Genetics and Molecular Biology, 24 (1-4), 221-230 (2001)

Prospecting sugarcane genes involved in aluminum tolerance
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Abstract

Aluminum is one of the major factors that affect plant development in acid soils, causing a substantial reduction in yield in many crops.
In South America, about 66% of the land surface is made up of acid soils where high aluminum saturation is one of the main limiting
factors for agriculture. The biochemical and molecular basis of aluminum tolerance in plants is far from being completely understood
despite a growing number of studies, and in the specific case of sugarcane there are virtually no reports on the effects of gene regulation
on aluminum stress. The objective of the work presented in this paper was to prospect the sugarcane expressed sequence tag (SUCEST)
data bank for sugarcane genes related to several biochemical pathways known to be involved in the responses to aluminum toxicity in
other plant species and yeast. Sugarcane genes similar to most of these genes were found, including those coding for enzymes that
alleviate oxidative stress or combat infection by pathogens and those which code for proteins responsible for the release of organic acids
and signal transducers. The role of these genes in aluminum tolerance mechanisms is reviewed. Due to the high level of genomic
conservation in related grasses such as maize, barley, sorghum and sugarcane, these genes may be valuable tools which will help us to
better understand and to manipulate aluminum tolerance in these species.

INTRODUCTION

Aluminum is the most abundant metal in the litho-
sphere, comprising about 7% by mass of the earth’s crust
(Delhaize and Ryan, 1995). In soils with a pH higher than 5,
aluminum is predominantly bound as insoluble oxides and
complex aluminosilicates, while at the lower pH of more
acid soils the ionic form (Al’") is released into the soil solu-
tion and becomes available to plants at toxic concentrations
(Kinraide and Parker, 1989) and is the major limiting factor
for crop production. Acid soils occupy 3.95 x 10” ha (30%)
of the world’s ice-free land area, but in South America acid
soils account for about 66% of the land area (Baligar and
Ahlrichs, 1998). Strategies to maintain crop yield in these
soils include the application of lime to raise the soil pH and
the use of cultivars tolerant to this type of environment. As
successive applications of lime lead to runoff pollution and
other undesirable side effects, the manipulation of alumi-
num tolerance in crop species, either by conventional
breeding or by genetic engineering, offers an environmen-
tally clean and sustainable solution to improve productivity
in acid soils.

The first and principal symptom of aluminum toxicity
in plants is the inhibition of root growth, which causes a de-
crease in water and nutrient uptake and subsequent inhibi-
tion of plant growth. Despite a large amount of research in
this area the physiological and biochemical mechanisms of
both aluminum toxicity and tolerance in plants are far from
being completely understood. A great number of hypothe-

ses for aluminum toxicity have been suggested, including
alteration of the cation-exchange capacity of cell walls,
changes in the potential of the plasma membrane affecting
the uptake of Ca®" and/or Mg®', induction of oxidative
stress via lipid peroxidation, replacement of Mg*" or Fe’*
by AI’" in cellular reactions, interference with signal trans-
duction, direct binding of aluminum to DNA and/or RNA
and changes in the pectin matrix of root cell walls. There
are arguments and indirect evidence supporting each of
these possibilities (Delhaize and Ryan, 1995; Kochian,
1995) but to date there is little direct evidence favoring one
hypothesis over another.

Because aluminum is a strong selective force many
plant species have developed tolerance mechanisms to
overcome this type of toxicity, yielding species and culti-
vars very well adapted to acid soils. There are two major
groups of aluminum detoxification mechanisms, exclusion
(apoplastic) mechanisms and internal (symplastic) mecha-
nisms, the basic difference between the two being the site of
detoxification (Taylor, 1991; Kochian, 1995). Exclusion
mechanisms prevent aluminum from crossing the plasma
membrane and getting inside plant cells (symplasts) while
internal mechanisms immobilize, compartmentalize or de-
toxify this metal when it penetrates into cells (Zheng et al.,
1998).

Genetic studies on aluminum tolerance have shown
that ions of this metal induce the expression of genes in-
volved in the general stress response of wheat, including
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genes coding for phenylalanine ammonia lyase, protease
inhibitors and a metalothionein-like protein (Snowden and
Gardner, 1993). The nature of the stress induced by alumi-
num is not completely clear, although there are indications
that an oxidative stress is induced in plant tissues exposed
to this metal (Richards et al., 1998). The expression of sev-
eral other genes has also been reported to be elicited by
treatment with aluminum, showing that several metabolic
pathways in the cell are changed in response to the stress
caused by this metal.

