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Abstract

The order Anguilliformes comprises 15 families, 141 genera and 791 fish species. Eight families had at least one
karyotyped species, with a prevalence of 2n = 38 chromosomes and high fundamental numbers (FN). The only ex-
ception to this pattern is the family Muraenidae, in which the eight species analyzed presented 2n = 42 chromo-
somes. Despite of the large number of Anguilliformes species, karyotypic reports are available for only a few
representatives. In the present work, a species of Ophichthidae, Myrichthys ocellatus (2n = 38; 8m+14sm+10st+6a;
FN = 70) and four species of Muraenidae, Enchelycore nigricans (2n = 42; 6m+8sm+12st+16a; FN = 68),
Gymnothorax miliaris (2n = 42; 14m+18sm+10st; FN = 84), G. vicinus (2n = 42; 8m+6sm+28a; FN = 56) and
Muraena pavonina (2n = 42; 6m+4sm+32a; FN = 52), collected along the Northeastern coast of Brazil and around
the St Peter and St Paul Archipelago were analyzed. Typical large metacentric chromosomes were observed in all
species. Conspicuous polymorphic heterochromatic regions were observed at the centromeres of most chromo-
somes and at single ribosomal sites. The data obtained for Ophichthidae corroborate the hypothesis of a karyotypic
diversification mainly due to pericentric inversions and Robertsonian rearrangements, while the identification of con-
stant chromosome numbers in Muraenidae (2n = 42) suggests a karyotype diversification through pericentric inver-

sions and heterochromatin processes.
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Introduction

Cytogenetic analyses in fish have allowed to deter-
mine sex chromosomes (Moreira-Filho et al., 1993; Devlin
and Nagahama, 2002; Molina and Galetti, 2007), the char-
acterization of vertebrate models, like the zebrafish (Sola
and Gornung, 2001), the evaluation of genetically modified
lineages (Porto-Foresti et al., 2004), and to perform infer-
ences on cytotaxonomic (Bertollo et al., 2000; Bertollo et
al., 2004) and evolutionary issues (Demirok and Unlii,
2001), besides the detection of cryptic species (Moreira-
Filho and Bertollo, 1991). Nevertheless, cytogenetic data
are still restricted for some fish groups, such as Anguilli-
formes, which comprises 15 families, 141 genera and 791
species (Nelson, 2006) and are popularly known as eels,
congers or morays. Analyses of the 12S rRNA sequences
support the monophyly of the Anguilliformes, but the
phylogenetic relationships within the Order deduced from
DNA analysis do not agree with those established through
morphological comparisons (Wang ef al., 2003).

Previous chromosomal studies in Mediterranean
moray species showed that constitutive heterochromatin
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was distributed on and around all the centromeres (Deiana
et al., 1990). A remarkable heteromorphism was reported
between the NOR-bearing homologues in several species
(Cau et al., 1988), which in some cases led to the misidenti-
fication of this pair as sex chromosomes (Wiberg, 1983).

Although they represent some of the most typical reef
fish groups in the Atlantic Ocean, few cytogenetic studies
have been carried out in Muraenidae and Ophichthidae. In
this work we performed a cytogenetic analysis of
Myrichthys  ocellatus ~ (Ophichthidae), Enchelycore
nigricans, Gymnothorax vicinus, Gymnothorax miliaris
and Muraena pavonina (Muraenidae) collected in the Bra-
zilian coast and around Atlantic oceanic islands, using con-
ventional staining, Ag-NOR and C-banding.

Material and Methods

The goldspotted snake eel Myrichthys ocellatus (12
specimens, undefined sex) and the purplemouth moray
Gymnothorax vicinus (8 specimens, undefined sex) were
collected along the shore of the state of Rio Grande do
Norte (6°2'10" S/35°6'42" W), whereas specimens of gol-
den-tail moray Gymnothorax miliaris (2 females) were col-
lected in the coastline of Salvador (12°58' S/38°31' W),
state of Bahia, northeastern Brazil. The viper moray
Enchelycore nigricans (4 females and 2 males) and the
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white-spotted moray Muraena pavonina (6 females) were
collected around the St Peter and St Paul Archipelago
(0°55'02" N/29°20'42" W).

