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Abstract

Soybean is one of the most important crops in Brazil and continuously generates demands for production technolo-
gies, such as cultivars resistant to diseases. In recent years, the Asian rust fungus (Phakopsora pachyrhizi Syd. & P.
Syd 1914) has caused severe yield losses and the development of resistant cultivars is the best means of control.
Understanding the genetic control and estimating parameters associated with soybean (Glycine max) resistance to
P. pachyrhizi will provide essential information for cultivar selection. We investigated quantitative genetic control of
P. pachyrhizi and estimated parameters associated to soybean yield in the absence and presence of this
phytopathogen. Six cultivars and their 15 diallel derived F2 and F3 generations were assessed in experiments carried
out in the absence and presence of P. pachyrhizi. The results indicated that soybean yield in the presence and ab-
sence of P. pachyrhizi is controlled by polygenes expressing predominantly additive effects that can be selected to
develop new cultivars resistant or tolerant to P. pachyrhizi. These cultivars may prove to be a useful and more dura-
ble alternative than cultivars carrying major resistance genes.
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Introduction

Soybean (Glycine max (L.) Merrill) is the most im-

portant crop in Brazilian agriculture, with a current culti-

vated area of 20.6 million hectares and an average yield of

2,809 kg ha-1 equivalent to an annual production of approx-

imately 58 million tons (CONAB, 2007). Brazil contributes

20% of the world soybean production ranking second in

soybean production (CONAB, 2006). However, average

yield could be greater than 3,200 kg ha-1 if the effect of dis-

eases was reduced (Almeida, 2001). Asian soybean rust

(ASR) caused by the fungus Phakopsora pachyrhizi Syd. &

P. Syd 1914) is the most aggressive soybean disease and

can result in losses of 10% to 90% of the crop (Hartman et

al., 1999).

A recent doctoral thesis on the mapping of rust resis-

tance genes and quantitative trait loci (QTL) involved in

soybean resistance to septoriosis caused by phytopatho-

genic fungi of the genera Septoria pointed out that

economic and effective control of P. pachyrhizi can be ob-

tained using resistant or tolerant soybean cultivars (Brogin,

RL. Mapeamento de genes de resistência à ferrugem e de

QTLs envolvidos na resistência à septoriose em soja, Ph. D.

thesis, Escola Superior de Agricultura Luiz de Queiroz, São

Paulo University, Piracicaba-SP, Brazil 2005).

In addition to the classical Rpp1, Rpp2, Rpp3 and

Rpp4 resistance genes several major resistance genes have

been identified in new plant introductions or cultivars

(Bromfield and Hartwig, 1980; Hartwig, 1986; Hartman et

al. 2004; Pierozzi et al. (submitted to Genet Mol Biol)).

However, resistance to P. pachyrhizi expressed by single

genes does not promise to be durable since the Rpp1 and

Rpp3 genes proved not effective in soybean in the second

year (2002) after P. pachyrhizi was first detected in Brazil.

Although staking individual resistance genes could perhaps

prove effective for somewhat longer periods of time, the

search for horizontal quantitative resistance must be per-

formed to ensure long lasting resistance or tolerance. Some

soybean cultivars have shown more tolerance to P.

pachyrhizi than others, which could be due to the presence

of quantitative resistance genes in the plants. The develop-

ment of resistant or tolerant cultivars in a breeding program

can be greatly helped by a knowledge of the various types
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of gene action in the segregating populations. Plant breed-

ing efficiency depends on a good knowledge of the genetic

variability and type of predominant gene action in the con-

trol of the trait (Ramalho and Vencovsky, 1978).

Assessing the yield of soybean parent plants and their

biparental cross derived F2 and F3 generations in the pres-

ence and absence of P. pachyrhizi is, therefore, likely to

provide important clues on the possibilities open to breed-

ers interested in developing soybean cultivars which are not

only high-yielding but also resistant or tolerant to P.

pachyrhizi. Ribeiro et al. (2007) assessed the severity of P.

pachyrhizi attack on leaves of soybean cultivars FT-2,

EMBRAPA 48, BRS 154, BRS 184, BRS 214, BRS 231

and reported that genes for resistance or tolerance to P.

pachyrhizi displayed predominantly additive effects and

are dispersed among soybean genotypes. If similar results

can be obtained for yielding controlling genes, strategies

for efficient cultivar development can be efficiently drawn.

