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Abstract

A circular cryptic plasmid named pPAGA (2,734 bp) was isolated from Pantoea agglomerans strain EGE6 (an
endophytic bacterial isolate from eucalyptus). Sequence analysis revealed that the plasmid has a G+C content of
51% and contains four potential ORFs, 238(A), 250(B), 131(C), and 129(D) amino acids in length without homology
to known proteins. The shuttle vector pLGM1 was constructed by combining the pPAGA plasmid with pGFPmut3.0
(which harbors a gene encoding green fluorescent protein, GFP), and the resulting construct was used to
over-express GFP in E. coli and P. agglomerans cells. GFP production was used to monitor the colonization of strain
EGE6gfp in various plant tissues by fluorescence microscopy. Analysis of EGE6gfp colonization showed that 14
days after inoculation, the strain occupied the inner tissue of Eucalyptus grandis roots, preferentially colonizing the
xylem vessels of the host plants.
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Introduction

Endophytic bacteria are microorganisms that can re-

side inside a host plant without triggering harmful reactions

and/or induce the development of external structures like

rhizobial nodules (Azevedo and Araújo, 2007). Due to the

ability of endophytes to proliferate inside plant tissue, they

are more likely to interact closely with the host than are

rhizosphere bacteria (Reinhold-Hurek and Hurek, 1998).

These characteristics make bacterial endophytes excellent

candidates for the development of sustainable crop produc-

tion strategies (Sturz et al. 2000).

Eucalyptus is one of the most important crops in

Brazil and is used for the production of cellulose and paper

(Sociedade Brasileira de Silvicultura). Previous studies

have described the genus Pantoea (Gammaproteobacteria)

as an important group of bacteria endophytically coloniz-

ing plants (Araújo et al., 2001, 2002; Duan et al., 2007;

Procópio et al., 2009). The roles of such endophytic bacte-

ria inside the host plant include nitrogen fixation, produc-

tion of phytohormones, solubilization of phosphates, and

induction of systemic resistance (Sturz et al. 2000; Feng et

al., 2006; Ortmann and Moerschbacher, 2006: Son et al.,

2006).

The combination of its endophytic nature and the

high occurrence of the genus Pantoea in plants generate an

opportunity to address the increasing interest in genetically

modified endophytes (GMEs) (Andreote et al., 2004). The

use of GMEs is based on the introduction of heterologous

genes into endophytic bacteria to confer new characteristics

that may be useful in monitoring plant colonization and,

features within the inner tissue of the host plant. Here we

describe the characterization and cloning of a cryptic

plasmid found in strains of Pantoea agglomerans isolated

from eucalyptus. Moreover, we also describe the construc-

tion of a shuttle vector carrying the gene gfp, which was ef-

ficiently used to monitor the bacterial colonization of

eucalyptus plants.

Materials and Methods

Bacterial strains

The bacterial strain EGE6 (P. agglomerans) was pre-

viously isolated from Eucalyptus grandis (Procópio REL,

PhD Thesis, University of São Paulo, 2004), and its phylo-

genetic affiliation was assessed by sequencing the 16S

Send correspondence to Rudi E.L. Procópio. Departamento de
Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Uni-
versidade de São Paulo, Caixa Postal 83, 13400-970 Piracicaba,
SP, Brazil. E-mail: procopio@usp.br.

Research Article

Genetics and Molecular Biology, 34, 1, 103-109 (2011)

Copyright © 2011, Sociedade Brasileira de Genética. Printed in Brazil

www.sbg.org.br



rDNA gene. Genomic DNA from the strain was extracted

from 1 mL of an overnight culture as described by Sam-

brook et al. (1989). The 16S rRNA gene was amplified by

PCR using primers (27f and 1378r) and protocols described

by Weisburg et al. (1991). The PCR product was purified

using a GFX PCR DNA (Amersham Biosciences) and Gel

Band Purification kit (Amersham Biosciences), and the re-

sulting sample was sequenced using the 1378R primer on

an automated sequencer (Applied Biosystems 3100). The

resulting chromatogram was analyzed for sequence quality

using Phred/Phrap, and only bases with quality values

above 20 were used for phylogenetic analysis (490 bp in to-

tal). The final sequence was compared to the database from

the GenBank by a non-redundant BLASTn search (nr/nt).

Additionally, the phylogenetic analysis of the obtained se-

quence was performed using the ARB software package

(Department of Microbiology, Technical University of

Munich, Munich, Germany). The nucleotide sequence ob-

tained in this study was deposited at GenBank under the ac-

cession code (FN868159).

