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Abstract

Reduced biotinidase activity is associated with a spectrum of deficiency ranging from total deficiency to heterozygous 
levels, a finding that is not always explained by the pathogenic variants observed in the BTD gene. The investigation 
of miRNAs, regulatory elements and variants in the 3’UTR region may present relevance in understanding the 
genotype-phenotype association. The aims of the study were to characterize the regulatory elements of the 3’UTR of 
the BTD gene and identify variants and miRNAs which may explain the discrepancies observed between genotype 
and biochemical phenotype. We evaluated 92 individuals with reduced biotinidase activity (level of heterozygotes 
= 33, borderline = 35, partial DB = 20 or total DB= 4) with previously determined BTD genotype. The 3’UTR of the 
BTD gene was Sanger sequenced. In silico analysis was performed to identify miRNAs and regulatory elements. No 
variants were found in the 3’UTR. We found 97 possible miRNAs associated with the BTD gene, 49 predicted miRNAs 
involved in the alanine, biotin, citrate and pyruvate metabolic pathways and 5 genes involved in biotin metabolism. Six 
AU-rich elements were found. Our data suggest variants in the 3'UTR of BTD do not explain the genotype–phenotype 
discrepancies found in Brazilian individuals with reduced biotinidase.
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Introduction
The enzyme biotinidase (EC 3.5.1.12), encoded by the 

BTD gene, catalyzes the cleavage of biocytin into the vitamin 
biotin, which acts as a cofactor for several carboxylases, 
such as pyruvate carboxylase, propionyl-CoA carboxylase, 
3-methylcrotonyl-CoA carboxylase, and acetyl-CoA 
carboxylases 1 (alpha) and 2 (beta) (Wolf, 2001). 

The BTD gene is composed by four exons, and its 3′UTR 
has 331 bp (ENST00000383778.5). The corresponding mRNA 
has two potential start codons (AUG) (Stanley et al., 2004, 
Pindolia et al., 2010). There are 17 different 3’UTR lengths 
with sizes ranging from 77 to 8226 pb, variable according to 
the transcript. The BTD gene has a constitutive expression 
pattern and healthy individuals present expression between 
0.5 and 1.5 log10 transcripts per million (Figure 1). The three-
dimensional structure of biotinidase as predicted by in silico 
modeling consists of two domains (Pindolia et al., 2007). 

Biotinidase deficiency (BD) is a metabolic disease, 
inherited in an autosomal recessive pattern, disabling the 
body to assimilate biotin from the diet and inhibiting biotin 
recycling (Baumgartner and Suormala, 2012). If not treated 

early, BD may lead to neurological and dermatological 
disorders (Wastell et al., 1988). BD may be total (activity 
<10% of normal) or partial (10-30%). There is an association 
between certain genotypes and the observed biochemical 
phenotype (total or partial), but in some patients, genotype and 
phenotype are mismatched. According to previous studies by 
our group, the association between the expected biochemical 
phenotype (according to genotype) and the actual biochemical 
phenotype occurs in 68.5% of cases, and variants in the 5′UTR 
of BTD do not seem to explain the variations found (Borsatto 
et al., 2014, 2017, 2019). Low activity of carboxylases can 
be found in BD and in Multiple Carboxylase Deficiency, a 
different disease caused by biallelic pathogenic variations in 
the HLCS gene, which encode the holocarboxylase synthetase 
enzyme (EC 6.3.4.10).

The aim of this study was to characterize the 3′UTR of 
the BTD gene in individuals with reduced biotinidase activity 
previously described by our group (Borsatto et al., 2014, 
2017, 2019), and to identify which regulatory elements could 
influence the expression of biotinidase. 

Material and Methods
The study was approved by the Research Ethics 

Committee of Hospital de Clínicas de Porto Alegre (n° 16-
0480 and 12-0186), Brazil, and the subjects consented to 
participate by signing the Informed Consent Form.
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Figure 1 – BTD gene expression. A: Isoforms in human tissues. B: Expression pattern in several tissues and organs. Adapted from GTEx (https://www.gtexportal.org/home/).
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Ninety-two individuals with reduced biotinidase activity 
were included: 33 with heterozygous level; 19 with borderline 
partial/heterozygous; 16 with borderline heterozygous/normal; 
20 with partial deficiency; and 4 with total deficiency. These 
patients had the exons, exon-intron junctions, and 5′UTR of 
BTD previously sequenced, and were described by Borsatto 
et al. (2014) and Borsatto et al. (2017). The genotype and 
biochemical profile of the cohort is shown in Table 1, 
and details regarding the classification of the biochemical 

phenotype and BTD sequencing can be found in Borsatto  
et al. (2014) and Borsatto et al. (2017). Eighteen individuals had 
an inconsistent genotype-biochemical phenotype association 
(1-6, 24-33, 86, 87 – Table 1).

