


Research Article

# Interleukin-8-251T > A, Interleukin-1 $\alpha$ -889C > T and Apolipoprotein E polymorphisms in Alzheimer's disease

Alex Augusto Vendramini<sup>1</sup>, Roger Willian de Lábio<sup>2</sup>, Lucas Trevizani Rasmussen<sup>2,3</sup>, Nathali Mattiuzo dos Reis<sup>2,3</sup>, Thais Minett<sup>4</sup>, Paulo Henrique Ferreira Bertolucci<sup>4</sup>, Marcela Augusta de Souza Pinhel<sup>5</sup>, Dorotéia Rossi Silva Souza<sup>5</sup>, Diego Robles Mazzotti<sup>3</sup>, Marília de Arruda Cardoso Smith<sup>3</sup> and Spencer Luiz Marques Payão<sup>1,2</sup>

#### Abstract

An inflammatory process has been involved in numerous neurodegenerative disorders such as Parkinson's disease, stroke and Alzheimer's disease (AD). In AD, the inflammatory response is mainly located in the vicinity of amyloid plaques. Cytokines, such as interleukin-8 (IL-8) and interleukin-1 $\alpha$  (IL-1 $\alpha$ ), have been clearly involved in this inflammatory process. Polymorphisms of several interleukin genes have been correlated to the risk of developing AD. The present study investigated the association of AD with polymorphisms IL-8 -251T > A (rs4073) and IL-1 $\alpha$ -889C > T (rs1800587) and the interactive effect of both, adjusted by the Apolipoprotein E genotype. 199 blood samples from patients with AD, 146 healthy elderly controls and 95 healthy young controls were obtained. DNA samples were isolated from blood cells, and the PCR-RFLP method was used for genotyping. The genotype distributions of polymorphisms IL-8, IL-1 $\alpha$  and APOE were as expected under Hardy-Weinberg equilibrium. The allele frequencies did not differ significantly among the three groups tested. As expected, the APOE4 allele was strongly associated with AD (p < 0.001). No association of AD with either the IL-1 $\alpha$  or the IL-8 polymorphism was observed, nor was any interactive effect between both polymorphisms. These results confirm previous studies in other populations, in which polymorphisms IL-8 -251T > A and IL-1 $\alpha$ -889C > T were not found to be risk factors for AD.

Key words: IL-8, IL-1α, Alzheimer's Disease, APOE, inflammatory response.

Received: January 20, 2010; Accepted: June 17, 2010.

#### Introduction

Alzheimer disease (AD) is a progressive neurodegenerative disorder that causes loss of memory, mental confusion and several cognitive disturbances. It frequently occurs at around 60 years of age, but may also have an early onset at 40 years (Khachaturian, 1985). Dementia is an increasingly common diagnosis in the aging population, and the numbers are expected to rise exponentially in coming years. AD alone affects 5 million people in the US, while millions more are currently affected by vascular dementia,

Send correspondence to Spencer Luiz Marques Payão. Laboratório de Genética, Hemocentro, Faculdade de Medicina de Marília, Rua Lourival Freire 240, Bairro Fragata, 17519-050 Marília, SP, Brazil. E-mail: slmpayao@famema.br.

Lewy body disease and frontotemporal dementia (Grossman *et al.*, 2006).

Two neuropathological features characterize the AD brain: amyloid plaques and neurofibrillary tangles. Plaques are mostly characterized by extracellular deposits of amyloid- $\beta$  peptide (A $\beta$ ), which is derived from the processing of the amyloid precursor protein (APP). Neurofibrillary tangles correspond to intracellular accumulation of fibrils called paired helical filaments (Cacquevel *et al.*, 2004). In this sense, the neurological implications of AD come from the coexistence of two degenerative processes, tau protein aggregation and A $\beta$  deposition, that affect polymodal association brain areas, a feature never observed in non-human primates and difficult to model (Delacourte, 2006).

<sup>&</sup>lt;sup>1</sup>Pós-Graduação em Biologia Oral, Universidade do Sagrado Coração, Bauru, SP, Brazil.