A great number of aluminum tolerance studies have
been carried out in maize, wheat and other grasses, al-
though very few have addressed sugarcane. Landell
(1989), working with several sugarcane varieties, obser-
ved a wide range of aluminum sensitivity, with 10 ppm of
aluminum causing a strong reduction in root growth in
some Saccharum spontaneum varieties while Saccharum
officinarum varieties exhibited higher levels of tolerance.
Azeredo (1982) has found that in some aluminum-sen-
sitive varieties 1.56 ppm of this metal was able to cause
root growth inhibition. However, to our knowledge, there
have been no reports on sugarcane genes related to alumi-
num stress.

During the work presented in this paper we pros-
pected the SUCEST database looking for sugarcane genes
related to known genes involved in the response to alumi-
num stress in plants and yeast. This study is the first initia-
tive to understand the mechanisms by which sugarcane
plants deal with aluminum toxicity.

METHODOLOGY

Search for genes related to aluminum tolerance
in other species

An extensive search for papers reporting alumi-
num-related genes from plants and microorganisms was
performed using the Web of Science citation database
(webofscience.fapesp.br) and aluminum-related genes
were searched in the GenBank database (www.ncbi.nlm.nih.
gov) by the accession numbers obtained in the literature and by
using keywords. Protein sequences from the majority of the
genes were obtained, but for a few genes only partial cDNA se-
quences were available.

Search for sugarcane genes

The cap3 cluster consensi from the SUCEST database
sequence were prospected using two algorithms from the
BLAST (basic local alignment search tool) family of pro-
grams, TBLASTN and TBLASTX, depending on the origi-
nal source of information (amino acid or nucleotide
sequence, respectively). Clusters were accepted as related
to a particular gene when presenting e-values below 107,

Evaluating similarities

The open reading frames (ORFs) present at the cluster
consensi identified above were translated according to the
universal translation table, and the deduced proteins were
aligned with the entire sequence of the respective protein
obtained from the literature. The Clustalw software
(Thompson et al., 1994) was used to perform the align-
ments and to check the similarity of the proteins that were
matched by the sugarcane genes.

Characterization of aluminum tolerance mechanisms in
sugarcane

The aluminum related genes found in the literature
were classified into nine groups, of which five groups con-
tained genes with well defined biochemical functions asso-
ciated with aluminum stress and two groups consisted of
genes induced or repressed by aluminum but without fur-
ther biological evidence for being related to aluminum tol-
erance mechanisms. Of the remaining two groups, one
contained genes of unknown function while the other was
made up of genes that exhibited no similarity with sugar-
cane genes.

In this paper, our discussion of the aluminum toler-
ance mechanisms that may be present in sugarcane is based
on the aluminum-related genes found to be similar to sugar-
cane genes and on the functions of these genes.

RESULTS

Several sugarcane genes showed similarity to genes
known to be related to aluminum tolerance mechanisms in
other organisms, with all the genes presenting e-values be-
low 107 being regarded as related to the genes described in
the literature (Table I). The deduced sugarcane proteins
were aligned with the ones described in the literature and
the percentages of identity and similarity in these align-
ments were calculated. In some cases, a low percentage of
similarity was found, probably indicating that the cap3
cluster consensi do not contain the full gene sequences or
that the similarities were restricted to conserved domains.