The individuals were mitotically stimulated for 24 h
by intraperitoneal inoculation of either Munolan® (Aller-
gan Frumtost), an association of fungal and bacterial anti-
gens (Molina, 2002), or yeast suspension (Sacharomyces
cerevisae) (Lee and Elder, 1980).

Chromosome preparations were obtained from kid-
ney cells according to Gold et al. (1990). The sex of indi-
viduals was determined through macroscopic observation
of gonads and histological analyses. The nucleolar orga-
nizer regions (NORs) were identified by silver nitrate stain-
ing (Howell and Black, 1980) and heterochromatic regions
were evidenced after C-banding (Sumner, 1972).

The best metaphases were photographed using a digi-
tal system coupled to an Olympus BX42 microscope with
1,000X magnification. The chromosome pairs were ar-
ranged in decreasing size order and classified in relation to
the centromere position as metacentric (m), submetacentric
(sm), subtelocentric (st) or acrocentric (a) (Levan ef al.,
1964).

Results

The Anguilliformes species analyzed presented typi-
cal large chromosomes, ranging from 1.2 to 10 um, and
remarkably asymmetric karyotypes. Sex-related chromo-
somal heteromorphism was absent in E. nigricans.

Myrichthys ocellatus, the only Ophichthidae ana-
lyzed, presented a karyotype with 2n = 38 composed of
8m+14sm+10st+6a (FN = 70) (Figures 1a, b). A size hete-
romorphism unrelated to the NORs was sometimes present
in the largest chromosome pair of this species (Figure 1a).
Remarkable heteromorphisms were also present in the
other analyzed species.

Amongst the Muraenidae, Gymnothorax miliaris
showed 2n =42 chromosomes, with 14m+18sm+10st and a
high fundamental number (FN = 84) (Figures 2a, b). The
homologues of pairs 1, 8 and 17 often presented significant
differences in size (Figure 2a). A diploid number of 2n =42
(FN=56) and a karyotype formula with 8m+6sm+28a were
observed in G. vicinus (Figures 3a, b). Some chromosome
pairs, such as pairs 1 and 2, showed homologues of differ-
ent sizes. The karyotype of Enchelycore nigricans was
composed of 6m+8sm+12st+16a (FN = 68) (Figures 4a, b),
while Muraena pavonina, presented a higher number of
acrocentric chromosomes and a karyotype formula of
6m-+4sm+32a (FN = 52) (Figures 5a, b).

All species presented single Ag-NOR sites, but lo-
cated at different positions (see boxes in Figures 1 through
5). Ag-NORs were located on the short arms of pair 13 (a)
in M. ocellatus; in an interstitial position on the long arms
of pair 11 (a) in G. vicinus and on the short arms of the pair
12 (sm) in G. miliaris. Ribosomal sites were identified on
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Figure 1 - Karyotype of Myrichthys ocellatus after: (a) Giemsa conven-
tional staining, Inbox, the NOR-bearing pair; (b) C-banding. Bar =10 pm.

the short arms of pair 11 (st) in E. nigricans and on the short
arms of pair 12 (sm) in M. pavonina.

C-banding revealed heterochromatic regions at the
centromeric regions of all chromosomes in all the species
(Figures 1 through 5, b). After C-banding, a conspicuous
size heteromorphism in the heterochromatin on short arms
of pair 8 (Figure 2¢) and on pair 12, coinciding with the
Ag-NORs, was observed in one female G. miliaris. Telo-
meric heterochromatic segments were less frequent and
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Figure 2 - Karyotype of Gymnothorax miliaris after: (a) Giemsa conven-
tional staining, Inbox, the NOR-bearing pair; (b) C-banding, Non-poly-
morphic (c-d) and polymorphic (e) heterochromatic regions on the short
arms of pair 8. Bar = 10 pm.

were evidenced in E. nigricans (pairs 14 and 15) and in G.
miliaris (pairs 12, 15, 17, 18 and 21) (Figure 2b).