<sup>&</sup>lt;sup>2</sup>Disciplina de Genética, Hemocentro, Faculdade de Medicina de Marília, Marília, SP, Brazil.

<sup>&</sup>lt;sup>3</sup>Departamento de Morfologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.

<sup>&</sup>lt;sup>4</sup>Disciplina de Neurologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.

<sup>&</sup>lt;sup>5</sup>Núcleo de Pesquisa em Bioquímica e Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil.

2 Vendramini et al.

Familial early-onset AD is associated with mutations in the APP and presenilin genes, whereas only a polymorphic variation at the apolipoprotein E (APOE) locus, the  $\epsilon$  4 allelic form has so far been firmly established as a genetic risk factor for late-onset familial and sporadic AD. However, these genetic risk factors only account for about 30-50 percent of all cases of AD. Thus, an interaction between genetic, biological and environmental factors might account for most AD cases, by promoting inflammatory reactions, particularly those mediated by the release of interleukin-1 $\alpha$  (IL-1 $\alpha$ ) from microglial cells of the brain (Hayes *et al.*, 2004).

Infection or injury of the body results in inflammation. A hallmark of this response is the recruitment of neutrophils from the blood to the injured tissue. This process could be directed by chemotactic polypeptides, the socalled chemokines (Zlotnik and Yoshie, 2000). Chemokines are low-molecular-weight chemotactic cytokines that have been shown to play an important role in early inflammatory events (Baggiolini et al., 1994). So far, microglial cells were shown to display an increased migratory response to β chemokines, including monocyte chemotactic protein 1 (MCP-1), suggesting that these molecules may play an important role in the trafficking of mononuclear phagocytes within the brain (Peterson et al., 1997). It is widely accepted that chronic inflammatory reaction plays an important role in the pathogenesis of AD, and a variety of inflammatory factors, including cytokines and chemokines, have been detected in and around plagues and tangles (Galimberti et al., 2006; Pomponi et al., 2008). Moreover, elevated levels of chemokines are demonstrable in the brain in neurodegenerative diseases, such as AD, whereas in healthy brains they are detected at low levels (Galimberti et al., 2006). Thirumangalakudi et al. (2008) made an immunohistochemical analysis of activated microglia and astrocytes as neuroinflammation markers, cytokines expression and cognitive alteration in C57/BL6 and low--density lipoprotein receptor (LDLR) (-/-)-deficient mice fed a fat/cholesterol-rich diet. Their findings link hypercholesterolemia with cognitive dysfunction potentially mediated by increased neuroinflammation and APP processing in a non-transgenic mouse model.

IL-8 enhances the survival of hippocampal neurons *in vitro* and increases the proliferation of glial cells (Araujo and Cotman, 1993). Strong immunoreactivity for CXCR2 (chemokine (C-X-C motif) receptor 2), the IL-8-related receptor, has been demonstrated in both AD and age-matched subjects with non-inflammatory affections of the nervous system. In particular, CXCR2 expression in AD is close to neuritic plaques, surrounding Aβ deposits (Galimberti *et al.*, 2003, 2006). Increased IL-1 expression, in the form of higher tissue concentrations of the IL-1 protein and increased numbers of IL-1 immunoreactive astrocytes, has been demonstrated in the brains of patients with AD and in those elderly individuals with Down syndrome who show

AD-type pathology in their brains (Griffin et al., 1989). Polymorphisms located in the promoter regions of the IL-1α and IL-8 genes have been widely studied as risk factors for AD. For instance, the IL- $1\alpha$ -889C > T polymorphism was strongly associated with late-onset AD in samples from two different centers: Indianapolis, IN, USA, and Munich, Germany (Du et al., 2000). However, other studies conducted in different populations did not show this association (Kuo et al., 2003; Tang et al., 2004; Zhou et al., 2006; Dursun et al., 2009; Hu et al., 2009). In addition, Infante et al. (2004) reported that neither the presence of the IL-1 $\alpha$ -889 T allele nor the presence of the IL-8 -251T > A polymorphism TT genotype was associated with AD in Caucasians originating from a homogeneous population in a limited geographical area in Northern Spain. However, subjects carrying both the IL-1A allele T and the IL-8 TT genotype had about twice the risk of developing AD than subjects without these genotypes.

