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Abstract

For a better interpretation of variants, evidence-based databases, such as ClinVar, compile data on the presumed rela-
tionships between variants and phenotypes. In this study, we aimed to analyze the pattern of sequencing depth in vari-
ants from whole-exome sequencing data in the 1000 Genomes project phase 3, focusing on the variants present in the
ClinVar database that were predicted to affect protein-coding regions. We demonstrate that the distribution of the se-
quencing depth varies across different sequencing centers (pair-wise comparison, p < 0.001). Most importantly, we
found that the distribution pattern of sequencing depth is specific to each facility, making it possible to correctly assign
96.9% of the samples to their sequencing center. Thus, indicating the presence of a systematic bias, related to the
methods used in the different facilities, which generates significant variations in breadth and depth in whole-exome se-
quencing data in clinically relevant regions. Our results show that methodological differences, leading to significant het-
erogeneity in sequencing depth, may potentially influence the accuracy of genetic diagnosis. Furthermore, our findings
highlight how it is still challenging to integrate results from different sequencing centers, which may also have an impact
on genomic research.
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Introduction

Whole exome sequencing (WES) has emerged as a

powerful tool in genomic medicine as it provides the possibil-

ity of interrogating the genome in its most interpretable por-

tion (Coffey et al., 2011; Mahon, 2016). This strategy has

identified causal variants in several Mendelian diseases with a

high success rate (Gilissen et al., 2012; Shamseldin et al.,

2017). Therefore, the use of WES has proven to add relevant

diagnostic information, and it is currently widely used in med-

ical practice (Linderman et al., 2014; Suwinski et al., 2019;

Ulintz et al., 2019). However, several methodological issues

can affect the results obtained by WES and may influence its

interpretation (Sulonen et al., 2011; Hardwick et al., 2017).

The capture experiment, followed by the enrichment

phase, is a crucial step to ensure success in WES since it is

essential to determine reads uniformity, depth, and overall

quality of sequencing (Chilamakuri et al., 2014; Wang et al.,

2017). One of several parameters used for quality control on

massively parallel DNA sequencing experiments is the

depth of coverage, which refers to the average number of se-

quenced and adequately aligned bases or reads to a specific

genomic position or region (Elmas et al., 2018). Its expected

value is one of the first parameters to be estimated in the

study design of a given sequencing experiment (Sims et al.,

2014). In WES, the depth varies greatly, so that even when

the expected average depth is high, the capture of some re-

gions may still be problematic, leading to an uneven distri-

bution of sequencing depth (Lelieveld et al., 2015). It is

well-known that the results obtained from massively parallel

DNA sequencing technologies may suffer some biases due

to the experimental design, sample selection, sequencing

strategies, and variant calling methods (Asan et al., 2011;

Hwang et al., 2016; Meienberg et al., 2016; Van Allen et al.,

2016). In this context, we aimed to analyze the pattern of se-

quencing depth in variants from WES data in the 1000

Genomes project phase 3, focusing on the variants present in
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the ClinVar database that were predicted to affect protein-

coding regions.

Materials and Methods

We used the public binary alignment map files (BAM)

available from the 1000 Genomes Project Consortium FTP

web page to calculate the depth of sequencing variations

from ClinVar entries in 1,112 WES samples from sequenc-

ing phase 3 (Table S1). We guarantee the integrity of the an-

alyzed BAM files by automatically generating and checking

the MD5 code of each downloaded file by implementing an

automatic script. If there were any discrepancies between the

MD5 codes provided by the 1000 Genomes Project and the

one obtained by us, we performed the download once again.

The samples were all sequenced in an Illumina HiSeq 2000

with a paired-end sequencing reaction in four different se-

quencing facilities listed below. Each center participating in

the consortium applied a different WES capture methodol-

ogy: the Baylor College of Medicine (BCM) applied a cus-

tomized array HSGC VCRome, the Broad Institute (BI) used

Agilent SureSelect All Exon v2, the Beijing Genomics Insti-

tute (BGI) used NimbleGenSeqCap EZ Exome v2, and the

Washington University Genome Center (WUGC) used

NimbleGenSeqCap EZ Exome v3.