Discussion

A remarkable level of karyotypic diversification is
found within Anguilliformes. The diploid number in this
order ranges from 2n = 26 to 2n = 54 (Klinkhardt et al.,
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Figure 3 - Karyotype of Gymnothorax vicinus after: (a) Giemsa conven-
tional staining, Inbox, the NOR-bearing pair; (b) C-banding. Bar =10 pm.

1995), with variable karyotypic formulae and a high num-
ber of biarmed chromosomes.

Low diploid numbers (2n = 38) and a high number of
meta-submetacentric chromosomes seem to be the most
common condition for Ophichthidae species (Table 1).
Species of the families Muraenesocidae, Congridae (Sal-
vadori et al., 1994), Anguillidae (Sola et al., 1980; Sola et
al., 1984) and Echelidae (Amores ef al., 1995) also share a
similar karyotypic pattern. Phylogenetic affinities based on
the C- and G-banding patterns have also been proposed for
the families Anguillidae and Congridae (Salvadori et al.,
1994).

A similar karyotype was also reported in M. ocellatus
(2n = 38) that presented a typical karyotype formula, with
mostly biarmed chromosomes (FN = 70). Discordant dip-
loid numbers were identified in Echelus uropterus
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Figure 4 - Karyotype of Enchelycore nigricans after: (a) Giemsa conven-
tional staining, Inbox, the NOR-bearing pair; (b) C-banding. Bar=10 um.

(2n = 50) (Nogusa, 1960) and Muraenichthys gymnotus
(2n =48) (Murofushi and Yosida, 1984). The karyotypical
diversity reported in the family Ophichthidae has been
mainly related to pericentric inversions and Robertsonian
rearrangements (Takai and Ojima, 1985). A molecular phy-
logeny based on 128 ribosomal RNA sequences indicated
Ophichthidae to be more derived than Muraenidae (Wang
et al.,2003).

Amongst Muraenidae, which comprises nearly 200
species, the available cytogenetic data suggest a basal dip-
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Figure 5 - Karyotype of Muraena pavonina after: (a) Giemsa conven-
tional staining, Inbox, the NOR-bearing pair; (b) C-banding. Bar =10 pm.

loid value of 2n =42 with several acrocentric chromosomes
(Table 1). This would be a basal condition when compared
to other Anguilliformes (2n = 38). The variation in diploid
numbers is smaller within this family, ranging from 2n =36
to 2n =42, with variable fundamental numbers (FN =42 to
84). The karyotypes show a wide structural variation
mainly due to pericentric inversions, which played a major
role in the chromosome evolution of this species group.

E. nigricans, G. vicinus and M. pavonina present
unique karyotypes that nevertheless show the pattern of the
family Muraenidae with a high number of acrocentric chro-
mosomes, a rare condition in other Anguilliformes. One ex-
ception was the karyotype of G. miliaris (2n = 42) that
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Table 1 - Cytogenetic data in species of Ophichthidae and Muraenidae (Anguilliformes).