In the present study, we characterized the IL-8 -251T > A and IL-1 $\alpha$ -889C > T polymorphisms in AD patients, healthy young and elderly control groups. We also investigated a possible interactive effect between these polymorphisms in the developing of AD, as proposed by Infante *et al.* (2004)

#### Materials and Methods

#### Patients and controls

Peripheral blood samples were obtained from 440 Brazilian individuals: 199 AD patients, 146 healthy elderly controls (EC) and 95 healthy young controls (YC).

The sample of AD patients was composed of 87.44% subjects of European origin, 6.80% of Japanese origin and 5.76% of African origin; the sample of elderly controls was composed of 89.78% subjects of European origin, 5.84% of Japanese origin and 4.38% of African origin; and the sample of young controls was composed of 87.65% subjects of European origin, 6.8% of Japanese origin and 4.75% of African origin. Thus, there was no difference in the ethnic distribution of the three groups. The mean age and standard deviation of the samples was:  $73.81 \pm 7.95$  years in the AD group, composed of 68 men and 131 women;  $71.25 \pm 9.02$ years in the EC group, composed of 53 men and 93 women; and  $20.56 \pm 1.64$  years in the YC group, composed of 31 men and 64 women. The AD patients were selected according to the NINCDS-ADRDA criteria for probable AD (McKhann et al., 1984). Vascular dementia was excluded by a Hachinski score of 5 or higher and by neuro-imaging (Hachinski et al., 1975). Patients as well as controls were from São Paulo City, and all subjects gave informed consent for participation in this study, which was approved by the USC (Universidade do Sagrado Coração de Bauru) ethics committee (Protocol number 0110/2004). The control groups were composed of relatives (spouse or children) or

friends of the patients. For these groups, exclusion criteria were a history and examination findings suggestive of neurological (seizure, brain trauma with loss of consciousness longer than 15 min, stroke, Parkinson's disease) or psychiatric disease (depression and substance abuse, including alcohol), and evidence of functional decline as shown by a structured questionnaire. All experiments were conducted in accordance with the Declaration of Helsinki.

## Laboratory analysis

Total genomic DNA was extracted from blood samples using a Qiagen extraction kit, according to the manufacturer's instructions.

IL-8 - 251T > A genotyping: IL-8 - 251T > A genotypes were determined using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method. A 349 bp fragment was amplified from genomic DNA using the forward and reverse oligonucleotides IL-8F1 5'-CAT GAT AGC ATC TGT AAT TAA CTG-3' and IL-8R2 5'-CTC ATC TTT TCA TTA TGT CAG AG-3', respectively, as described previously (Hamajima et al., 2003). PCR conditions involved an initial denaturation step of 94 °C/5 min, followed by 30 cycles of 94 °C for 45 s, 52 °C for 45 s, 72 °C for 1 min, and a final extension step of 72 °C for 7 min. The amplification products were digested with MunI restriction enzyme (Fermentas, Ottawa, ON, Canada), subjected to electrophoresis on a 3% agarose gel, stained with ethidium bromide and analyzed on an Alpha Imager 2200 (Alpha Innotech Corporation, San Leandro, CA, USA). After digestion, three different band combinations were found, viz. a 349 bp fragment (TT genotype), 202 and 147 bp fragments (AA genotype); and 349, 202 and 147 bp fragments (TA genotype).