We extracted 282,453 variants from ClinVar (built

20170801, GRCh37.p13) (Landrum et al., 2018) and per-

formed variant annotation using the Ensembl Variant Effect

Predictor (VEP version 84) using the default parameters

(McLaren et al., 2016). Overall, 4,543 variants were classi-

fied as exonic in the autosome chromosomes and had a pre-

dicted impact on mRNA and protein structure and function

(121 were classified as high, 2,166 moderate, 1,641 low, and

615 as a modifier). We provide the variant calling file con-

taining these targets as File S2. We used “samtools depth”

(version 1.3.1) to estimate the base-by-base depth of the

4,543 selected variants for each of the BAM files, accepting

reads with sequencing and mapping quality greater than 30

(99.9% reliability) (Li et al., 2009; Li, 2011). We then per-

formed the merging of each of the BAM files with the cover-

age of our ClinVar targets.

We conducted all further analyses using the R statisti-

cal environment (version 3.3.2) (R Core Team, 2014). First,

we tested the assumption of no difference in the pattern of

sequencing depths in each of the four sequencing centers

with a Mann-Whitney-Wilcoxon test with continuity correc-

tion in the normal approximation for the p-value. We also

applied a multidimensional scaling (MDS) method over the

resulting depth in each region and compared the different

groups, addressing the data high-dimensionality issue, and

obtained a low-dimensional representation of the data

(Kruskal and Wish, 1978). We show the results obtained us-

ing R packages to process and generate conventional and

interactive charts (plyr 1.8.4, plotly 4.8.0, ggplot2 3.0.0).

Furthermore, we visually recorded the variation in depth of

sequencing in the different sequencing centers with a

heatmap (heatmaply 0.9.1) of the 450 variants, which pre-

sented the higher variance across samples. We apply a

method of clustering to this high variability subset of targets

by using the k-means algorithm, considering a total of 5

groups (Macqueen, 1967).

Results

The average sequencing depth from the selected 4,543

variants from ClinVar differed significantly among the se-

quencing centers (pairwise comparisons with Mann-

Whitney-Wilcoxon test, p < 0.001), with an average depth of

82.8 � 67.6 for the BCM, 123.0 � 85.6 for the BGI, 86.6 �

79.2 for the BI, and 49.4 � 33.8 for the WUGSC (Figure 1A,

File S2).

The multidimensional scaling analysis corroborates

that the pattern of sequencing depth clusters according to

each sequencing center, with 69% of the variance explained

by the first two principal components in the principal com-

ponent analysis (PCA, Figure 1B, File S2). This indicates

that protocol advancement and intrinsic methodological dif-
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Figure 1 - Variation in depth of sequencing in different sequencing centers.

Depth distribution varies significantly (p < 0.001) among samples from the

four sequencing centers included in this study (BCM - Baylor College of

Medicine, BI - Broad Institute, BGI, and WUGC - Washington University

Genome Center). (A) Density distributions for regions from ClinVar with

depth from 0 to 400, with an average of 82.8 � 67.6 for BCM, 123.0 � 85.6

for BGI, 86.6 � 79.2 for BI, and 49.4 � 33.8 for WUGSC. (B) Principal com-

ponent analysis (PCA) corroborates our findings, with an explained vari-

ance of 69.0% for the first two components. Complete depth distribution

and an interactive 3D version of Figure 1B is available as File S3.



ferences in each of the sequencing centers directly affect the

pattern of the sequencing depth in the set of variants ana-

lyzed. The inconsistency in the depth and breadth of cover-

age across samples introduces a systematic bias in the results

generated by each center. Sequencing depth is a measure-

ment of how many times a certain variant was sequenced

while the breadth is the capability of adequately capturing

and sequencing a given region.

