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INTRODUCTION

Aspergillus nidulans is a filamentous fungus of
considerable biological interest and importance that pro-
vides an excellent model system for genetic and biochemi-
cal analysis of microtubule-associated functions (Martinez-
Rossi and Azevedo, 1989a,b; Andrade-Monteiro et al.,
1994), among them mitosis and nuclear migration.

Microtubules are filaments composed of dimers of
alpha- and beta-tubulins implicated in a variety of functions,
including ciliary and flagellar movements, cell motility and
cytoplasmic streaming, nucleus and chromosome movement,
maintenance of cell shape, intracellular and axoplasmic
transport, and anchorage of cell surface receptors
(Mandelkow and Mandelkow, 1994). Microtubules are usu-
ally capable of being rapidly assembled and disassembled
and it is known from early microscope studies that they are
not arranged randomly in cells but are organized around
one or more discrete foci (Porter, 1966) called microtubule
organizing centers (MTOCs) (Brinkley, 1985; Oakley, 1994).
MTOCs bind to microtubules and microtubule proteins, and
assembly of microtubules preferentially occurs at these cen-
ters over other regions of the cytoplasm (Koshland, 1994).
Although the function of MTOCs as nucleating centers for
microtubules seems to be well established, there are reports
of filamentous fungi in which microtubules have been noted
not to be associated with MTOCs (O’Donnell and Mc-
Laughlin, 1981; Hoch and Staples, 1985).

Nuclear migration plays an important role in the
growth and development of both higher and lower eukary-
otes. In A. nidulans, nuclear migration is required for proper
nuclear distribution throughout the mycelium and for the
entry of nuclei into sexual spore generation structures (ste-

rigmata) and asexual spores (conidia) (Morris and Enos,
1992; Willins et al., 1995). Morris (1976) isolated a unique
class of recessive temperature-sensitive mutants of A.
nidulans that specifically affect nuclear movement. At the
restrictive temperature (42°C), strains carrying a nud (from
nuclear distribution) mutation are unable to transport nu-
clei into growing mycelia and therefore have severely re-
stricted growth and differentiation under these conditions.
Genetic analysis of these mutants has identified four genes
called nudA, nudC, nudF and nudG. Xiang et al. (1994)
have shown that a microtubule-associated mechanochemi-
cal ATPase protein, cytoplasmic dynein, is involved in
nuclear movement in A. nidulans. The nudA and nudG
genes, respectively, encode the heavy and light chain of
cytoplasmic dynein (Xiang et al., 1995b; Chiu et al., 1997).
nudF encodes a protein acting on the dynein motor system
(Willins et al., 1997), whose amino acid sequence is 42%
identical to that of the human LIS1 protein, which is re-
quired for neuronal migration during brain development
(Xiang et al., 1995a). nudC encodes a protein required for
nuclear migration whose function is connected with that
of the NUDF protein (Osmani et al., 1990; Chiu and Mor-
ris, 1995; Xiang et al., 1995a; Chiu et al., 1997). Also,
deletion of nudC profoundly affects the morphology and
composition of the cell wall (Chiu et al., 1997).

An important step in the understanding of the
nuclear migration process in A. nidulans is the visualiza-
tion of the microtubule cytoskeleton as well as the charac-
terization of putative MTOCs in this fungus. We carried
out block/release experiments to depolymerize and
repolymerize microtubules by using the antimicrotubule
drug Benomyl in order to understand the microtubule
nucleation process in A. nidulans germlings. We also tried
to determine whether the cytoplasmic microtubules or mi-
totic spindles are affected by, or are somehow involved in,
the blockage of nuclear migration of nud mutants of A.
nidulans, since nuclear movement has been shown to be
dependent on microtubules in this fungus.
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MATERIAL AND METHODS

Cytoskeleton analysis of nud mutants

The nud mutants used were XX3 (nudA1 chaA1
pyrG89), A01 (nudC3 pabaA1 nicA1 pyrG89 wA2 chaA1),
XX20 (nudF6 pyrG89) and SB05.10 (nudG8 yA2 pabaA1).
The cytoskeleton structure of microtubules of nud mutants
and the control strain R21 (yA2 pabaA1) of A. nidulans
was observed by indirect immunofluorescence microscopy.
Asexual spores of nud mutants and of R21 strain were
inoculated into YG liquid medium for 7 h, at 37oC. The
germlings were then rinsed in PEM {50 mM PIPES (pip-
erazine-N,N’-bis [2-ethanesulfonic acid]; 1,4-piperazine-
diethanesulfonic acid), 25 mM EGTA (ethylene glycol-
bis(β-aminoethyl ether)N,N,N’,N’-tetraacetic acid), 5 mM
MgSO

4
, pH 6.7} and fixed in 8% formaldehyde in PEM

buffer containing 5% DMSO (dimethyl sulfoxide) and 15
mM NaOH for 60 min at room temperature. After this
period the germlings were rinsed in PEM and stained for
tubulin.