 $IL-1\alpha-889C > T$  genotyping:  $IL1\alpha-889C > T$  genotypes were also determined using PCR- RFLP. A 194 bp fragment was amplified from genomic DNA using the forward and reverse oligonucleotides IL-1AF1 5'-GCA TGC CAT CAC ACC TAG TT-3' and IL-1AR1 5'-TTA CAT ATG AGC CTT CCA TG-3', respectively, as described previously (Tanriverdi et al., 2006). The PCR conditions included an initial denaturation step of 94 °C for 5 min, followed by 40 cycles of 94 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s, and a final extension step of 72 °C for 7 min. The amplification products were digested with NcoI (Fermentas, Ottawa, ON, Canada), subjected to electrophoresis on a 3% agarose gel, stained with ethidium bromide and analyzed on an Alpha Imager 2200 (Alpha Innotech Corporation, San Leandro, CA, USA). After digestion, again three different results were found: a 194 bp fragment (TT genotype); 174 and 20 bp fragments (CC genotype); and 194, 174 and 20 bp fragments (TC genotype). The 20 bp fragments could not be visualized in the agarose gel.

APOE genotyping: The APOE genotypes were determined by PCR-RFLP using the oligonucleotides and reaction conditions described by Hixson and Vernier (1990).

The amplification products were digested with *Hha*I (Fermentas, Ottawa, ON, Canada), subjected to electrophoresis on a 4% NuSieve<sup>®</sup> GTG<sup>®</sup> agarose gel (Cambrex, Rockland, ME, USA), stained with ethidium bromide and analyzed on an Alpha Imager 2000 (Alpha Innotech Corporation, San Leandro, CA, USA).

## Statistical analysis

The chi-square test was used to compare categorical variables and to test the deviation from the Hardy-Weinberg equilibrium for each polymorphism. A value of p < 0.05 was considered statistically significant, and all tests were two-tailed. Logistic regression was used to investigate the individual relationships and interactive effect between independent variables (carriers versus non-carriers of the IL-1α T allele, and carriers versus non-carriers of the IL-8 TT genotype). This approach was based on the findings of Infante et al. (2004), who suggested an interactive effect of the IL-1A allele and the IL-8 TT genotype. For this analysis, we considered both polymorphisms as dependent variables, and gender, age and APOE genotype groups as co-variables in the model. The crude odds ratio (OR) was calculated considering the AD group genotypes in relation to the genotypes of the elderly and of the young control groups, using gender and age as co-variables. The adjusted odds ratio (OR) by APOE genotype considered three groups of APOE genotypes: 1) E2E2 with E2E3; 2) E3E3; and 3) E3E4 with E4E4, as well as gender and age as co-variables. Ninety-five percent confidence intervals were calculated. The statistical analyses were performed using the SPSS 16.0 package.

#### Results

Table 1 presents the *IL-8*-251T > A and *IL1* $\alpha$ -889C > T genotype distributions in the AD, EC and YC subject groups. The APOE genotype distributions among the three subject groups are also shown in Table 1. There were no statistically significant differences concerning gender among the subject groups (p = 0.22; data not shown).

The genotype distributions concerning the IL-8 -251T > A and the IL-1 $\alpha$ -889C > T polymorphism were in Hardy-Weinberg equilibrium in all three subject groups. The APOE genotype distribution was also in Hardy-Weinberg equilibrium in the three subject groups. The comparison of the genotype frequency distribution in the AD patients and the EC group did not show any significant difference for either IL-8 - 251T > A (p = 0.05) or IL-1  $\alpha$ -889C > T (p = 0.23). Similarly, no significant difference was found in the comparison between AD patients and the YC group (Table 1).

Logistic regression analysis did not detect an association of AD with any of the polymorphisms individually. An interactive effect of both polymorphisms in our tri-hybrid Brazilian population was not detected (Tables 1 and 2). As expected, logistic regression analysis revealed a strong as-

4 Vendramini et al.

**Table 1** - Absolute and relative genotype frequencies of the IL-8 and IL- $I\alpha$  polymorphisms and APOE genotypes in an Alzheimer's disease patient group (AD) and in an elderly (EC) and a young (YC) healthy control groups.