Furthermore, by analyzing the distribution of the se-

quencing depth of the 450 variants with higher variance, we

could correctly assign 96.9% of the samples to their sequenc-

ing center when considering five clusters to the dendrogram

branches depicted in Figure 2 and File S3. This finding also

supports the existence of different coverage patterns for each

sequencing center, evidenced in the individual coverage of

each of the samples considered in these analyses.

Discussion

Understanding how the depth of sequencing varies in

sequencing experiments is essential to find a balance be-

tween the number of reads necessary to answer a genetic

question and the costs and efforts required to do so (Sims et

al., 2014; Meienberg et al., 2015; Lek et al., 2016). The use

of WES over WGS reduces the broad genomic region to be

analyzed, dropping costs and allowing it to be more widely

used in medical practice (Hu et al., 2017; Manrai et al.,

2018; Suwinski et al., 2019). The public availability of data

from large genomic projects performed by worldwide con-

sortia, such as ExAC, ESP, 1000 Genomes Project, UK10K,

and GoNL, is of the utmost importance for both research and

medical applications of these technologies (van Rooij et al.,

2017). However, one should consider the existence of meth-

odological covariates that may introduce potential bias into

the sequencing data. In our case, the possible

false-negatives, which could, for example, mask the allelic

frequency of a given variant returned from a sequencing cen-

ter. Thus, we note the possibility of considering certain vari-

ants as “false-rares,” since their frequency would be dimin-

ished in the variant discovery process (Schaid et al., 2018).

Kong et al. (2018) argue that both researchers and pa-

tients could benefit from clearer methodological specifica-

tions from vendors. We agree and believe that initiatives that

propose the public availability of data should also provide as

many technical informaion as possible. This could help users

to evaluate better any bias related to the technique or meth-

odology used to generate or to interpret the data, which could

lead to erroneous or discordant clinical interpretations, for

example. Here, we focused on variants that are likely to have

clinical significance (comprising of 4,543 variants), since

they were predicted to promote mRNA changes and/or pro-

tein structure and function alterations related to a phenotype

described in ClinVar (File S2). By doing so, we aimed to as-
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Figure 2 - Variation in sequencing depth across sequencing centers and coding impact. Heatmap showing variation in depth across sequencing centers for

the 450 variants with higher variance across samples. Each row represents a sample from one of the sequencing centers (BCM - Baylor College of Medi-

cine, BI - Broad Institute, BGI, and WUGC - Washington University Genome Center). 96.9% of samples are correctly assigned to their sequencing cen-

ters when considering five clusters to the dendrogram branches. The columns represent each one of the variants, with their impact classified as high, mod-

erate, low, or modifier, which is an indicator that the coding impact does not influence the depth of coverage (p > 0.05 for each pair comparisons). An

interactive version of this figure is available as File S4.



sess the potential impact of variability in sequencing depth

on genetic diagnosis performed by WES. This is especially

relevant when a diagnostic test fails to report a variant since

this could indicate either a true negative, when the genomic

position of the variant is adequately captured and sequenced

or a false negative when the variant is not captured or appro-

priately sequenced (Patwardhan et al., 2015; Shigemizu et

al., 2015; Karlsson Linnér et al., 2019).

Our results indicate that the distribution of sequencing

depth varied across different sequencing centers from the

1000 Genomes Project, phase 3 (pairwise comparisons, p <

0.001). Most importantly, we found that there is a pattern of

distribution in sequencing depth, which is specific to each

facility (Figure 1). These findings are evidenced by the clus-

tering of samples by PCA (69% of variance explained) and

clustering of more than 95% of the samples to their sequenc-

ing centers when considering sites with highly variant cover-

age. These findings indicate that these patterns may be re-

lated to the methodologies used by each center. It is certainly

likely that there are specific regions that differentially failed

to generate adequate coverage, either due to design or cap-

ture efficiency (Altmüller et al., 2016; García-García et al.,

2016). That means that a variant could be missed in any spe-

cific patient who was sequenced using a certain methodol-

ogy specific to the sequencing center where the experiment

was conducted, generating a serious problem imposed on

clinical sequencing. One other piece of evidence that corrob-

orates this is the wide standard deviation found for each of

the sequencing facilities, indicating an unspecific capture re-

action. The inconsistency in the breadth and depth across the

targets comprising of the medically relevant variants de-

mands the attention of professionals and patients seeking di-

agnosis by WES. Such an example happens with the estab-

lishment of the expanded or clinical exome capturing kits,

which tend to maximize variant discovery resolution, but

potentializes capture bias as well (Shamseldin et al., 2017;

Suwinski et al., 2019). This finding also raises questions

about the low frequency of a given variant that may be due to

the methodological bias described in this work.