The parameters used to determine the possible dif-
ferences between the mutants and the control strain were
mitotic index, number and size of mitotic spindles, and
presence of astral microtubules.

Benomyl block and release experiments

The medium used was YG (2% glucose, 0.5% yeast
extract, and trace elements). Trace elements were as de-
scribed by Kafer (1977). For tubulin staining, asexual
spores (conidia) of A. nidulans strain R21 were inoculated
onto coverslips. After 7 h of incubation at 37oC, cover-
slips with adherent germlings were transferred to Petri
dishes containing YG plus 2.4 µg/ml of Benomyl (Bonide
Chemical Co., Yorkville, NY, USA) and incubated for
periods of 1, 2, 5, 10, 20 or 90 min at room temperature
for microtubule depolymerization. Benomyl was dissolved
in absolute ethanol (2 mg/ml). After drug treatment the
germlings were briefly rinsed in PEM and fixed in 8%
formaldehyde as described earlier. After 60 min at room
temperature the germlings were rinsed in PEM and stained
for indirect immunofluorescence microscopy. Following
exposure to Benomyl for 90 min, the germlings were
reincubated in liquid medium without Benomyl at room
temperature for 10, 20, 30, 40, or 50 s for microtubule
repolymerization. The germlings were fixed as described
above and stained for tubulin.

Tubulin staining and microscopy

To remove the cell wall, the coverslips were incu-
bated in 100-µl drops of novozyme solution (1% lysing
enzyme, 2.5% driselase, 50% egg white, 2 mM EGTA, 10
µg/ml aprotinin, 1 mM TAME, 100 µg/ml soybean trypsin
inhibitor, 10 µg/ml leupeptin, and 10 µg/ml pepstatin) for

90 min at 28oC. After novozyme digestion, the coverslips
were washed in PEM and then extracted with 0.2% NP-
40, and 10% DMSO in PEM for 1 min at room tempera-
ture. The cells were washed free of extraction buffer using
PEM and then stained for tubulin.

Tubulin staining was carried out according to
Oakley et al. (1990), with some modifications. Primary
(anti-α-tubulin DM 1A mouse monoclonal antibody,
SIGMA) and secondary (anti-mouse CY3 conjugated,
Jackson Immunoresearch Laboratory, Inc.) antibodies were
diluted in PEM containing 3% BSA. The coverslips were
incubated with the first antibody for 1 h at 28oC and then
washed in PEM and reincubated with the second antibody
for 1 h at 28oC in the dark. For nuclear staining the cover-
slips were washed in PEM and incubated in DAPI solu-
tion (1 µg/ml in PEM buffer) for 5 min at room tempera-
ture in the dark. The coverslips were then washed in PEM,
mounted in Citiflour and examined with a Zeiss epifluo-
rescence microscope.

RESULTS AND DISCUSSION

Since nuclear movement has been shown to be
dependent on microtubules in A. nidulans, we analyzed
whether mutants defective in nuclear distribution along
the growing hyphae (nud mutants) had some obvious mi-
crotubule defect. We verified that cytoplasmic, astral and
spindle microtubules are present and appear to be nor-
mal in all nud mutants (Figure 1). However, we detected
a difference in the percentage of short and long mitotic
spindles in nud mutants (nudA, C and F), when compared
with a control strain (Table I). This indicates that some
of the nuclei of these nud mutants do not reach the late
stage of cellular division (telophase) at non-restrictive
temperature.

To learn more about the microtubule nucleation
process in A. nidulans germlings we used the antimicro-
tubule drug Benomyl in block/release experiments to de-
polymerize and repolymerize microtubules. Microscopic
observation of the treated germlings after 40 to 90 min of
exposure to Benomyl (2.4 µg/ml) showed that they are
completely depleted of microtubules (Figure 2B). To al-
low microtubule repolymerization and to observe regions
of microtubule nucleation in A. nidulans, germlings pre-
viously exposed to Benomyl for 90 min were transferred
to Benomyl-free YG medium. The repolymerization of
microtubules was microscopically observed for different
periods of time (Figure 3B to F). Most of the germlings
were in mitosis and their mitotic spindles had been formed
from regions surrounding the nuclei (data not shown). Short
microtubules were observed 20 s after release from
Benomyl (Figure 3C). They appeared to have been formed
from bright (immunofluorescent) dots randomly distrib-
uted along the germlings. Microtubule arrays regained their
original profiles 50 s after Benomyl release (Figure 3F).
These results strongly indicate that microtubule nucleation
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tip growth in Allomyces macrogynus. Although microtu-
bules are generally thought to originate at the centrosome,
a number of cell types have significant populations of mi-
crotubules with no apparent centrosomal connection, and
the origin of these noncentrosomal microtubules has been
unclear (Karsent et al. 1984; Keating et al., 1997).