For genomic DNA extraction, blood samples were 
collected in EDTA-containing tubes and processed using the 
Easy-DNA gDNA Purification kit (Thermo Fisher). The 3′UTR 
of the BTD gene was amplified by PCR with specific primers. 
The products were purified with 20% PEG 8000/2.5M NaCl 

Table 1 – Genetic and biochemical profile of patients with reduced biotinidase activity included in the characterization of the 3’UTR.

Patient Allele 1 Allele 2
Expected BD 

according 
to genotype

Biotinidase 
activity  

(nmol/min/mL)

Type of BD 
according to 

enzyme activity
Reference

1# c.1330G>C (p.Asp444His) c.[595C>A;1413T>C] ( 
p.Val199Met / p.Cys471Cys) Partial 2.8 Hz Borsatto et al. 

(2014)

2# c.[1330G>C;643C>T]* p.Asp444His / p.Leu215Phe* Partial 2.4 Hz Borsatto et al. 
(2014)

3# c.1330G>C (p.Asp444His) c.511G>A (p.Ala171Thr) Partial 2.5 Hz Borsatto et al. 
(2014)

4# c.1330G>C (p.Asp444His) c.755A>G (p.Asp252Gly) Partial 2.4 Hz Borsatto et al. 
(2014)

5# c.1330G>C (p.Asp444His) c.1629C>A (p.Asp543Glu) Partial 2.5 Hz Borsatto et al. 
(2017)

6# c.1330G>C (p.Asp444His) c.755A>G (p.Asp252Gly) Partial 3.03 Hz Borsatto et al. 
(2017)

7 c.[1330G>C;1629C>A]* p.Asp444Hisp / Asp543Glu* Partial / Hz 2.6 Hz Borsatto et al. 
(2014)

8 c.[1330G>C;511G>A] 
(p.Asp444His / p.Ala171Thr) c.1413T>C (p.Cys471Cys) Hz 3.3 Hz Borsatto et al. 

(2014)

9 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 3.3 Hz Borsatto et al. 
(2014)

10 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 4.6 Hz Borsatto et al. 
(2017)

11 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 3.2 Hz Borsatto et al. 
(2017)

12 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 3.0 Hz Borsatto et al. 
(2017)

13 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 3.0 Hz Borsatto et al. 
(2017)

14 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 2.8 Hz Borsatto et al. 
(2014)

15 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 2.6 Hz Borsatto et al. 
(2017)

16 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 3.7 Hz Borsatto et al. 
(2014)

17 c.1368A>C (p.Gln456His) WT Hz 2.8 Hz Borsatto et al. 
(2017)

18 c.1413T>C (p.Tyr494Cys) c.1629C>A (p.Cys471Cys) Hz 4.0 Hz Borsatto et al. 
(2017)

19 c.643C>T (p.Leu215Phe) WT Hz 3.4 Hz Borsatto et al. 
(2017)

20 c.1595C>T (p.Thr532Met) WT Hz 2.9 Hz Borsatto et al. 
(2017)

21 c.1595C>T (p.Thr532Met) WT Hz 2.9 Hz Borsatto et al. 
(2014)

22 c.364A>G (p.Arg122Gly) WT Hz 3.8 Hz Borsatto et al. 
(2014)

23 c.[595C>A;1413T>C] 
(p.Val199Met / p.Cys471Cys) WT Hz 3.6 Hz Borsatto et al. 

(2017)
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Patient Allele 1 Allele 2
Expected BD 

according 
to genotype

Biotinidase 
activity  

(nmol/min/mL)

Type of BD 
according to 

enzyme activity
Reference

24# WT WT Normal 2.6 Hz Borsatto et al. 
(2017)

25# WT WT Normal 3.3 Hz Borsatto et al. 
(2017)

26# WT WT Normal 4.1 Hz Borsatto et al. 
(2014)

27# WT WT Normal 3.7 Hz Borsatto et al. 
(2014)

28# c.1330G>C (p.Asp444His) WT Normal 3.5 Hz In this study

29# c.1368A>C (p.Gln456His) WT Normal 2.8 Hz Borsatto et al. 
(2017)

30# c.1330G>C (p.Asp444His) c.1284C>T (p.Tyr428Tyr) Normal 4.4 Hz Borsatto et al. 
(2017)

31# c.1330G>C (p.Asp444His) WT Normal 3.8 Hz Borsatto et al. 
(2014)

32# c.1330G>C (p.Asp444His) WT Normal 3.1 Hz Borsatto et al. 
(2014)

33# WT c.1330G>C (p.Asp444His) Normal 4.2 Hz Borsatto et al. 
(2017)

34 c.1330G>C (p.Asp444His) WT Partial 2.1 Partial/Hz Borsatto et al. 
(2017)

35 c.1368A>C (p.Gln456His) WT Partial 2.1 Partial/Hz Borsatto et al. 
(2017)

36 c.[755A>G;1330G>C]* p.Asp252Gly / p.Asp444His* Partial 2.2 Partial/Hz Borsatto et al. 
(2017)

37 c.1330G>C (p.Asp444His) c.479G>A (p.Cys160Tyr) Partial/Hz 2.3 Partial/Hz In this study