When performing WES, a critical experimental step is

the capture reaction. It is well known that the efficiency of

capture depends on several experimental procedures as well

as on probe design, which may directly affect sequence

depth and uniformity (Do et al., 2012; Chandler et al., 2016).

Therefore, problems in the capturing reaction directly affect

the final experiment results, yielding not only regions with

different average depths but also leading to regions with no

coverage at all (Lionel et al., 2018; Wang et al., 2018). We

demonstrated here that differences, most likely attributed to

the different methods used by the sequencing centers, pro-

ved to play a significant role in determining the distribution

of sequencing depth in WES data from the 1000 Genomes

Project. We understand that the methodological variability

in the 1000 Genome Consortium could be the best way to

achieve a more in-depth and broader variant catalog capable

of establishing the bases to understand population allele fre-

quency; however, it is also important to recognize the limita-

tions imposed by the methods used. This finding represents a

challenge for large or long-term exome sequencing projects

that expect to aggregate advancements in capture techniques

over time (McCarthy and MacArthur, 2017; Sanghvi et al.,

2018). In addition, it poses questions about the

reproducibility of results among different diagnostic labora-

tories performing WES, indicating the need for further dis-

cussion about the use of clear open methods (both from the

wet and dry lab), which could minimize such bias (Eberle et

al., 2017; Haga, 2017; Roy et al., 2018). The proposal of re-

turning information not only on the variants identified but

also about the methods used, including the regions analyzed

and all the characteristics of the sequencing reaction, could

minimize misinterpretation, which directly influences the

accuracy of genetic testing.

Conclusions

Our results indicate that the sequencing depth in WES

varies significantly across different facilities, leading to a

systematic bias, which is most likely introduced by technical

differences. Our findings indicate that the low coverage or

lack of consistency between WES methodologies has direct

clinical applications. It may introduce false-negatives into

experiments performed for diagnostic purposes and results

in variants with a lower frequency than expected. Our results

are not surprising, given that the initial step for a WES exper-

iment is the capture of the target regions to be subsequently

enriched and sequenced and that this step is susceptible to

the effects of many technical factors. Although difficult to

address, the issue of standardized and open methodologies

should be further discussed.
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The following online material is available for this article:

Table S1. Detailed information on the public data we used

from the 1000 Genomes Project Consortium (doc).

File S2. Variant calling file containing 4,543 variants from

ClinVar (vcf). We extracted 282,453 variants from ClinVar

(built 20170801, GRCh37.p13) and performed variant anno-

tation using the Ensembl Variant Effect Predictor (VEP ver-

sion 84) using the default parameters. Four thousand five

hundred forty-three variants were classified as exonic and

had a predicted impact on function (121 were classified as

high, 2,166 moderate, 1,641 low, and 615 as a modifier).

File S3. Distribution of depth and PCA analysis for different

sequencing centers, as depicted in Figure 1 (HTML). Figure

1A shows a complete distribution of depth of sequencing and

an interactive 3D version of Figure 1B. Better visualized in

Google Chrome.

File S4. Variation in depth across sequencing centers and

coding impact data from Figure 2 (HTML). Heatmap show-

ing the variation of depth across sequencing centers of the

450 variants with higher variance. Each row represents a

sample from one of the sequencing centers (BCM - Baylor

College of Medicine, BI - Broad Institute, BGI, and WUGC -

Washington University Genome Center). The columns rep-

resent each one of the variants, with their impact classified as

high, moderate, low, or modifier. Better visualized in

Google Chrome.
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