| IL-8 - 251T > A*         | AD           | EC           | YC          |  |
|--------------------------|--------------|--------------|-------------|--|
| A/A                      | 47 (23.62%)  | 28 (19.18%)  | 19 (20%)    |  |
| T/A                      | 101 (50.75%) | 63 (43.15%)  | 49 (51.8%)  |  |
| T/T                      | 51 (25.63%)  | 55 (37.67%)  | 27 (28.42%) |  |
| $IL-1\alpha$ -889C > T** | k            |              |             |  |
| C/C                      | 96 (48.24%)  | 78 (53.42%)  | 58 (61.05%) |  |
| T/C                      | 84 (42.21%)  | 61 (41.78%)  | 30 (31.58%) |  |
| T/T                      | 19 (9.55%)   | 7 (4.79%)    | 7 (7.37%)   |  |
| APOE genotype            |              |              |             |  |
| E2/E2                    | 0 (0%)       | 1 (0.68%)    | 1 (1.05%)   |  |
| E2/E3                    | 11 (5.53%)   | 11 (7.53%)   | 15 (15.79%) |  |
| E3/E3                    | 85 (42.71%)  | 117 (80.14%) | 55 (57.89%) |  |
| E2/E4                    | 7 (3.52%)    | 2 (1.38%)    | 1 (1.05%)   |  |
| E3/E4                    | 78 (39.20%)  | 14 (9.59%)   | 20 (21.05%) |  |
| E4/E4                    | 18 (9.04%)   | 1 (0.68%)    | 3 (3.17%)   |  |
| Total                    | 199 (100%)   | 146 (100%)   | 95 (100%)   |  |

<sup>\*</sup>Chi-square test p value for AD x EC = 0.056; for AD x YC = 0.751.

sociation of the E4 allele in AD patients in relation to the EC (OR = 8.137, 95% CI = 4.569-14.489, p < 0.001) and YC (OR = 3.174, 95% CI = 1.850-5.446, p < 0.001) groups (data not shown).

# Discussion

This study was the first one to investigate a potential association of polymorphisms IL-8 -251T > A and IL-1 $\alpha$ -889C > T with AD in a Brazilian population. The genotype distributions of polymorphisms IL-8, IL-1 $\alpha$  and APOE in the three subject groups were in Hardy-Weinberg equilib-

rium. We did not observe an association of IL-8 -251T > A and/or IL-1 $\alpha$ -889C > T with AD. The findings concerning IL-8 -251T > A confirmed our previous study with a smaller sample (Vendramini  $et\ al.$ , 2007), which did not detect an association of this polymorphism with AD either. Infante  $et\ al.$  (2004) also observed a lack of association of polymorphisms IL-1 $\alpha$ -889C > T and IL-8 -251T > A with AD. No association of the IL1-A polymorphism with AD was also reported in Chinese samples from Taiwan (Kuo  $et\ al.$ , 2003), from the Chengdu area (Tang  $et\ al.$ , 2004), and in a Han population (Hu  $et\ al.$ , 2009). Similarly, the IL-1 $\alpha$ -889C > T polymorphism was not associated with AD either in individuals from the Canary Islands, Spain (Deniz-Naranjo  $et\ al.$ , 2008) or in a homogeneous Caucasoid population from northern Spain (Infante  $et\ al.$ , 2004).

No interactive effect of the IL- $I\alpha$ -889T allele and the IL-8 TT genotype concerning the AD group in relation to EC and YC was detected (Tables 1 and 2). However, our findings differed from those of Infante  $et\ al.$  (2004). This discrepancy may be due to the distinct ethnic composition of both populations. As it is well known, the Brazilian population is mainly composed of European, African and Amerindian descendants. Other variables, such as the AD age of onset or another undetectable stratification bias may also be involved.

Our findings concerning the lack of association of IL8 and IL1 with AD and of an interactive effect between them were consistent with the great majority of reports from different population samples. Hence, taking together our results with others from the literature, it appears that IL-8 -251T > A and IL-1 $\alpha$ -889C > T do not play a major role in the pathogenesis of late-onset AD.