38 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 2.2 Partial/Hz Borsatto et al. 
(2017)

39 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 2.3 Partial/Hz Borsatto et al. 
(2017)

40 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 2.2 Partial/Hz Borsatto et al. 
(2017)

41 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 2.3 Partial/Hz Borsatto et al. 
(2017)

42 c.1330G>C (p.Asp444His) c.1330G>C (p.Asp444His) Hz 2.3 Partial/Hz In this study
43 c.278A>G (p.Tyr93Cys) c.1330G>C (p.Asp444His) Hz 2.1 Partial/Hz In this study

44 c.1330G>C (p.Asp444His) c.479G>A (p.Cys160Tyr) Hz 2.3 Partial/Hz Borsatto et al. 
(2014)

45 c.1330G>C (p.Asp444His) c.1337T>C (p.Leu446Pro) Unknown 2.2 Partial/Hz Borsatto et al. 
(2017)

46 c.278A>G (p.Tyr93Cys) WT Unknown 2.3 Partial/Hz In this study

47 c.278A>G (p.Tyr93Cys) WT Unknown 2.2 Partial/Hz Borsatto et al. 
(2017)

48 c.278A>G (p.Tyr93Cys) WT Unknown 2.2 Partial/Hz In this study

49 c.[595G>A;1330G>C;1629C>A]* p.Val199Met / p.Asp444Hist / 
p.Cys471Cys* Unknown 2.2 Partial/Hz Borsatto et al. 

(2017)

50 WT c.278A>G (p.Tyr93Cys) Hz 2.2 Partial/Hz Borsatto et al. 
(2017)

51 c.[755A>G;1330G>C]* p.Asp252Gly / p.Asp444His* Hz 2.2 Partial/Hz Borsatto et al. 
(2017)

52 WT c.1368A>C (p.Gln456His) Hz 2.1 Partial/Hz Borsatto et al. 
(2017)

53 WT c.1330G>C (p.Asp444His) Normal 4.9 Hz/Normal Borsatto et al. 
(2014)

54 WT c.1330G>C (p.Asp444His) Normal 4.9 Hz/Normal Borsatto et al. 
(2017)

55 WT c.1330G>C (p.Asp444His) Normal 4.9 Hz/Normal Borsatto et al. 
(2017)

Table 1 – Cont.
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Patient Allele 1 Allele 2
Expected BD 

according 
to genotype

Biotinidase 
activity  

(nmol/min/mL)

Type of BD 
according to 

enzyme activity
Reference

56 WT c.1330G>C (p.Asp444His) Normal 4.9 Hz/Normal Borsatto et al. 
(2017)

57 WT c.1330G>C (p.Asp444His) Normal 4.9 Hz/Normal Borsatto et al. 
(2017)

58 WT c.1330G>C (p.Asp444His) Normal 4.9 Hz/Normal In this study

59 c.1330G>C (p.Asp444His) WT Normal 5.0 Hz/Normal Borsatto et al. 
(2017)

60 c.1330G>C (p.Asp444His) WT Normal 5.0 Hz/Normal In this study
61 c.1330G>C (p.Asp444His) WT Normal 5.0 Hz/Normal In this study

62 WT c.1629C>A (p.Cys471Cys) Normal 4.9 Hz/Normal Borsatto et al. 
(2014)

63 WT c.1629C>A (p.Cys471Cys) Normal 5.0 Hz/Normal Borsatto et al. 
(2017)

64 c.1629C>A (p.Cys471Cys) WT Normal 4.9 Hz/Normal Borsatto et al. 
(2017)

65 c.1629C>A (p.Cys471Cys) WT Normal 4.9 Hz/Normal Borsatto et al. 
(2014)

66 c.1629C>A (p.Cys471Cys) WT Normal 4.9 Hz/Normal In this study
67 c.1629C>A (p.Cys471Cys) WT Normal 4.9 Hz/Normal In this study

68 WT WT Normal 5.0 Hz/Normal Borsatto et al. 
(2017)

69 c.1330G>C (p.Asp444His) c.119T>C (p.Leu40Pro) Unknown 1.7 Partial Borsatto et al. 
(2014)

70 c.1330G>C (p.Asp444His) c.755A>G (p.Asp252Gly) Partial 1.9 Partial Borsatto et al. 
(2017)

71 c.1330G>C (p.Asp444His) c.755A>G (p.Asp252Gly) Partial 1.4 Partial Borsatto et al. 
(2014)

72 c.1330G>C (p.Asp444His) c.755A>G (p.Asp252Gly) Partial 1.2 Partial Borsatto et al. 
(2014)

73 c.1330G>C (p.Asp444His) c.755A>G (p.Asp252Gly) Partial 1.8 Partial Borsatto et al. 
(2017)

74 c.755A>G (p.Asp252Gly) c.1330G>C (p.Asp444His) Partial 1.4 Partial In this study

75 c.1330G>C (p.Asp444His) c.[511G>A;1330G>C] 
(p.Ala171Thr / p.Asp444His) Partial 1.4 Partial Borsatto et al. 