We investigated the same cultivars as Ribeiro et al. (2007)

to assess the Genetic control of soybean yield in the pres-

ence and absence of Phakopsora pachyrhizi.

Material and Methods

We investigated six commercial cultivars (FT-2, Em-

brapa-48, BRS 154, BRS 184, BRS 214 and BRS 231) in

biparental diallel crosses which produced 15 sets each of

F2, reciprocal F2 (RF2), F3 and reciprocal F3 (RF3) genera-

tions. The six parental cultivars had expressed different lev-

els of resistance and/or tolerance to P. pachyrhizi in several

greenhouse tests conducted at the Brazilian Agricultural

Research Corporation (Empresa Brasileira de Pesquisa

Agropecuária - Embrapa) National Center for Soybean Re-

search (Embrapa Soybean, Londrina, Paraná State, Brazil.)

and are high-yielding and well-adapted to the growing con-

ditions in the Brazilian state of Paraná. The FT-2 cultivar

carries a single gene for P. pachyrhizi resistance, probably

Rpp1 or Rpp3, which express resistance to the P. pachyrhizi

strain isolated from southern Brazil but not to the strain iso-

lated in the Brazilian state of Mato Grosso (the “MT”

strain). All cultivars show similar growth cycle, which, in

genetic studies, is important in minimizing the effects of

time on P. pachyrhizi infection.

During the 2004/05 cropping season at the Embrapa

Soybean experimental farm (23°11’ S; 51°10’ W) in Paraná

we carried out two completely randomized experiments in-

volving 11,400 (2 X 5,700) single-plant hill-plots, with one

plant being equal to one hill-plot. Single plant hill-plots

were used to allow growing the large number of plants (rep-

lications) in a restricted experimental area to reduce soil

heterogeneity and to avoid having two experimental errors

(between plots and between plants within plots) in the ex-

periments, which would only add complexity to the genetic

parameter estimation process. In each experiment, each

parent was represented by 50 plants, each F2 and RF2 by 80

plants and each F3 and RF3 by 20 families of five plants

each. In experiment I we sprayed the plants at the V2 plant

growth stage with the fungicide Impact (0.6 L ha-1 equiva-

lent to 75 g ha-1 of Flutriafol a.i.) and at the R3 and R6 plant

growth stages with the fungicide Folicur (0.5 L ha-1 equiva-

lent to 100 g ha-1 of Tebuconazole a.i.) to preclude develop-

ment of P. pachyrhizi. In experiment II, we used no

fungicide but instead inoculated the plants twice (once at

plant development stage V3 and once at stage V5) with P.

pachyrhizi strain MT using a suspension containing about

1 x 104 spores mL-1. The spores were produced on P.

pachyrhizi infected leaves of the soybean cultivar BRS

Bacuri in a contained green-house environment. Cultivar

BRS Bacuri was chosen because it is resistant to the south-

ern Brazil strain and susceptible to the MT strain of P.

pachyrhizi, which are the two prevalent strains in Brazil,

therefore ensuring predominance of the MT strain in our

inoculum. The P. pachyrhizi strain MT original spores

were collected in the State of Mato Grosso by Dr. Tadashi

Yorinori in 2002 and kept in the Embrapa Soybean plant

pathology collection under freeze-dried stored conditions.

Both experiments received all recommended agricultural

practices to ensure normal soybean plant development, in-

cluding irrigation. The experiments were monitored three

times a week to ensure prompt response to any abnormality

that could cause the collected data to be unreliable. Details

of other experiment characteristics and on the inoculation

procedures are given in Ribeiro et al. (2007).

Individual single-plant plots were harvested at the R7

stage and plants taken to a shed for drying to 13% moisture

prior to threshing and weighing of the soybeans to calculate

grain-yield.

For both experiments, genetic models (Mather and

Jinks, 1982) were fitted to the yield means and variances of

the generations to estimate genetic parameters, narrow

sense heritabilities based on F3 family means and predict

the genetic potential of each biparental cross for generating

high-yielding inbred lines (Jinks and Pooni, 1976; Toledo,

1987).