The genes were classified based on their putative
function in the different aluminum tolerance mechanisms
(Table I). The first two groups comprise genes of known
roles, related to external and internal aluminum tolerance
mechanisms, respectively. Five groups include genes with
known functions, whose roles in aluminum tolerance were
not completely clear. The group of genes with unknown
function includes all the remaining sugarcane genes that
showed similarity with aluminum stress related genes. The
last group comprises all genes that were reported as related
to aluminum tolerance but that exhibited no similarity with
sugarcane genes sampled in the SUCEST Project (e-value
above 107).
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tive stress. Among the oxidative stress genes induced by
aluminum, sugarcane genes coding for superoxide dismu-
tase, peroxidase, moderately anionic peroxidase, glutathi-
one S-transferase and phospholipid hydroperoxide
glutathione peroxidase-like protein were found. Supero-
xide dismutase is an enzyme that converts superoxide radi-
cals to hydrogen peroxide and oxygen, thus playing a
crucial role in antioxidant defense (Tsang et al., 1991; Van
Camp et al., 1994). Peroxidase activities occur mostly at
the cell wall, where these enzymes have been suggested to
modulate cell wall rigidity and extensibility, thus reducing
the rate of aluminum diffusion through the cell wall (Hamel
et al., 1998). The moderately anionic peroxidases from to-
bacco are also highly induced in wounded stem tissue
(Lagrimini and Rothstein, 1987). These enzymes have a
moderate activity toward lignin precursors (Espelie et al.,
1986) and are likely to be associated with the cell wall.
Ezaki et al. (1996) speculated that the moderately anionic
peroxidase has a function in healing cell membranes dam-
aged by aluminum treatment. The glutathione S-transferase
family of proteins catalyzes the conjugation of glutathione
to a variety of electrophiles. Glutathione is one of the most
important antioxidants and probably prevents the peroxi-
dation of membrane lipids by aluminum ions (Ezaki ef al.,
1995). Sugimoto and Sakamoto (1997) suggested that
phospholipid hydroperoxidase glutathione peroxidase-like
protein catalyzes the reduction of the hydroperoxides of
phospholipids in response to oxidative stress caused by di-
verse treatments, including exposure to aluminum. Gluta-
thione reductases catalyzes the reduction of the oxidized
form of glutathione (GSSG) to its reduced form (GSH) and
has a central role in the cell response during stress, but there
are no reports in the literature of the expression of genes
coding for this enzyme in response to aluminum. However,
we have found that aluminum induces higher levels of
glutathione reductase activity in maize roots (Boscolo et
al., unpublished results), indicating that the genes coding
for this enzyme are also up-regulated by exposure to alumi-
num.

Genes related to pathogen response have also been re-
ported to be induced by aluminum, and some were found to
be similar to sugarcane genes. The expression of the
1,3-B-glucanase gene is often associated with pathogen in-
fection, particularly by fungi. Although its role in alumi-
num toxicity is unknown, Cruz-Ortega et al. (1997)
suggested that this protein is synthesized as a protective re-
sponse, because during aluminum stress roots are more sus-
ceptible to pathogen attack. This hypothesis is also a
possible explanation for the induction by aluminum of
other genes related to pathogen response. Reticuline
oxireductase, also induced by aluminum, is involved in the
formation of benzophenanthridine alkaloids in the response
of plants to pathogenic attack (Richards et al., 1998).
Phenylalanine ammonia-lyase (PAL) is a well-known de-
fense protein that has been shown to accumulate in several

different incompatible plant-pathogen combinations and in
response to elicitors (Ebel and Cosio, 1994). This enzyme
could play a beneficial role in detoxifying aluminum that
has entered the symplasm, since PAL has been shown to
catalyze the first step of multi-branched phenylpropanoid
metabolism in higher plants (Hamel et al., 1998). Oxalate
oxidase, an enzyme involved in the degradation of oxalate
(accumulated in plant cells as the calcium salt), has been
shown to accumulate during the fungal infection of barley
(Zhang et al., 1995). Hamel et al. (1998) reported that PAL,
cysteine proteinase, oxalate oxidase and a peroxidase were
up-regulated in wheat in proportion to the level of alumi-
num, suggesting that these proteins may provide protection
against ions of this metal by strengthening the cell wall of
root cells. Another three genes induced by aluminum in
wheat (wali3, wali5 and wali6) have also been found to be
similar to some sugarcane genes. These wheat genes en-
code Bowman-Birk type trypsin inhibitors, an extensively
studied family of protease inhibitors (Laskowsky and Kato,
1980), whose homologs in soybean have been shown to
have antifungal activity (Chilosi ez al., 2000) and have been
suggested to be a defense against insect feeding (Belzunces
etal., 1994).

In addition, genes coding for other proteins that par-
ticipate in the dynamics of the cell wall may be associated
with aluminum tolerance or susceptibility. Horst et al.
(1999) showed that maize and potato mutants over-expres-
sing pectinmethylesterase (PME) had a high negative
charge on their pectin matrix and were more susceptible to
aluminum stress. The degree of pectin methylation, mainly
controlled by pectinmethylesterase, was quantitatively esti-
mated and seemed to especially affect the negative charge
density of the pectin matrix in certain defined root zones.
However, it is not known how pectin content and the degree
of methylation correlates with genotypical differences in
aluminum tolerance, and the role of the pectin charge den-
sity of root apical cell wall in the tolerance of maize to alu-
minum needs to be clarified. Callose formation has been
induced in the apical root cells of aluminum-sensitive
maize cultivars (Sivaguru et al., 1999) and Arabidopsis
mutants with increased sensitivity to aluminum (Larsen et
al., 1996). A study using immuno-fluorescence and immu-
no-electron microscopic techniques combined with
monoclonal antibodies against callose (Sivaguru et al.,
2000) showed that aluminum-sensitive wheat root growth
inhibition was closely associated with the blockage of plas-
modesmata (cytoplasmic channels responsible for the
intercellular movement of water, nutrients and for signal-
ing) by callose deposition under aluminum stress, which
could effectively block symplastic transport and communi-
cation in higher plants. One of the key enzymes acting in
callose formation is callose synthase, which showed high
similarity with genes in the SUCEST database.