(2014)

76 c.1330G>C (p.Asp444His) c.[470G>A;1330G>C] ( 
p.Arg157His / p.Asp444His) Partial 1.8 Partial Borsatto et al. 

(2014)

77 c.1330G>C (p.Asp444His) c.[470G>A;1330G>C] ( 
p.Arg157His / p.Asp444His) Partial 1.9 Partial Borsatto et al. 

(2017)

78 c.[1284C>T;1489C>T] 
(p.Tyr428Tyr / p.Pro497Ser) c.1330G>C (p.Asp444His) Partial 2.0 Partial Borsatto et al. 

(2017)

79 c.1330G>C (p.Asp444His) c.594_596del (p.Val199del) Partial 1.9 Partial Borsatto et al. 
(2014)

80 c.1330G>C (p.Asp444His) c.594_596del (p.Val199del) Partial 2.0 Partial Borsatto et al. 
(2017)

81 c.1330G>C (p.Asp444His) c.98_104del (fs) Partial 1.5 Partial Borsatto et al. 
(2014)

82 c.1330G>C (p.Asp444His) c.98_104del (fs) Partial 1.6 Partial Borsatto et al. 
(2017)

83 c.[98_104del;1330G>C]* p.Cys33fs / p.Asp444His* Partial 2.0 Partial Borsatto et al. 
(2017)

84 c.[100G>A;1330G>C]* p.Gly34Ser / p.Asp444His* Partial / Hz 2.04 Partial Borsatto et al. 
(2014)

85 c.1368A>C (p.Gln456His) c.1330G>C (p.Asp444His) Partial 2.0 Partial Borsatto et al. 
(2017)

86# WT c.1330G>C (p.Asp444His) Normal 1.2 Partial Borsatto et al. 
(2017)

Table 1 – Cont.
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Patient Allele 1 Allele 2
Expected BD 

according 
to genotype

Biotinidase 
activity  

(nmol/min/mL)

Type of BD 
according to 

enzyme activity
Reference

87# WT c.1330G>C (p.Asp444His) Normal 1.2 Partial Borsatto et al. 
(2017)

88 c.[1330G>C;1629C>A] 
(p.Asp444His / p.Ala171Thr) c.1466A>G (p.Asn489Ser) Unknown 1.4 Partial Borsatto et al. 

(2017)

89 c.643C>T (p.Leu215Phe) c.755A>G (p.Asp252Gly) Total 0.04 Total Borsatto et al. 
(2014)

90 c.755A>G (p.Asp252Gly) c.755A>G (p.Asp252Gly) Total 0.44 Total Borsatto et al. 
(2014)

91 c.1227_1241del (p.Trp409fs) c.1227_1241del (p.Trp409fs) Total 0.09 Total Borsatto et al. 
(2017)

92 c.1612C>T (p.Arg538Cys) c.1612C>T (p.Arg538Cys) Total 0.12 Total Borsatto et al. 
(2014)

BD = biotinidase deficiency WT – Wild Type fs = frameshift. 
Normal reference range of the enzyme: 5.0±10 nmol/min/mL. The biochemical phenotype among patients who presented activity lower than 5.0 nmol/
min/mL: <0.75 (<10%), profound BD; 0.75±2.25 (10±30%), partial BD; and 2.26±4.99 (30.1±66.5%), heterozygous activity.
* = Whether it is in cis or trans configuration with the other variant found remains undetermined.
# = Patient with discrepancies between Expected BD according to genotype and Type of BD according to enzyme activity

Table 1 – Cont.

and sequenced by Sanger method. Sequences were analyzed 
in the Chromas Lite software and aligned with the reference 
sequence NG_008019.1 in Blast/NCBI. 

In silico analysis

Variants were searched in the 3′UTR available in 
worldwide public genomic databases: LOVD (Fokkema  
et al., 2011 - 515,500 variants in 162,000 patients), gnomAD 
(Karczewski et al., 2020 - 76,156 genomes and 125,748 
exomes), Online Archive of Brazilian Mutations – AbraOM 
(Naslavsky et al., 2017 – 1,171 genomes and 609 exomes) 
and Varsome clinical platform (Zhang et al., 2020 – 70 public 
genomic databases). Variants with rs snp code were classified 
according to the ACMG classification (Richards et al., 2015).

To evaluate conservation of the 3′UTR of BTD, sequence 
alignments between different species were performed in 
MEGA software (version 7.0.26, Kumar et al., 2016), using 
the ClustalW algorithm (version 2.1, Thompson et al., 1994). 
Evolutionarily conserved regions were mapped in ECR 
Browser (Ovcharenko et al., 2004). The chromosomal position 
provided in the Atlas of UTR Regulatory Activity (AURA) 
(Dassi et al., 2014) was used to locate the 3′UTR of BTD gene.