# Acknowledgments

This research was supported by Fundação de Amparo à Pesquisa de São Paulo (FAPESP, Brazil), Grant number -

**Table 2** - Odds ratio (OR) - crude and adjusted by APOE genotype – and 95% confidence interval (CI) for interaction between IL- $I\alpha$  T allele and IL-8 TT genotype obtained from logistic regression analysis concerning Alzheimer's disease (AD) and elderly controls (EC), and Alzheimer's disease (AD) and young controls (YC).

| <i>IL-1</i> α T allele | IL-8 TT genotype | AD (%) | EC (%) | OR(95%CI)           | p*   | OR(95%CI)           | p**  |
|------------------------|------------------|--------|--------|---------------------|------|---------------------|------|
| -                      | -                | 35.70  | 33.60  | 1 (reference)       |      | 1 (reference)       |      |
| -                      | +                | 12.60  | 19.90  | 0.595 (0.312-1.136) | 0.12 | 0.542 (0.277-1.060) | 0.07 |
| +                      | -                | 38.70  | 28.80  | 1.265 (0.750-2.135) | 0.38 | 1.110 (0.639-1.926) | 0.71 |
| +                      | +                | 13.10  | 17.80  | 0.690 (0.359-1.328) | 0.27 | 0.553 (0.278-1.097) | 0.09 |
| IL-1α T allele         | IL-8 TT genotype | AD (%) | YC (%) | OR(95%CI)           | p*   | OR(95%CI)           | p**  |
| -                      | -                | 35.70  | 42.10  | 1 (reference)       |      | 1 (reference)       |      |
| -                      | +                | 12.60  | 18.90  | 0.782 (0.381-1.606) | 0.50 | 0.666 (0.317-1.401) | 0.28 |
| +                      | -                | 38.70  | 29.50  | 1.549 (0.867-2.769) | 0.14 | 1.345 (0.737-2.455) | 0.33 |
| +                      | +                | 13.10  | 9.50   | 1.628 (0.695-3.813) | 0.26 | 1.174 (0.486-2.838) | 0.72 |

<sup>\*</sup>Crude OR. \*\*Adjusted by APOE genotypes.

<sup>\*\*</sup>Chi-square test p value for AD x EC = 0.226; for AD x YC = 0.120.

04/15273-3, Universidade do Sagrado Coração de Bauru (USC) and Faculdade de Medicina de Marília (FAMEMA).

#### References

- Araujo DM and Cotman CW (1993) Trophic effects of interleukin-4, -7 and -8 on hippocampal neuronal cultures: Potential involvement of glial-derived factors. Brain Res 600:49-55
- Baggiolini M, Dewald B and Moser B (1994) Interleukin 8 and related chemotactic cytokines-CXC and CC chemokines. Adv Immunol 55:97-179.
- Cacquevel M, Lebeurrier N, Cheenne S and Vivien D (2004) Cytokines in neuroinflammation and Alzheimer's disease. Curr Drug Targets 5:529-534.
- Delacourte A (2006) The natural and molecular history of Alzheimer's disease. J Alzheimers Dis 9:187-194.
- Deniz-Naranjo MC, Munoz-Fernandez C, Alemany-Rodriguez MJ, Perez-Vieitez MC, Aladro-Benito Y, Irurita-Latasa J and Sanchez-Garcia F (2008) Cytokine IL-1 beta but not IL-1 alpha promoter polymorphism is associated with Alzheimer disease in a population from the Canary Islands, Spain. Eur J Neurol 15:1080-1084.
- Du Y, Dodel RC, Eastwood BJ, Bales KR, Gao F, Lohmuller F, Muller U, Kurz A, Zimmer R, Evans RM et al. (2000) Association of an interleukin 1 alpha polymorphism with Alzheimer's disease. Neurology 55:480-483.
- Dursun E, Gezen-Ak D, Ertan T, Bilgic B, Gurvit H, Emre M, Eker E, Engin F, Uysal O and Yilmazer S (2009) Interleukin-1alpha -889 C/T polymorphism in Turkish patients with late-onset Alzheimer's disease. Dement Geriatr Cogn Disord 27:82-87.
- Galimberti D, Schoonenboom N, Scarpini E and Scheltens E (2003) Dutch-Italian Alzheimer Research group. Chemokines in serum and cerebrospinal fluid of Alzheimer's disease disease patients. Ann Neurol 53:547-548.
- Galimberti D, Schoonenboom N, Scheltens P, Fenoglio C, Bouwman F, Venturelli E, Guidi I, Blankenstein MA, Bresolin N and Scarpini E (2006) Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch Neurol 63:538-543.
- Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL and Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86:7611-7615.
- Grossman H, Bergmann C and Parker S (2006) Dementia: A brief review. Mt Sinai J Med 73:985-992.
- Hachinski VC, Iliff LD, Zilhka E, Du Boulay GH, McAllister VL, Marshall J, Russell RW and Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32:632-637.
- Hamajima N, Katsuda N, Matsuo K, Saito T, Hirose K, Inoue M, Zaki TT, Tajima K and Tominaga S (2003) High anti-Helicobacter pylori antibody seropositivity associated with the combination of IL-8-251TT and IL-10-819TT genotypes. Helicobacter 8:105-110.
- Hayes A, Green EK, Pritchard A, Harris JM, Zhang Y, Lambert JC, Chartier-Harlin MC, Pickering-Brown SM, Lendon CL and Mann DM (2004) A polymorphic variation in the interleukin 1A gene increases brain microglial cell activity in