Results

Table 1 shows the degrees of freedom, means and

variances of the parents and their derived F2 and F3 gen-

erations in both experiments after pooling over recipro-

cals since no significant (p = 0.05) reciprocal effects

were detected for yield in any generation. Significant

yield differences were detected for each cultivar between

experiments and also between cultivars within experi-

ments. The largest yield reductions (in parentheses) be-

tween the two experiments were for BRS 214 (-86.04%),

FT-2 (-83.59%), Embrapa 48 (-82.20%), BRS 154

(-75.07%) and BRS 184 (-75.02%). Cultivar BRS 231,

which has been reported to carry quantitative genes for

resistance or tolerance to P. pachyrhizi (Ribeiro et al.,

2007), showed a smaller yield reduction of -67.83% be-
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Table 1 - Degrees of freedom (df), means and variances of the six parent soybean cultivars and their derived biparental cross F2 and F3 generations in ex-

periments I and II. Data refer to grams per plant.

Parents Experiment I Experiment II

df Means1 Variances df Means1 Variances

FT-2 49 24.13 c 79.83 49 3.96 c 6.26

Embrapa 48 49 26.91 bc 66.90 48 4.79 c 6.79

BRS 154 49 22.74 c 78.67 49 5.67 bc 13.76

BRS 184 48 30.31 ab 99.02 48 7.57 ab 18.00

BRS 214 49 35.25 a 168.87 49 4.92 c 10.95

BRS 231 49 27.45 bc 73.73 45 8.83 a 24.85
1Means followed by the same letters did not differ significantly by the Tukey test at p = 0.05.

Crosses

FT-2 x Emb 48 df Means Variances df Means Variances

F2 157 26.26 85.30 156 5.52 7.37

F3 194 27.37 107.88 197 5.49 10.22

__F3 between families 39 235.79 39 12.13

__F3 within families 155 74.65 158 9.74

FT-2 x BRS 154 df Means Variances df Means Variances

F2 159 29.85 138.46 158 5.97 13.18

F3 196 27.68 120.84 197 5.88 13.99

__F3 between families 39 190.06 39 24.45

__F3 within families 157 103.13 158 11.33

FT-2 x BRS 184 df Means Variances df Means Variances

F2 154 32.35 110.97 155 7.48 14.82

F3 197 30.26 147.12 197 6.48 15.76

__F3 between families 39 326.85 39 30.04

__F3 within families 158 101.50 158 12.14

FT-2 x BRS 214 df Means Variances df Means Variances

F2 159 34.20 166.97 157 6.06 17.55

F3 196 32.12 163.11 197 6.25 11.69

__F3 between families 39 245.34 39 10.93

__F3 within families 157 142.07 158 11.88

FT-2 x BRS 231 df Means Variances df Means Variances

F2 154 28.02 122.31 153 8.00 29.28

F3 194 25.80 143.59 191 6.29 18.52

__F3 between families 39 241.94 39 25.92

__F3 within families 155 117.90 152 16.55

Emb 48 x BRS 154 df Means Variances df Means Variances

F2 155 27.72 150.54 157 5.76 16.01

F3 198 25.63 106.73 195 6.12 21.23

__F3 between families 39 179.01 39 35.38

__F3 within families 159 88.52 156 17.58

Emb 48 x BRS 184 df Means Variances df Means Variances

F2 156 32.94 106.38 158 6.73 14.10

F3 197 30.15 92.23 194 6.60 13.77

__F3 between families 39 103.28 39 17.54

__F3 within families 158 89.43 155 12.79

Emb 48 x BRS 214 df Means Variances df Means Variances

F2 158 29.92 147.38 155 5.19 12.42

F3 194 29.26 152.88 194 5.80 14.68

__F3 between families 39 293.14 39 20.93

__F3 within families 155 116.44 155 13.05

Emb 48 x BRS 231 df Means Variances df Means Variances

F2 155 32.58 142.39 153 8.20 31.66

F3 199 25.02 97.45 195 4.68 6.10

__F3 between families 39 120.65 39 7.06

__F3 within families 160 91.65 156 5.85



tween experiments and was top yielding in experiment II.

The BRS 184 cultivar also showed some degree of toler-

ance to P. pachyrhizi as its yield did not significantly dif-

fer from that of BRS 231 in either experiment.

The mean and variance genetic parameters estimated

for yield are shown in Table 2 for experiment I and Table 3

for experiment II.