Nucleotide sequencing and analysis

Plasmid DNA in P. agglomerans strains was isolated

by alkaline lysis, as described by Sambrook et al. (1998). A

total of approximately 2.7 kb of the pPAGA plasmid was

analyzed by restriction mapping, and a unique site for re-

striction with the endonuclease EcoRI was found. The

pPAGA plasmid was then cloned into the vector pUC18 (in

Escherichia coli strain DH5�) using the EcoRI site and se-

quenced by primer walking using the DNA sequencer ABI

model 3100 with the Big Dye terminator kit (Applied

Biosystems, Foster City, CA), according to the manufac-

turer's instructions.

The quality of obtained sequences was assessed as

previously described for the strain identification, and re-

sulting sequences were assembled using Consed, com-

pounding the final sequence of the pPAGA plasmid. The

final sequence was also compared with the GenBank data-

base (with an nr/nt search). Estimation of GC content was

made at the EMBL-EBI website. Additionally, analysis of

open reading frames (ORFs) and restriction maps was per-

formed using the NEB cutter 2.0 program, and promoter se-

quences were predicted using the “Neural Network

Promoter Prediction” program of the University of Califor-

nia, Berkeley. The nucleotide sequence of pPAGA has

been assigned GenBank accession number (FN868248).

Expression vector construction and transformation of
the EGE6 strain

A constitutive ribosomal RNA promoter was first

cloned into the vector pGFPmut3.1, driving a strong and

continuous expression of the gene gfp. The 340-bp region

containing the RNA promoter was amplified by PCR with

specific primers for the ribosomal RNA promoter from the

E. coli genome (Shen et al., 1982). Second, the

pGFPmut3.1 vector harboring the promoter region was

linearized with the endonuclease EcoRI for ligation with

EcoRI-digested pPAGA. This ligation generated the

endophyte vector pLGM1, which expresses the gfp gene

constitutively. Such ligation did not interfere with any ORF

present in the original pPAGA plasmid, maintaining the

plasmid function as in the original strain.

The pLGM1 vector was then introduced into EGE6

cells by electroporation (2.5 kV, 200 �, 25 �F) as described

by Andreote et al. (2004), and the recombinant P.

agglomerans strain was named EGE6gfp. Under ultraviolet

light, EGE6gfp cells display an intense fluorescent green

color, evidencing the vector induced production of GFP

protein within the bacteria.

E. grandis cultivation and inoculation with EGE6gfp

Eucalyptus seedlings were inoculated with a suspen-

sion of EGE6gfp cells. To generate the cell suspension,

EGE6gfp was cultured in 5 mL of liquid LB medium sup-

plemented with ampicillin (100 �g/mL) for 5 h at 150 rpm.

Cells were harvested by centrifugation (5,000 g for 5 min),

washed and inoculated into new liquid LB medium without

antibiotics. Following culture for 10 h at 150 rpm, cells

were harvested and rinsed twice with 10 mM potassium

phosphate buffer (pH 7). The final suspension was prepared

in sterilized distilled water at a final concentration of

106 cells per ml (as determined turbidimetrically and con-

firmed by plating counts).

Eucalyptus seedlings used in this study were 40 days

old and had an average height of 25 cm. Seedlings were ob-

tained by seed cultivation in vermiculite supplied with wa-

ter. Seedlings were inoculated with 1 mL of bacterial sus-

pension administered to the rhizospheres. To achieve a

proper inoculation, the bacterial cell suspension was care-

fully introduced 1 cm below the vermiculite surface using a

pipette tip. This process prevented the contamination of

sampled aliquots with aboveground E. grandis tissue.

Plants were grown at 28 °C with a 14 h photoperiod in a

controlled environmental chamber for 14 days. At day 14

after inoculation, the plants were examined with an epi-

fluorescence microscope (Zeiss Axiophot-2) and photo-

graphed with an automatic photograph system as described

by Lacava et al. (2007).

Results

Sequencing analysis of the pPAGA plasmid

Restriction analysis of pPAGA revealed a unique site

for restriction with the endonuclease EcoRI. This site was

used for the insertion of the cryptic plasmid into the pUC18

cloning vector, allowing for its sequencing by primer walk-

ing. This procedure resulted in the determination of the se-

quence of 2,734 base pairs making up the pPAGA plasmid.

The GC content of pPAGA is 51.71%, which is

within the range of GC contents previously reported in the
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genomic analysis of E. coli (50.8%, Blattner et al., 1997)

and Erwinia carotovora (51.0%, Bell et al., 2004). Se-

quence analysis showed the presence of four putative ORFs

in pPAGA, each of which would encode a protein of more

than 100 amino acids (aa) (Figure 1).