- Alzheimer's disease. J Neurol Neurosurg Psychiatry 75:1475-1477.
- Hixson JE and Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with *Hha*I. J Lipid Res 31:545-548.
- Hu JL, Li G, Zhou DX, Zou YX, Zhu ZS, Xu RX, Jiang XD and Zeng YJ (2009) Genetic analysis of interleukin-1A C(-889)T polymorphism with Alzheimer disease. Cell Mol Neurobiol 29:81-85.
- Infante J, Sanz C, Fernandez-Luna JL, Llorca J, Berciano J and Combarros O (2004) Gene-gene interaction between interleukin-1A and interleukin-8 increases Alzheimer's disease risk. J Neurol 251:482-483.
- Khachaturian ZS (1985) Diagnosis of Alzheimer's disease. Arch Neurol 42:1097-1105.
- Kuo YM, Liao PC, Lin C, Wu CW, Huang HM, Lin CC and Chuo LJ (2003) Lack of association between interleukin-1alpha polymorphism and Alzheimer disease or vascular dementia. Alzheimer Dis Assoc Disord 17:94-97.
- McKhann G, Drachman D, Folstein M, Katzman R, Price D and Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939-944.
- Peterson PK, Hu S, Salak-Johnson J, Molitor TW and Chao CC (1997) Differential production of and migratory response to beta chemokines by human microglia and astrocytes. J Infect Dis 175:478-481.
- Pomponi M, Bria P and Pomponi M (2008) Is Alzheimer's disease a synaptic disorder? J Alzheimers Dis 13:39-47.
- Tang MN, Zhang ZX, Han HY, Liu XH and Shen Y (2004) Analysis on association between the polymorphisms in apolipoprotein E, interleukin-1 alpha genes and Alzheimer's disease in Chengdu area. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 21:176-178.
- Tanriverdi T, Uzan M, Sanus GZ, Baykara O, Is M, Ozkara C and Buyra N (2006) Lack of association between the IL1A gene (-889) polymorphism and outcome after head injury. Surg Neurol 65:7-10
- Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS and Bhat NR (2008) High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106:475-485.
- Vendramini AA, de Labio RW, Rasmussen LT, Minett T, Bertolucci PH, Smith MAC and Payao SLM (2007) Interleukin-8 gene polymorphism -251T > A and Alzheimer's disease. J Alzheimers Dis 12:221-222.
- Zhou YT, Zhang ZX, Zhang JW, He XM and Xu T (2006) Association between interleukin-1 alpha-889 C/T polymorphism and Alzheimer's disease in Chinese Han population. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 28:186-190.
- Zlotnik A and Yoshie O (2000) Chemokines: A new classification system and their role in immunity. Immunity 12:121-127.

Associate Editor: Francisco Mauro Salzano

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.