Early electron microscope studies have suggested
that microtubules are not randomly arranged in cells but
are organized around one or more discrete foci (Porter,
1966; Brinkley, 1985). In fungi, they are called spindle
pole bodies (SPBs), an organelle associated with the
nucleus. In A. nidulans, there is some evidence that some
microtubules may begin and end independent of the SPBs
(Berl Oakley, personal communication). In Saccharomy-
ces cerevisiae, a tubulin encoded by the TUB4 gene and
related to γ-tubulin seems to be involved in nucleation pro-
cesses of microtubules that grew from, or that remained
attached to SPBs (Marschall et al., 1996). Are the bright
dots observed in our repolymerization experiments MTOCs
for A. nidulans? We cannot rule out the possibility that

Figure 1 - Indirect immunofluorescence microscopy of microtubule cytoskeleton structure and DAPI staining of the XX20 mutant (A) and control strain
R21 (B) of Aspergillus nidulans; mitotic spindle and astral microtubules are seen (arrows).

Table I - Percentage of long and short mitotic spindles in nud mutants
and in the control strain R21 of Aspergillus nidulans.

Strains Mitotic spindles (%)
(relevant genotype)

long short

R21 48.25 51.75
XX3(nudA1)* 20.54 79.46
AO1(nudC3)* 17.95 82.05
XX20(nudF6)* 19.27 80.73
SB05.10(nudG8) 37.50 62.50

*Significantly different from R21. P < 0.05 (χ2 test).

Figure 2 - Indirect immunofluorescence microscopy of the microtubule cytoskeleton structure in control (A) and in germlings of R21 strain of Aspergillus
nidulans exposed to Benomyl for 90 min (B). Note the depolymerization of microtubules in Benomyl-treated germlings.

is randomly distributed along A. nidulans germlings, in
contrast to Hoch and Staples (1985), who found that the
microtubule nucleating region is in the hyphal apex of the
fungus Uromyces phaseoli. Roberson and Vargas (1994)
also verified that structures present at the hyphal apex
(“Spitzenkörper”) and in centrosomes function as centers
of microtubule nucleation and organization during hyphal
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these dots are simply tubulins, tubulin-associated proteins
or even microtubule fragments that remained as aggregates
distributed through the cytoplasm after release from the
drug. When subjected to repolymerization they could as-
semble. In contrast to this hypothesis, there are many lines
of experimental evidence indicating the repolymerization
of microtubules in mammalian cells during recovery from
inhibitors such as Colcemid, Nocodazole and cold tem-
perature (De Brabander et al., 1981; Rieder and Borisy,

1981; Stearns et al., 1991), and showing that microtubule
regrowth occurs in the centrosomes (Brinkley, 1985).

Since γ-tubulin is a protein localized in MTOC-like
centrosomes (Stearns et al., 1991; Moritz et al., 1995), in
SPBs (Oakley et al., 1990; Oakley, 1994) and is also related
to microtubule nucleation both in vitro (Zheng et al., 1995)
and in vivo (Moritz et al., 1995), immunofluorescence ex-
periments using anti-γ-tubulin antibody would be a good
approach to verify whether these bright dots are MTOCs.

Figure 3 - Microtubule repolymerization of germlings of R21 strain of Aspergillus nidulans previously exposed to Benomyl for 90 min after transfer to
Benomyl free-medium. Repolymerization was observed for different periods of time (B-F). A - Germlings without release from Benomyl. B-F - Microtubule
(arrow) cytoskeleton repolymerization 10, 20, 30, 40 and 50 s, respectively, after Benomyl release.
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RESUMO

Microtúbulos são filamentos compostos por dímeros das
tubulinas α e β e têm uma variedade de funções nas células vivas.
Em fungos, os corpúsculos polares dos fusos são geralmente
considerados os centros organizadores dos microtúbulos. Com o
objetivo de contribuir para uma melhor compreensão dos
processos de nucleação dos microtúbulos no fungo filamentoso
A. nidulans, nós utilizamos a droga antimicrotúbulo Benomil
em experimentos de bloqueio e liberação para depolimerizar e
repolimerizar os microtúbulos. Após 20 segundos de reincubação
em meio sem Benomil, pequenos microtúbulos foram formados
a partir de pontos distribuídos pela célula, sugerindo que os pontos
de nucleação de microtúbulos são aleatoriamente distribuídos
pelas hifas de A. nidulans. Como em A. nidulans o movimento
nuclear é dependente de microtúbulos foi analisado se mutantes
defectivos na distribuição de núcleos ao longo das hifas (mutantes
nud) possuíam algum defeito evidente nos microtúbulos. Os
microtúbulos citoplasmáticos, dos fusos e astrais estão presentes
e aparentam-se normais em todos os mutantes nud, mas foi
observada uma pequena distorção na proporção de fusos mitóticos
longos e curtos nestes mutantes, comparados com o controle.
Isto sugere que alguns núcleos de mutantes nud não alcançam a
fase tardia da divisão celular, em temperatura não restritiva.
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