A putative operon was also found, comprising ORFs

1 and 2, which are separated by only three nucleotides. orf1

putatively encodes the largest polypeptide (238 aa), extend-

ing from nucleotides 232 to 948. The sequence of this ORF

displays high coverage (up to 98%) and similarity (> 50%)

values with hypothetical proteins from distinct bacterial

species such as Solibacter, Methylobacterium, Bacillus,

Beijerinckia, and Burkholderia. orf2 spans nucleotides 951

to 1703 and putatively encodes a protein of 250 aa. Within

this ORF, it was possible to observe the presence of a

highly conserved domain named DUF2382, which is found

in many bacteria but is of unknown function. These results

regarding ORFs 1 and 2 indicate that such proteins may

have common roles in different bacterial groups. Their

presence on a plasmid, which can be easily exchanged in

the environment among bacterial cells not related phylo-

genetically, may explain the diversity of species carrying

similar proteins.

Both other ORFs were minor, encoding peptides of

131 and 129 aa, possibly related to the presence of

truncated genes in the plasmid. orf3 (131 aa) shows low

similarity (30% to 50%) with proteins involved in type IV

secretion system in Cupriavidus taiwanensis (Betaproteo-

bacteria), while orf4 (129 aa) presents also low levels of

similarity with enzymes involved in the promotion of oxi-

dative processes in bacterial cells. In general, there was low

resolution in the BLAST analysis of these ORFs, indicating

that there is limited knowledge about plasmids found in

endophytic bacteria.

Despite the presence of these ORFs, no similarity was

found between the plasmid sequence and sequences re-

ported as origins of plasmid replication (ori regions). How-

ever, analysis of the DNA sequence revealed two AT-rich

regions in the plasmid (Figure 2). These regions are de-

scribed in the literature as being related to a replication ori-

gin (ori) region, due to the intrinsic capacity of such a

sequence to promote double helix dissociation (Ioannidis et

al., 2007). The existence of islands within the plasmid se-

quence was also indicated, reinforcing its origin from gene

transfer and recombination with other DNA sequences.

The attempt to find putative promoter regions within

the sequence of the pPAGA plasmid resulted in the identifi-

cation of nine regions possibly involved in the promotion of

gene expression with scores higher than 0.90 (scale from

0.0 to 1.0) (Table 1). Five of these regions were found in the

forward orientation, along with three ORFs, and four puta-

tive promoters were observed in the reverse orientation,

where only one ORF is located. The location of two puta-

tive promoter regions (PrFw1 and PrFw2) upstream of

ORFs 1 and 2 corroborates the possibility of an operon be-

ing formed by these two ORFs and also suggests that the

regulation of such an operon would be modulated by more

than one distinct factor. Considering the location of other
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Figure 1 - Physical map and genetic organization of the cryptic plasmid pPAGA, indicating the locations and orientations of the four described putative

ORFs. The most relevant restriction sites are also indicated.



putative promoter regions, it is also possible to attribute the

regulation of orf4 to PrFw4 and PrFw5 and the possible

control of orf3 to PrRv4. The other putative promoter re-

gions were not adjacent to any ORF but may be involved in

the regulation of plasmid replication regions.

Construction of an expression vector based on
pPAGA

The relatively small size (2,734 bp) of the plasmid

pPAGA makes it a candidate for the development of a shut-

tle vector for endophytic P. agglomerans and related spe-

cies. Such a strategy followed by introducing pPAGA se-

quence into the pUC18 cloning vector along with a 212-bp

fragment from the E. coli rRNA promoter controlling the

gene responsible for the synthesis of Gfp (Figure 3). A chi-

meric plasmid was generated, containing the cryptic plas-

mid, the pUC18 vector, and a reporter gene. Re-intro-

duction of the new vector, designated pLGM1, into P.

agglomerans cells resulted in an excellent means for visu-

alizing the cells under ultraviolet light. Due to the use of the

pPAGA backbone, the final vector was stable in EGE6

cells, where it showed high levels of GFP production.

Endophytic colonization by P. agglomerans
EGE6gfp

The colonization of P. agglomerans in eucalyptus

seedlings was analyzed by the introduction of the expres-

sion vector pLGM1 into cells of the strain EGE6, generat-

ing the genetically modified endophytic strain EGE6gfp.

Image analysis of cells from strain EGE6gfp showed that

these bacteria have the capacity to enter root tissue and es-

tablish colonization in the inner tissue of the host plant

(Figure 4). Based on such imaging, it is also possible to sug-

gest that these bacteria inhabit the vascular tissue of

eucalyptus seedlings, preferentially xylem cells.