Species 2n FN Chromosomal formula Sex chromosomes ~ References

Ophichthidae

Echelus myrus 38 58 20m-sm+18a - Salvadori et al.,1994; Amores et al., 1995

E. uropterus 50 - - - Nogusa, 1960

Myrichthys ocellatus 38 70 8m+14sm+10st+6a - *Present data

Ophisurus macrorhynchos 38 76 20m+14sm+4st - Nishikawa and Sakamoto, 1977

Ophisurus macrorhynchos 38 76 38m-sm - Vasil’ev, 1980

Ophisurus serpens 38 74 12m+24st+2a - Thode et al.,1985

Pisodonophis boro 40 40 40a - Natarajan and Subrahmanyam, 1974;
Vasil’ev, 1980

Pisodonophis boro 38 64 18m+4sm+4st+12a - Khuda-Bukhsh and Barat, 1987

Pisodonophis zophistius 38 68 - - Nishikawa and Sakamoto, 1977

Muraenichthys gymnotus 48 52 4st+44a X1 XXX, Murofushi and Yosida, 1984

Muraenichthys gymnotus 47 52 Im+4st+42a XX, Y Murofushi and Yosida, 1984

Muraenidae

Enchelycore nigricans 42 68 6m+8sm+12st+16a No *Present data

E. pardalis 42 52 8m+2sm+32a - Takai and Ojima, 1985

Gymnothorax eurostus 42 54 12m-sm+30a XY Manna, 1989

“ 42 54 - - Takai and Ojima, 1986

Gymnothorax miliaris 42 84 14m+18sm+10st - *Present data

Gymnothorax ocellatus 42 76 16m+18sm+8a - Porto-Foresti et al., 2005

Gymnothorax reevesii 42 76 - - Shoubai et al., 1991

Gymnothorax vicinus 42 56 8m+6sm+28a - *Present data

Gymnothorax kidako 42 - - - Nogusa, 1960

Gymnothorax kidako 42 - - - Vasil’ev, 1980

Gymnothorax kidako 36 60 16m+8sm+12a - Taka and Ojima, 1986

Gymnothorax pictus 42 42 42a - Rishi, 1973

Gymnothorax pictus 42 - - - Ojima, 1985

Gymnothorax unicolor 42 54 12m-sm+30a No Deiana et al., 1990

Muraena helena 42 60 18m-sm+24st-a No Cau et al., 1988

Muraena pavonina 42 52 6m+4sm+32a - *Present data

Sideria picta 42 42 42a - Takai and Ojima, 1985

presented the highest FN reported so far in Muraenidae
(FN = 84), likely due to pericentric inversions.
Karyotypes from both sexes were reported for only a
few anguilliform species. Simple sex chromosome systems
of the XX/XY type were reported in a muraenid,
Gymnothorax eurostus (Takai and Ojima, 1985). A ZZ/ZW
sex determination system was identified in some congrid
species such as Astroconger myriaster (Park and Kang,
1979; Ojima and Ueda, 1982), Conger japonicus and
Alloconger anagoides (Takai and Ojima, 1985) and in
some species of the genus Anguilla, although some of these
reports have been questioned (Wiberg, 1983; Sola ef al.,
1984). Multiple sex chromosomes systems are rare within

this group, but there is a description of a
X1X2Y/X1X1X2X2  system in  the  ophichtid
Muraenichthys gymnotus, where females presented

4st+44a (2n = 48) and males characterized by 1m+4st+42a
(2n =47) (Murofushi and Yosida, 1984).

According to Brum and Galetti (1997), diploid and
fundamental numbers equal to 48 should be regarded as a
synapomorphy for modern Teleosteans (Euteleostei) and
Clupeomorpha. Since this trend is observed in these high
taxonomic categories, the Anguilliformes (Elopomorpha)
seem to have diverged from this pattern as a result of the re-
duction in the diploid number through chromosomal rear-
rangements, such as centric or in tandem fusions, followed
by pericentric inversions.

In contrast with Perciformes, usually characterized
by both numerical and structural karyotypic homogeneity
(Molina, 2006), the Anguilliformes revealed structural
chromosomal bands that suggest different levels of chro-
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matin organization (Bernardi and Bernardi, 1990; Salva-
dori et al., 1997, Pichiri et al., 2000; Salvadori et al., 2003).

Although the pattern of heterochromatin distribution
is known for only a few Anguilliformes, the available re-
ports indicate the presence of large heterochromatic blocks
at pericentromeric positions or encompassing the whole
length of the short arms of several chromosomes (Deiana et
al., 1990). Despite this, heterochromatic regions in M.
ocellatus and M. pavonina were reduced and restricted to
centromeric position on chromosomes. The Atlantic
Muraenidae species E. nigricans, G. miliaris and G. vicinus
presented a higher heterochromatin content with positive
C-bands in nearly all chromosomes and some interspecific
differences. These results are in agreement with previous
studies carried out in this fish family (Cau et al., 1988).