To investigate miRNAs that might regulate BTD 
expression, mirBase (Kozomara and Griffiths-Jones, 2014) 
miRTarBase (Huang et al., 2019), TarBase (Karagkouni et al., 
2017), TargetScanHuman (Agarwal et al., 2015), miRWalk 
(Dweep et al., 2011), and miRGate software (Andrés-León et 
al., 2015) were used. To explore the shared miRNAs across the 
biotin metabolism related genes, the TopCluster web service 
(Kaimal et al., 2010) was used.

The miRanda (Enright et al., 2003), mirSVR (Betel et 
al., 2010), and microRNA.org (Betel et al., 2008) algorithms 
were used for analysis of miRNAs target sites associated with 
BTD. The cutoff points for this analysis were a binding free 
energy of -25 Kcal - proposed as more stable by Seffens and 
Digby (1999), and the search for evolutionarily conserved 
targets (mainly 8-mer), as suggested by Garcia et al. (2011). 

For polyadenylation analysis, the constitutive site was 
characterized according to the reference sequence curated by 
NCBI. APADB (Müller et al., 2014), APASDB (You et al., 
2015) databases and the PolyA_SVM (Structural Support 
Vector Machine) algorithm of the RegRNA package (v. 2.0, 
Chang et al., 2013) were used to quantify sites usage and 
polyadenylation signals.

To identify other regulatory elements in the 3′UTR, the 
software RegRNA v. 2.0 (Chang et al., 2013) and ARE Site 2 
(Fallmann et al., 2015) were used. Secondary structures formed 
by miRNA–3′UTR interactions were obtained through the 
RNAfold Web server (Gruber et al., 2008).

Results
No variant was identified in the analysis of the 3′UTR 

of the BTD gene. 

In silico analysis

Conservation analysis showed that the 3′UTR of the BTD 
gene is highly conserved in primates. Alignments between 
the human vs. rat, mouse, cow, dog, rhesus monkey and 
chimpanzee 3′UTR sequences of BTD gene revealed identities 
of 73.1%, 71.6%, 70.6%, 72.1%, 94%, and 99% respectively.

In the search of variants in genomic public databases, 43 
variants were found in the AbraOM, 32 of them predicted as 
‘variant of uncertain significance’ (VUS), and 11 as ‘benign’. 
In the gnomAD, nine variants were found, all predicted by the 
ACMG as ‘VUS’. In the LOVD database, three variants were 
found – one predicted as ‘VUS’ and two as ‘benign’. The allele 
frequencies and the respective rsSNP as shown in Table 2. 

In silico analysis of miRNAs yielded highly variable 
results. The number of miRNAs predicted in BTD gene were: 
51 in miRGate database, 35 in miRTarBase, 5 in miRWalk, 4 
in TarBase and 2 in TargetScanHuman (Table 3).

Seven miRNA target sites (Table 4) and one RNA 
binding protein (Musashi Binding Element) were identified. 
The mapped elements were presented in Figure 2.
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Table 2 – 3’UTR variant frequencies in Brazilian genomic databases (ABraOM) and worldwide databases (gnomAD and LOVD).

Database Variant rsSNP code Prediction Allele Frequency

ABraOM c.*83A>T rs151091741 Benign 0.016652

c.*96G>A rs530884413 VUS 0.000427

c.*211G>A rs78601074 VUS 0.002989

c.*251T>G rs973865557 VUS 0.000427

c.*276C>T rs529324919 VUS 0.001708

c.*310A>G rs189885639 VUS 0.003843

c.*348G>T rs187175217 VUS 0.007669

c.*366A>T rs1004621476 VUS 0.026046

c.*368C>T rs1034718749 VUS 0.013237

c.*371G>T rs960652511 VUS 0.017079

c.*452A>G rs79151199 VUS 0.002989

c.*471G>T rs115371875 VUS 0.005124

c.*537C>T rs180874910 VUS 0.005978

c.*734A>G rs1019755479 VUS 0.000854

c.*748G>C rs965102987 VUS 0.000427

c.*549C>T rs572632251 VUS 0.000854

c.*768C>T rs73150121 VUS 0.002989

c.*573G>A rs965394624 VUS 0.000427

c.*811G>A rs559860346 VUS 0.000854

c.*847T>A rs9647358 Benign 0.16567

c.*916G>A rs1009938115 VUS 0.000854

c.*903G>A rs57114474 Benign 0.094791

c.*983T>C rs76866504 Benign 0.015371

c.*1009A>G rs771654037 VUS 0.000854

c.*1021C>T rs772800231 VUS 0.000854

c.*1142G>A rs575407757 VUS 0.000427

c.*1337C>T rs55866239 Benign 0.05807

c.*1461G>T rs972571533 VUS 0.000427

c.*1501C>T rs117876477 VUS 0.002989

c.*1546T>C rs1041474484 VUS 0.000427

c.*1059A>G rs558313573 VUS 0.000854

c.*1652C>T rs3796305 Benign 0.041418

c.*1678C>T rs1027781482 VUS 0.000854

c.*1686C>T rs145664140 VUS 0.002135

c.*1693C>T rs2455852 Benign 0.535013

c.*1707G>A rs1017619524 VUS 0.000427

c.*1763C>T rs2470530 Benign 0.686166

c.*1799G>A rs3796302 Benign 0.094791

Forty-nine miRNAs were associated with genes that 
interact with the BTD gene in biotin metabolism (Table 5). 
The only miRNA shared between BTD and HLCS was the 
hsa-miR-222.