Discussion

In this study we describe the characterization of a

cryptic plasmid named pPAGA isolated from Pantoea

agglomerans strain EGE6, an endophytic bacterial isolate

from eucalyptus. Bacteria of the species P. agglomerans

have been considered one of the most important groups in

terms of endophytic interaction with plants (Torres et al.,

2008). Strains of this species have been found in studies us-

ing several plant species, such as rice (Verma et al., 2004),

citrus (Araújo et al., 2001), and eucalyptus (Ferreira et al.,

2008). In some of these studies, the authors have demon-

strated plant colonization by the addition of reporter genes

into the bacterial cells (Sabaratnam and Beattie, 2003;

Verma et al., 2004; Duan et al., 2007). Previous work in eu-

calyptus has shown P. agglomerans to be a seed endophyte,

suggesting that endophytic P. agglomerans can be trans-

mitted vertically from seeds to seedlings in Eucalyptus

(Ferreira et al., 2008). It has also been suggested that P.

agglomerans can be transported through xylem vessels or

through the colonization of intercellular spaces in root and

aerial tissues (Compant et al., 2005). Verma et al. (2004)

suggested that genus Pantoea is an aggressive endophytic

colonizer of deep-water rice. The authors made this conclu-

sion based on a competition experiment, in which another

endophytic strain of the genus Ochrobactrum showed very

little colonization in the presence of Pantoea sp.

The strain EGE6, used in this study, was previously

described (Procópio REL, PhD Thesis, University of São

Paulo, 2004) as harboring a cryptic plasmid, named

pPAGA, which was characterized and sequenced in this

study. A similar approach was recently described by An-
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dreote et al. (2008), who also found a cryptic plasmid,

pPA3.0, within cells of endophytic P. agglomerans isolated

from citrus plants. In a comparison with the findings ob-

tained by Andreote et al. (2008), the identified plasmids did

not present similarities. Plasmid sizes vary by approxi-

mately 200 pb (pPA3.0 is 2.9 kb, while pPAGA is 2.7 kb in

length), and are divergent regarding the genetic informa-

tion they carry. While the plasmid described in citrus endo-

phytes primarily presents small ORFs, with the biggest one

encoding a peptide of 199 aa, the pPAGA plasmid harbors

several ORFs coding for peptides of around 230 aa. Based

on both analyses, it is possible to suggest that endophytic P.

agglomerans species are important keepers of cryptic plas-

mids, possibly providing for the efficient exchange of ge-

netic material with other endophytic bacteria within plants.

Cryptic plasmid from endophytic bacteria 107
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Figure 3 - Schematic representation of the shuttle vector pLGM1. The

cloning sites and promoter are indicated.

Figure 4 - Fluorescence microscopy image of the endophytic P.

agglomerans EGE6gfp colonizing the root tissue of E. grandis. The fluo-

rescent green area indicates the presence of bacteria within the plant, colo-

nizing the region occupied by the vascular system (xylem). The plant pro-

vides a support for the colonizing bacteria (red and brown background).



Further studies are necessary to determine the essentiality

of these ORFs for endophytic behavior and development

within plants.

There was variation in the GC content of the cryptic

plasmid, suggesting the presence of an origin of replication

without high similarity to any previously described ori re-

gions and also the existence of regions that were incorpo-

rated into pPAGA by horizontal gene transfer and recombi-

nation. Horizontal transfer likely occurs in soil (Syvanen and

Kado, 1998; Gebhard and Smalla, 1999;), where these bacte-

ria can live part of their life, but it still represents a phenome-

non to be explored in endophytic communities. One could

suggest that the putative genes orf1 and orf2, found under the

regulation of the same promoter regions, are essential for the

endophytic characteristics of P. agglomerans and, therefore,

are refractory to transmission by horizontal gene transfer

within the host plant. However, this hypothesis must be

tested further to be properly affirmed.

Similar to results described by Andreote et al. (2008),

we used the cryptic plasmid backbone to develop a shuttle

vector that is able to carry and express exogenous genes

within the host plant. This approach was based on other

studies, in which several shuttle vectors were constructed

using replication regions from small cryptic plasmids (An

and Miyamoto, 2006; Matsui et al., 2007; Sangrador-Vegas

et al., 2007). The selected reporter gene, from

pGFPmut3.1, was a variant gfp gene with higher fluores-

cence and reduced half-life (Andersen et al., 1998, 2001).

The efficient introduction of such a gene in endophytes and

the further visualization of cells expressing the exogenous

gene within plant tissue support the possibility of introduc-

ing new characteristics into endophytes. The genetic modi-

fication of bacteria is useful for the expression of genes that

can benefit the host plant.

We also observed preferential occupation of the plant

vessels by the genetically modified endophyte EGE6gfp,

suggesting that this bacterium can invade internal root tis-

sues of eucalyptus seedlings by passing epidermal and cor-

tical cells and permeating the central cylinder. Such results

corroborate the data described by Ferreira et al. (2008),

suggesting that if bacteria related to P. agglomerans are

transferred by seeds, it will result in the preferential spread-

ing of bacterial cells along the aerial portion of the plant

through xylem vessels once the plant begins to develop.

In this study we caracterized a cryptic plasmid found in

endophytic P. agglomerans isolated from eucalyptus. In ad-

dition, we used this plasmid to create a shuttle vector, which

can provide a means for introducing genes into plant cells.

This study will support further research aiming to manipu-

late endophytic bacteria for the benefit of healthy plants.
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