In experiment I, out of the 15 crosses investigated ad-

ditive ([d]) gene effects were significant in 11 crosses and

dominant ([h]) effects in 13 crosses. Dominance was pre-

dominantly positive towards increased yield. The estimated

variance parameters indicated a prevalence of additive (D)

effects in nine out of the 15 crosses with the presence of re-

pulsion linkage between genes expressing additive effects

in the Embrapa 48 x BRS 154 cross (D1 > D2, data not

shown). No significant dominant (H) variance was ob-

served and significant genotype x micro-environment inter-

action (E1 ≠ E2) was detected only in the Embrapa 48 x

BRS 214 cross. The larger absolute values of [h] compara-

tively to those of [d] coupled with the predominance of D

over H effects and detection of repulsion linkage in one

cross suggested that the yield increasing genes were dis-

persed among the parents.

In experiment II, out of the 15 crosses investigated [d]

gene effects were significant in 10 crosses and [h] effects in

11 crosses, with [h] effects always towards yield increase.

Duplicate epistasis was detected in three crosses (FT-2 x

Embrapa 48, FT-2 x BRS 214 and Embrapa 48 x BRS 214).

The D estimates were significant in 8 out of 15 crosses, in-

dicating that the genetic variability detected for yield in the

presence of P. pachyrhizi was predominantly of the addi-

tive type. Repulsion linkage between loci expressing addi-

tive gene effects was detected on a single occasion in the

BRS 184 x BRS 214 cross (D1 > D2, data not shown). No

significant H estimates were obtained and significant geno-

type x micro-environment interaction was detected in two

crosses (FT-2 x BRS 184 and Embrapa 48 x BRS 184). The

main picture is that the genetic control of soybean yield in

the presence of the pathogen was mostly by dispersed genes

displaying additive effects.

Narrow sense heritability estimates based on F3 fam-

ily means (Table 4) were of moderate value, ranging from

0.53 to 0.80 in experiment I and from 0.52 to 0.80 in experi-
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Table 1 (cont.)

Crosses

BRS 154 x BRS 184 df Means Variances df Means Variances

F2 156 34.17 158.40 156 8.35 28.64

F3 194 30.39 161.01 197 8.15 32.61

__F3 between families 39 222.68 39 61.14

__F3 within families 155 144.99 158 25.37

BRS 154 x BRS 214 df Means Variances df Means Variances

F2 156 34.78 168.74 159 6.75 15.60

F3 196 30.94 180.42 196 6.38 19.90

__F3 between families 39 209.89 39 35.16

__F3 within families 157 172.88 157 15.99

BRS 154 x BRS 231 df Means Variances df Means Variances

F2 157 30.12 134.53 158 8.09 27.45

F3 199 25.38 88.22 196 5.58 14.26

__F3 between families 39 114.93 39 18.76

__F3 within families 160 81.55 157 13.11

BRS 184 x BRS 214 df Means Variances df Means Variances

F2 158 39.92 172.02 159 7.56 23.27

F3 197 35.48 148.59 199 19.31

__F3 between families 39 205.37 39 24.00

__F3 within families 158 134.18 160 18.13

BRS 184 x BRS 231 df Means Variances df Means Variances

F2 157 35.62 172.59 154 8.80 43.8

F3 195 28.02 173.63 187 7.95 41.34

__F3 between families 39 295.51 39 59.67

__F3 within families 156 142.21 148 36.16

BRS 214 x BRS 231 df Means Variances df Means Variances

F2 158 31.83 151.67 153 6.32 22.88

F3 196 28.50 139.52 188 5.79 14.05

__F3 between families 39 177.82 39 21.72

__F3 within families 157 129.67 149 11.95
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ment II, suggesting that selection for higher yield is likely

to be successful in both cases.

Table 5 shows the genetic potential of each cross esti-

mated as the percentage of random inbred lines expected to

score higher yields than the BRS 231 cultivar in the pres-

ence and absence of P. pachyrhizi. The probability of gen-

erating random inbred lines superior to BRS 231 was

higher in experiment I than in experiment II, but an overall

picture of successful selection was portrayed in both cases.

Discussions

The extreme yield reductions for all cultivars seen in

experiment II as compared with experiment I suggests that

the two inoculations (one at plant growth stage V3 and the

other at stage V5) with P. pachyrhizi spores were carried

out too early in the plant growth cycles. However, as previ-

ously reported in the disease severity studies by Ribeiro et

al., 2007, screening cultivars, F2 plants and F3 families for

P. pachyrhizi tolerance was successfully performed in ex-

periment II using yield assessment. The genetic component

analyses confirmed previous observations (Toledo, unpub-

lished data) indicating that quantitative genes controlling

yield in soybean in the presence of P. pachyrhizi are dis-

persed among the currently available Brazilian cultivars.