Other stress related genes induced by aluminum were
also found to have similarities with some sugarcane genes.
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Snowden and Gardner (1993) showed that a wheat gene
coding for a metallothioneine-like protein (MLP) was iden-
tified as being up-regulated by aluminum and thought that
it is highly unlikely that MLPs bind this metal, so it appears
that aluminum must induce this gene by interfering with the
plant’s normal pathway for the uptake or homeostasis of
other metal ions. A gene for blue copper binding (BCB)
protein, induced in wheat by aluminum (Richards et al.,
1998), belongs to a family of genes that encode many mem-
brane proteins with various suggested functions in plant
metabolism, such as the regulation of the uptake of the ions
of metals such as calcium, iron, manganese and zinc (Lin
and Wu, 1994), redox reductions (VanGysel et al., 1993),
and lignification of the cell wall (Drew and Gatehouse,
1994). The role of the BCB gene in aluminum tolerance is
not clear, but Ezaki et al. (1999) speculated that the BCB
protein might restrict aluminum uptake across the plasma
membrane by affecting the structural composition of the
membrane.

Aluminum also induces the expression of genes that
are not directly related to the stress response or other known
defense mechanisms. We found sugarcane genes which are
similar to two pea genes (sad4 and sadC genes) that are
up-regulated by aluminum and which encode short-chain
alcohol dehydrogenases (ADHs). Several genes with high
similarity to the sad genes are considered to encode pro-
teins involved in steroid metabolism, so it is possible that
SAD proteins are involved in the metabolism of phytos-
teroids (Brosche and Strid, 1999). However, short-chain
ADHs are also reported to be involved in oxidation of the
hydroxyl groups of diverse substrates such as sugar, acetoa-
cetyl-CoA, mammalian prostaglandins and diols, in addi-
tion to steroids (Persson et al., 1991). All these compounds,
as well as other unidentified hydroxyl-containing chemical
species, are possible substrates for SAD proteins. A gene
encoding a fimbrin-like cytoskeletal protein, induced in pea
by aluminum (Cruz-Ortega et al., 1997), also showed simi-
larity with sugarcane genes. Fimbrins are a highly con-
served family of actin filament bundling proteins, which
are probably utilized by plants to maintain the integrity and
functional array of actin filaments in the cell cytoskeleton.
Cruz-Ortega ef al. (1997) suggested that the increased ten-
sion of the cytoskeletal actin associated with aluminum
toxicity may involve extensive cross-linking of actin fila-
ments by fimbrins, leading to up-regulation of fimbrin gene
expression to replenish cellular fimbrin pools. Another
gene, induced by aluminum in Arabidopsis thaliana and
similar to a sugarcane gene, encodes a fructose-bisphos-
phate aldolase (Richards et al., 1998). This protein is in-
volved in both glycolysis and gluconeogenesis in plastids,
and catalyzes the formation of fructose-bisphosphate and
sedoheptulose-bisphosphate in photosynthesizing chloro-
plasts (Razdan et al., 1992), although its role in aluminum
tolerance is not clear.

Two genes have been reported as being down-re-
gulated by aluminum in Arabidopsis thaliana (Richards et
al., 1998), both of which show similarity with sugarcane
genes. One of these genes belongs to the chlorophyll
a/b-binding (CAB) gene family, which is a distinct class of
structurally and evolutionary related pigment-binding pro-
teins found in chloroplast thylakoid membranes (McGrath
et al., 1992). The other gene shows similarity with alanine
aminotransferase, a pyridoxal phosphate-dependent enzy-
me that operates in a wide range of metabolic pathways,
catalyzing the reversible transfer of an amino group from
alanine to 2-oxoglutarate to form pyruvate and glutamate
(Son and Sugiyama, 1992). It has been suggested by Rich-
ards et al. (1998) that the shutdown of these transcripts
might reflect the response of a central metabolic pathway to
aluminum stress.