The three best-predicted secondary structure models are 
presented in Figure 3. The most appropriate secondary structure 
according to RNAfold analysis was the model of interaction 
between the 3′UTR of the BTD gene and hsa-miR-3934, with 
a binding free energy of -25.35 Kcal. 

The polyadenylation signal used by the BTD gene 
coincides with the canonical AAUAAA hexamer. The 

dinucleotide that identifies the cleavage site was AA. 
Results from the APASdb database and the PolyA_SVM 
algorithm showed that the BTD gene has two major mapped 
polyadenylation sites. The first signal begins at position 
2044 and has 32 pb; the second signal begins at position 
2329 and has 32 pb. According to the APADB database, 
both polyadenylation sites of the BTD gene are located in 
the 3′UTR at positions chr3:15687323 (86.1% of usage) and 
chr3:15683749 (11.4% of usage). 

Six AU-rich elements were identified: TTTTT, ATTTA, 
ATTTT, TTTTA, TATTTTA and AATAAA.
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Table 3 – miRNAs associated with the BTD gene in different search methods and databases.

miRGate miRTarBase miRWalk TarBase TargetScan

hsa-mir-1227-3p hsa-miR-10b-3p hsa-miR-3620-3p hsa-miR-129-2-3p hsa-miR-145-5p

hsa-mir-1233-5p hsa-miR-1247-3p hsa-miR-4743-3p hsa-miR-200b-3p hsa-miR-5195-3p

hsa-mir-1266-5p hsa-miR-1267 hsa-miR-6499-3p hsa-miR-21-3p

hsa-mir-1910-3p hsa-miR-219b-3p hsa-miR-6808-5p hsa-miR-7-5p

hsa-mir-3127-5p hsa-miR-30d-3p hsa-miR-6837-3p

hsa-mir-3137 hsa-miR-30e-3p

hsa-mir-3158-3p hsa-miR-340-5p

hsa-mir-3190-3p hsa-miR-3620-3p

hsa-mir-3190-5p hsa-miR-367-5p

hsa-mir-363-5p hsa-miR-3929

hsa-mir-3666 hsa-miR-3942-3p

hsa-mir-4323 hsa-miR-4257

hsa-mir-4417 hsa-miR-4419b

hsa-mir-4435 hsa-miR-4478

hsa-mir-4446-3p hsa-miR-4649-3p

hsa-mir-4449 hsa-miR-4652-3p

hsa-mir-4518 hsa-miR-4670-3p

hsa-mir-4640-3p hsa-miR-4722-5p

hsa-mir-4647 hsa-miR-4729

hsa-mir-4657 hsa-miR-4743-3p

hsa-mir-4674 hsa-miR-4768-3p

hsa-mir-4685-5p hsa-miR-5100

hsa-mir-4708-3p hsa-miR-5584-3p

hsa-mir-4737 hsa-miR-5696

hsa-mir-4741 hsa-miR-570-3p

hsa-mir-4758-3p hsa-miR-579-3p

hsa-mir-485-5p hsa-miR-6125

hsa-mir-5001-3p hsa-miR-6499-3p

Database Variant rsSNP code Prediction Allele Frequency

c.*1949C>T rs1017670214 VUS 0.000427

c.*2063C>T rs73145546 Benign 0.026046

c.*2106G>A rs915646184 VUS 0.000427

c.*2121C>T rs77633353 VUS 0.002135

c.*2123G>A rs2470531 Benign 0.532878

gnomAD c.*8G>A rs773652007 VUS 0.000037

c.*15C>T rs763033233 VUS 0.000103

c.*23C>T rs766374135 VUS 0.000038

c.*24G>A rs374047871 VUS 0.000080

c.*29C>T rs1344267775 VUS 0.000008

c.*32G>T rs1200505812 VUS 0.000004

c.*43G>T rs200147547 VUS 0.000030

c.*53C>T rs761431603 VUS 0.000063

c.*54A>C rs1404681940 VUS 0.000031

LOVD c.*211G>A rs78601074 VUS 0.000358

c.*847T>A rs9647358 Benign 0.2132

c.*2123G>A rs2470531 Benign 0.5559

Table 2 – Cont.
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miRGate miRTarBase miRWalk TarBase TargetScan

hsa-mir-5007-5p hsa-miR-6516-5p

hsa-mir-505-3p hsa-miR-664a-3p

hsa-mir-548q hsa-miR-664b-3p

hsa-mir-603 hsa-miR-6808-5p

hsa-mir-6511a-5p hsa-miR-6893-5p

hsa-mir-6745 hsa-miR-7160-5p

hsa-mir-6756-5p hsa-miR-940

hsa-mir-6764-5p

hsa-mir-6766-5p

hsa-mir-6798-3p

hsa-mir-6808-5p

hsa-mir-6811-3p

hsa-mir-6823-5p

hsa-mir-6833-5p

hsa-mir-6834-5p

hsa-mir-6837-5p

hsa-mir-6873-5p

hsa-mir-6882-3p

hsa-mir-6884-5p

hsa-mir-7114-5p

hsa-mir-718

hsa-mir-874-5p

hsa-mir-938

Table 4 – Prediction of miRNA target sites in BTD according to mirSVR and TargetScanHuman algorithms.