Although the compositional heterogeneity of hetero-
chromatin has been commonly reported in fish (Souza et
al., 1996, among others), there are only few examples in
marine species (Affonso and Galetti, 2005). Significant dif-
ferences in heterochromatin composition have been re-
ported in Gymnothorax unicolor and Muraena helena after
chromosome digestion with restriction enzymes and
CMA3 staining (Salvadori et al., 1997), as well as through
comparisons between Mbol and 5S rDNA sequences
(Pichiri et al., 2000).

Heterochromatinization processes seem to have
played an important role in the karyotypic evolution of
Anguilliformes. Some studies have pointed out the rela-
tionship between a higher heterochromatin content and
chromosomal diversity in fish species (Molina and Galetti,
2002; Molina, 2006). In G. miliaris, extensive heterochro-
matic polymorphisms could be observed in several chro-
mosome pairs. Such polymorphisms involved an expansion
of pericentromeric segments (homologues from pairs 2, 13
and 19), increase of the short arms (homologues of pairs 5,
8, 12 and 15) and differences in heterochromatin location
between homologues (telomeric/centromeric, pairs 5, 11,
13 and 15).

In G. vicinus, size heteromorphisms were identified
in pairs 1, 2 and 6, but could not be related to either differ-
ences in heterochromatin content or to NORs polymor-
phisms. Size heteromorphism and interindividual differ-
ences in centromere position were detected between
homologues of some meta-submetacentric pairs of G.
miliaris, E. nigricans, M. pavonina and M. ocellatus. The
amplification of repetitive sequences led to changes in the
morphology of many chromosome pairs. There are some
reports of this type of heteromorphism within the order
Anguilliformes, for instance in the species Conger
Jjaponicus, Alloconger anagoides and G. eurostus (Takai
and Ojima, 1985).

Polymorphisms of the size of ribosomal sites have al-
ready been identified in Anguilliformes (Wiberg, 1983;
Sola et al., 1984). Ribosomal sites are present in a single
chromosome pair (Salvadori ef al., 1994) and four patterns
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have been reported so far, all of them in Atlantic species: at
a terminal location on the long arms of a submetacentric
chromosome pair such as observed in G. ocellatus
(Porto-Foresti et al., 2005); at the telomeres of the short
arms of a subtelo/submetacentric chromosome pair (as
found herein in M. ocellatus; G. miliaris and E. nigricans);
at a terminal position on the short arms of an acrocentric
pair (such as in M. pavonina); and at an interstitial position,
close to the centromeres on the long arms of an acrocentric
pair (observed herein in G. vicinus).

The NOR pattern has been regarded as a potentially
useful cytotaxonomic marker to species identification
within Muraenidae (Salvadori et al., 1994). Therefore, in E.
nigricans, Ag-NORs were present on the short arms of a
subtelocentric pair (11). In G. miliaris, ribosomal sites were
identified on the short arms of a submetacentric pair at a
telomeric position (12), and in G. vicinus, NORs were lo-
cated interstitially on the long arms of an acrocentric pair
(11), while in M. pavonina, Ag-NORs were observed on the
short arms of an acrocentric pair (12). In the representative
of the family Ophichthidae M. ocellatus, Ag-NORs were
present on the short arms of pair 13 (acrocentric). Second-
ary constrictions equivalent to NORs were commonly ob-
served in all analyzed species. Moreover, there was no
association of heterochromatic segments with ribosomal
sites, as previously observed in other fish groups (Artoni et
al., 1999).

Compared to Perciformes (Euteleostei), which often
present a basal 2n = 48, many acrocentric chromosomes
and a low heterochromatic content, the karyotypic pattern
of Anguilliformes, as demonstrated in the present study, is
characterized by large meta-submetacentric chromosomes
and some large acrocentric elements, possibly originated
through centric or in tandem fusions, as well as by hetero-
chromatin accumulation. The karyotypic diversity among
Atlantic morays and eels is reflected in their unique karyo-
types, which can be used for cytotaxonomic purposes.
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