As to be expected, the complex regulation of gene ex-
pression and of several metabolic pathways in response to
aluminum toxicity also involves genes responsible for sig-
nal transduction. Several sugarcane genes were found to be
similar to signal transduction genes from other organisms,
these genes being a mitogen-activated protein kinase
(MAP-kinase, SLT2 gene), a protein kinase homolog
(SLK1 gene) and a GDP dissociation inhibitor (NtGDI1
gene). The MAP-kinase functions in a signal transduction
cascade downstream of protein kinase C (PKC), and has a
known role in regulating the cell cycle under stress condi-
tions (Costigan and Snyder, 1994). SLK1 belongs to the
same pathway of SLT2 MAP kinase (SLT2 pathway) and
encodes the corresponding MAP kinase-kinase. Schott and
Gardner (1997) have shown that yeasts with a mutant SLT2
pathway are aluminum sensitive, these authors suggesting
that this results in failure of the cells properly to cease divi-
sion in the presence of toxic levels of aluminum. The ex-
pression of NtGDII in response to aluminum toxicity
seems to cause an increased afflux of aluminum (Ezaki et
al., 1999). GDI proteins regulate vesicular traffic at many
stages of the exocytic and endocytic transport pathways in
various organisms (Matsui ef al., 1990). Ezaki et al. (1999)
has suggested that the NtGDI1 protein increases aluminum
release from yeast cells by stimulating the vesicle transport
system.

Sugarcane genes similar to several genes with un-
known function, but reported as being regulated by alumi-
num stress, were also found (Table I). The lack of
information on the function of these genes shows how far
we are from a complete knowledge of the mechanisms in-
volved in aluminum tolerance in plants. At the end of Table
I we have listed all the genes reported to be involved in alu-
minum-tolerance in other species but which did not show
similarity with sugarcane genes. These results suggest that
the mechanisms of aluminum tolerance in which these
genes are involved may be species-specific, or display high
genetic divergence among organisms. It is also possible
that some genes may be expressed only under aluminum
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stress and since the SUCEST database contains data from
plants which were not treated with aluminum specific in-
duced genes may not have been sampled.

The results presented in this paper show that sugar-
cane has genes similar to most of the genes related to alumi-
num stress in other species, suggesting that sugarcane may
activate a wide array of defenses against aluminum toxic-
ity. However, further experiments are needed to determine
the role of these genes in aluminum tolerance in sugarcane
and our group is using DNA macroarrays containing the
genes we have cataloged (in this and other research pro-
jects) to identify changes in sugarcane gene expression in
response to aluminum stress. The high level of gene order
and conservation of function among related grasses (Gui-
mardes et al., 1997; Ming et al., 1998) suggest that the ge-
netic resources used by sugarcane can be applied to other
species thus increasing the usefulness of the SUCEST pro-
ject.

RESUMO

Aluminio (Al) ¢ um dos principais fatores que afetam
o desenvolvimento de plantas em solos acidos, reduzindo
substancialmente a produtividade agricola. Na América do
Sul, cerca de 66% da superficie do solo apresenta acidez,
onde a alta saturagdo de aluminio ¢ uma das maiores limita-
¢des a pratica agricola. Apesar do crescente nimero de
estudos, uma compreensido completa das bases bioquimicas
e moleculares da tolerancia ao aluminio em plantas esta
longe de ser alcangada. No caso da cana-de-agucar, ndo ha
nada publicado sobre a regulac@o génica induzida durante o
stress por aluminio. O objetivo deste trabalho foi identificar
genes de cana-de-agucar relacionados com as varias vias
metabolicas reconhecidamente envolvidas na resposta a
toxidez do aluminio em outras espécies de plantas e levedu-
ras. Para a maioria dos genes relacionados com aluminio
em outras espécies foram identificados similares em ca-
na-de-agUcar, tais como aqueles que codificam enzimas
que combatem o stress oxidativo ou a infestagdo por pato-
genos, proteinas responsaveis pela exudacdo de 4cidos or-
ganicos e pela transdugdo de sinais. O papel desses genes na
tolerancia ao aluminio ¢ revisado. Devido ao alto grau de
conservagao do genoma entre espécies proximas de grami-
neas como milho, cevada, sorgo e cana-de-agucar, esses
genes serao uma ferramenta valiosa para a melhor com-
preensdo ¢ manipulagdo da tolerancia ao aluminio nestas
espécies.
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