miRNA ID mirSVR score Phast Cons score Type seed Reference

hsa-miR-6764-5p 0.12 0.55 7mer-m8 (1) 7mer-A1 (1) Pathak et al. (2017)

hsa-miR-8066 -1.29 0.52 7mer-A1 (1) Wang et al. (2013)

hsa-miR-940 -0.01 0.44 8mer (1) 6mer (1) Rajendiran et al. (2014)

hsa-miR-1267 -0.39 0.52 7mer-m8 (2) Tomasetti et al. (2016)

hsa-miR-5195-3p -0.08 0.43 8mer (2) 6mer (1) Salehi et al. (2017)

hsa-miR-34a-5p -0.01 0.44 7mer-m8 (1) Kálmán et al. (2014)

hsa-miR-1915-3p -0.80 0.49 7mer-m8 (1) Migita et al. (2003)

mirSVR and Phast Cons score are related to conservation between the seed region of the miRNA and its target gene. The number in parentheses indicates 
how many sites of mRNA pairing:miRNA the detected algorithm.

Table 3 – Cont.

Figure 2 – Summary of the elements found associated with the 3’UTR of BTD.
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Table 5 – Genes involved in biotin metabolism and number of miRNAs predicted to influence the metabolic pathways of alanine, biotin, citrate and pyruvate.

Gene Location Name miRNAs Metabolism

HLCS 21q22.1 Holocarboxylase Syntetase 8 Biotin

MCCC1 3q27 Methylcrotonoyl- Coenzyme A 
carboxylase 1 (alfa) 6 Biotin

PC 11q13.4 Pyruvate Carboxylase 14 Alanine, Biotin,  
Cytrate and Pyruvate

SPCS1 3p21.1 Signal Peptidase Complex subunit 1 10 Biotin

SPCS3 4q34.2 Signal Peptidase Complex subunit 3 11 Biotin

Figure 3 – Secondary structures of the miRNAs. A: miRNA hsa-miR-3916. B: miRNA hsa-miR-3934. C: miRNA hsa-miR-4763-5p. The yellow region 
shows the mature miRNA and the likelihood of them being associated with the BTD gene. The red color corresponds to the highest correlation between 
free energy binding between miRNA: mRNA and its interaction. 
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Discussion
In this study, we investigated the presence of variants 

in the 3′UTR of the BTD gene in individuals with reduced 
biotinidase activity and, using bioinformatics tools, we 
discussed a possible relationship by regulatory elements 
with the expression of the BTD gene.

As far as we know, the 3′UTR had never been characterized 
in patients. As observed in the present cohort about 20% of the 
patients have discrepancies between expected BD according 
to genotype and type of BD according to enzyme activity.

The hypothesis for this investigation came from other 
diseases that present phenotype modification due to variants 
in the 3’UTR of the affected gene, as Glycogen Storage 
Disease Ia (Karthi et al., 2017) and Haemophilia A (Rosset 
et al., 2016). Modified regulatory elements may affect the 
interaction of the UTRs with proteins and microRNAs causing 
modulation of mRNA transcription, secondary structure, 
stability, localization, translation, and access to regulators like 
microRNAs (miRNAs), RNA‐binding proteins (RBPs) and 
justify the discrepancies between genotype and phenotype 
(Steri et al., 2018; Skarp et al., 2020). 

The high conservation of the 3’UTR was observed 
among the 92 patients analyzed proved by the 100% homology 
– no variants were found. Variant databases reinforced the 
conservation of the region through low frequencies of variants. 

Subsequent investigations of the 3’UTR found several 
miRNAs and elements present in the region. Variations present 
in patients could justify differences in gene expression through 
factors related to 3’UTR.

The main predicted miRNAs associated with the BTD 
gene were: hsa-miR-7-5p, previously implicated in suppression 
of cell proliferation, induction of apoptosis, and angiogenesis 
(Li et al., 2016; Luo et al., 2018); hsa-miR-34a-5p, which is 
involved in cell proliferation and an important regulator of the 
central nervous system (Agostini and Knight, 2014; Jauhari 
and Yadav, 2019); and hsa-miR-145, identified in neonates 
and expressed specifically in the liver, where biotinidase 
expression is also higher (Fu et al., 2005; Noh et al., 2013).

