 genes). In these cases, the lowest

errors were 2.5% for SVM and 5% for C4.5. For 10 genes,

the metric Golub presented the lowest error (2.5%), for

both SVM and C4.5. An error of 2.5% means that only one

tissue was wrongly classified. Although Golub has pre-

sented the best results with 10 genes, Logistic also pre-

sented low error rate (5%). In most of the cases, the results

obtained with C4.5 were worse than those obtained with

SVM.

For the cases of 100 and 4 genes, other metrics pre-

sented the same level of error of Logistic as the algorithm

C4.5 (100 genes: Golub and TNoM, 4 genes: TNoM). In

most of the cases, the TNoM metric showed an error of 5%

(2 samples wrongly classified), and in the other cases an er-

ror of 10%.

Discussion

The analysis performed in this work encompasses the

metrics employed in the works of Schena et al. (1996),

Slonim et al. (2000) and Ben-Dor et al. (2000). This work

compares the metrics in the context of SAGE data, while

these authors employed them for microarray data.

Each of these metrics has its shortcomings. The

choice of the best metric for an analysis should take into ac-

count the data to be analyzed.

The selection of an arbitrary threshold for the fold

change metric results in low specificity and low sensitivity.

The low specificity is related to the false positives, particu-

larly with low-abundance transcripts or when a data set is

derived from a divergent comparison. The low sensitivity is

related to the false negatives, particularly with high-

abundance transcripts or when a data set is derived from a

closely linked comparison. This metric has several short-

comings and it is now accepted that its use should be dis-

continued (Murphy, 2002). It also should be noted that this

kind of metric removes all information about the absolute

gene expression levels.

The Golub metric works well for data normally dis-

tributed in each class.

The TNoM score provides partial information about

the quality of the predictions made by the best rules. For ex-

ample, there is no distinction between a rule that makes k

one-sided errors (for example, all the errors are samples of

class pos predicted as neg) and a rule that makes k/2 errors

of the second kind. This distinction is important, since the

performance of a rule, such as the one initially described, is

very poor for one of the classes. The INFO score makes

such distinctions finer.

In the present work, the metrics are compared accord-

ing to the error rate of the classifiers generated with the

genes selected by the metrics.

As expected, the simplest metrics, FC and Diff, pre-

sented high error rates. Although these high errors did not

occur in all cases, these results suggest that relying only on

these metrics to select genes is not appropriate. Such a con-
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Table 3 - Summary of the errors.

100 genes 10 genes 4 genes

Metric SVM C4.5 SVM C4.5 SVM C4.5

FC 5% 12.5% 10% 25% 10% 20%

Diff 12.5% 20% 12.5% 10% 30% 15%

Euclidean 12.5% 17.5% 7.5% 12.5% 15% 7.5%

Pearson 5% 10% 12.5% 5% 5% 12.5%

Golub 7.5% 5% 2.5% 2.5% 20% 7.5%

Logistic 2.5% 5% 5% 5% 2.5% 5%

TNoM 10% 5% 10% 5% 5% 5%

INFO 12.5% 22.5% 12.5% 12.5% 25% 30%



clusion just confirms the characteristics of the metrics pre-

sented.

In a few cases, the classifiers generated presented an

error superior to the majority error. These classifiers did not

learn the class separation, and were equivalent to a classi-

fier that just assigns all samples to the tumor class. Metrics

that produced such classifiers in at least one case were the

FC, Diff, Euclidean, Golub and INFO metrics.

The metric Golub showed unstable behavior. It pre-

sented the best result in some cases, the worst result in an-

other and an intermediate result in other cases.

The most stable metrics were the Logistic and TNoM

metrics. These metrics presented the same error for the

C4.5, but the Logistic metric was more accurate when SVM

was employed.

Looking at the results obtained, it is not possible to es-

tablish the influence of the number of genes selected in the

classification.

Conclusion

This paper investigated six metrics commonly used to

select genes from microarray data, to select genes based on

their expression level obtained with the SAGE technique.

The metrics were evaluated based on their ability in select-

ing predictive genes. This evaluation was made by con-

structing classifiers using the genes selected and comparing

their performance. The classifiers were generated using the

SVM and C4.5 techniques.

The best classifiers were generated with the metrics

Logistic in most of the cases. The lowest error rates, 2.5%,

were achieved with at least one classifier generated with

SVM for each number of genes and with one classifier gen-

erated with C4.5 for the case of 10 genes.

The comparison of all these metrics and their applica-

tion to SAGE data are the main contributions of this work.

There are several other metrics for gene selection de-

scribed in the literature. It would be interesting to integrate

a few more common metrics in the present analysis as a fu-

ture work. Another future step is the application of the same

evaluation described in this paper to other data sets. It is im-

portant to evaluate the behavior of the metrics for micro-

array data too.
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