Given the predominantly additive effect expressed by these

genes, recurrent selection in the presence of the pathogen is

likely to bring good results. This type of selection has been

tried successfully before at Embrapa Soybean for insect re-

sistance to stinkbugs (Souza and Toledo, 1995). Further in-

dications of the feasibility of selection for quantitative

resistance to P. pachyrhizi were provided by the moderate

levels of heritability detected in some crosses and by the

predicted potential of a few crosses to generate high yield-

ing random inbred lines in experiment II. The experimental

data clearly showed that, as expected, deriving random in-

bred lines with higher yields than BRS 231 is more difficult

in experiment II than in experiment I. However, the predic-

tions were rather encouraging given that at least five out of

the 15 crosses showed that more than 10% of the derived

lines were expected to yield higher than BRS 231 under P.

pachyrhiz pressure and quantitative resistance, tolerance or

both is likely to be durable.

Our data demonstrated that breeding soybean for re-

sistance or tolerance to P. pachyrhizi does not have to rely

solely on the few identified major genes already reported in

the literature (Bromfield & Hartwig, 1980; Hartwig, 1986;

Hartman et al., 2004; Laperuta et al. (submitted to Genet

Mol Biol); Pierozzi et al. (submitted to Genet Mol Biol)).

This is important especially after the MT strain had de-

feated the resistance expressed by the Rpp1 and Rpp3 genes

after only two years of the presence of P. pachyrhizi in

Brazil. In spite of the low yield attained under severe patho-

gen pressure in experiment II, cultivars showing quantita-

tive levels of resistance or tolerance to P. pachyrhizi similar

to, or higher than, cultivar BRS 231 may prove an impor-

tant asset for farmers since with this level of resistance or

tolerance they are likely to attain adequate yield levels in

well managed fields where a single fungicide spray in a sea-

son could suffice to obtain good disease control, resulting

in higher economic returns and safer cropping.
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Table 5 - Expected percentage of random inbred lines higher yielding than

BRS 231 derived from each cross in Experiments I and II.

Crosses Experiment I (%) Experiment II (%)

FT-2 x Embrapa 48 44.83 0.00

FT-2 x BRS 154 26.11 5.26

FT-2 x BRS 184 50.00 11.12

FT-2 x BRS 214 62.93 -*

FT-2 x BRS 231 40.13 -*

Embrapa 48 x BRS 154 31.92 15.15

Embrapa 48 x BRS 184 0.00 0.00

Embrapa 48 x BRS 214 62.17 3.01

Embrapa 48 x BRS 231 -* -*

BRS 154 x BRS 184 45.62 32.64

BRS 154 x BRS 214 0.00 11.12

BRS 154 x BRS 231 -* -*

BRS 184 x BRS 214 0.00 7.64

BRS 184 x BRS 231 54.78 45.22

BRS 214 x BRS 231 0.00 -*

*no estimate was possible because a genetic model could not be fitted to

the data.

Table 4 - Narrow sense heritability estimates (h2n) based on F3 family

means from Experiments I and II.

Crosses Experiment I Experiment II

FT-2 x Embrapa 48 0.75 ± 0.06 *

FT-2 x BRS 154 0.54 ± 0.10 0.67 ± 0.07

FT-2 x BRS 184 0.77 ± 0.05 0.52 ± 0.11

FT-2 x BRS 214 0.58 ± 0.09 *

FT-2 x BRS 231 0.74 ± 0.06 *

Embrapa 48 x BRS 154 0.61 ± 0.09 0.58 ± 0.09

Embrapa 48 x BRS 184 0.00 *

Embrapa 48 x BRS 214 0.53 ± 0.11 0.62 ± 0.09

Embrapa 48 x BRS 231 * *

BRS 154 x BRS 184 0.67 ± 0.07 0.80 ± 0.04

BRS 154 x BRS 214 * 0.70 ± 0.07

BRS 154 x BRS 231 * *

BRS 184 x BRS 214 * 0.40 ± 0.14

BRS 184 x BRS 231 0.80 ± 0.05 0.76 ± 0.05

BRS 214 x BRS 231 * *

*no estimate was possible because a genetic model could not be fitted to

the data.
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