The miR-7 cluster is known to be associated with genes 
related to the nervous system. Dostie et al. (2003) demonstrated 
that this miRNA may be unregulated in neuronal cells in 
spinal muscular atrophy, and involved in the neurological 
dysfunctions associated with Waisman Syndrome and Fragile 
X Syndrome. Untreated BD may lead to neurological problems 
and developmental delay. Thus, it is important to note that 
this miRNA, along with several potentially related factors, 
may be a candidate for investigation.

Hearing loss is a common sensorineural impairment 
in general populations. Experiments done in the inner ear of 
mice and humans have found differential expression of five 
miRNAs, among them miR-30, associated with different 
stages of ear development (Rudnicki and Avraham, 2012). 
In the present analysis, miR-30 was associated with the BTD 
gene. Among patients with total BD, 75% of affected children 
have hearing loss (Wolf et al., 2002), with variable but usually 
irreversible severity. 

Forty-nine miRNAs associated with genes that interact 
with the BTD were identified in the biotin metabolic pathway. 
These miRNAs have already been implicated in cell signaling, 

glycosylation pathways, and in arginine, biotin, tyrosine, and 
thiamine metabolism (Ortega et al., 2010). The PC gene that 
encodes pyruvate carboxylase, a biotin-dependent carboxylase, 
was found not only in the biotin metabolic pathway but also 
in alanine, citrate cycle, and pyruvate metabolic pathways 
(Rottiers and Näär, 2012).

Gene ontology analysis showed that these genes are 
involved in several biological processes, and act as coenzymes 
and in the metabolism of small molecules (Gene ontology: 
Fisher’s exact with FDR multiple test correction: 9.95e-20 / 
1.55e-15) (Thomas et al., 2003; Mi et al., 2013).

Among the most prominent results is the HLCS target 
gene. HLCS encodes the holocarboxylase synthetase that 
activates biotin-dependent carboxylases and catalyzes the 
binding of biotin to biotinidase. Experiments have shown 
that miR-539 decreases holocarboxylase synthetase levels, 
with the abundance of miR-539 being significantly higher at 
physiological biotin concentrations than in biotin-deficient 
and biotin-supplemented media, in all cell lines tested (Segura 
et al., 2013). The results of this study suggest that miR-539 
may be one of several factors that detect biotin and regulate 
holocarboxylase synthetase levels. In the present study, this 
miRNA was not directly associated to the BTD gene, but to 
the holocarboxylase synthetase gene HLCS.

The SPCS1 and SPCS3 genes – subunits of the peptidase 
signal complex that act as hydrolases and participate in 
degradation of lysine (Kailes and Hartmann, 1996) – also stood 
out. The lysine present in the biotin-lysine complex (biocytin) 
is believed to be degraded through the action of this complex. 
The miRNAs associated with these genes may have an impact 
on expression of SPCS1 and SPCS3 and, consequently, on 
lysine degradation, preventing biotin recycled into its free form. 
In addition, hsa-miR-204 and hsa-miR-211, both predicted to 
be associated with SPCS1, are implicated in mechanisms of 
cell proliferation and metastasis in several types of cancer, 
including breast, colon, and lung cancer (Mazar et al., 2010).

Esau et al. (2006) found that miR-122 allows the liver to 
function properly in adult mice. This miRNA is an important 
mechanism for regulation of genes involved in hepatic lipid 
metabolism. This corroborates the findings of Saha and 
Ruderman (2003) that observed negative effects on mice 
lipogenesis whereby a reduction in ACC gene expression, 
particularly ACC2, led to a decrease in malonyl CoA and 
subsequent increase in fatty acid oxidation. As biotinidase 
acts as a cofactor for several carboxylases, miRNAs may be 
involved in feedback regulation of this system. This miRNA 
was not found to be associated with BTD, but appears to be 
involved with citrate and pyruvate metabolism genes. 

Based on the assumption that a single miRNA can 
regulate several target genes, miR-31-3p and miR-34a-5p 
were associated with the BTD gene and with the PCCA 
and PCCB genes, which encode subunits of the enzyme 
propionyl-coA-carboxylase, one of the biotin-dependent 
carboxylases. Dysfunction in these genes can lead to propionic 
acidemia, a disease characterized mainly by neurological and 
cardiac damage. Rivera-Barahona et al. (2017) found that 
these miRNAs are deregulated in the liver of mice; more 
specifically, overexpression of the miR-34 family is observed 
in patients with cardiac involvement, and is associated with 
other neurodegenerative diseases. 
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Conclusions
The present study was pioneer in the analysis of the 

3′UTR of BTD gene in individuals with reduced biotinidase 
activity. Although the sequencing of this region has not found 
variants, it described their evolutive conservation. 

The study of the 3′UTR in individuals with reduced 
biotinidase activity allowed us to conclude that variants in this 
region do not explain the genotype–phenotype discrepancies 
found in Brazilian patients. However, several factors as 
miRNAs sites and regulatory elements have been identified, 
which may influence the expression patterns of the BTD gene. 
To date, there are no strongly validated interactions between 
miRNAs and the BTD gene. Thus, its experimental validation 
remains as a perspective for future research. 
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