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ABSTRACT
The objective of this study was to test the performance of canopy data obtained from Airborne 
Laser Scanner (ALS) in generating estimates of above-ground biomass (AGB) of Araucaria 
angustifolia (Bertol.) Kuntze individuals. A cloud of ALS points located in a fragment of native 
urban forest in Curitiba, Paraná was used. The procedures consisted of: classifying points; obtaining 
and smoothing the Canopy Height Model (CHM); detecting peaks and segmenting canopy using 
eCognition software. Mathematical models were adjusted to estimate the AGB from the crown 
areas. Two equations were required to estimate the individual AGB, while R2 (%) values of 96.19 
and 98.89 were found. The total AGB stock found was 264.333 kg. The LiDAR technology and 
the methods for obtaining the information used in this work constitute non-destructive and 
precise tools for quantifying biomass in native forests.
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1. INTRODUCTION AND OBJECTIVES

Forests play a key role in the forest carbon cycle 
(IPCC, 2006, 2010). It is estimated that they store about 
283  gigatonnes (Gt) of carbon (FAO, 2010), which 
when added to the carbon stored in the necromass, 
litterfall and soil correspond to a higher carbon 
concentration than that present in the atmosphere 
(Solomon et al., 2007).

The above-ground biomass (AGB) estimated on 
a landscape scale presents an important measure to 
understand and explain the atmospheric carbon balance 
(Anaya et al., 2009; Hall et al., 2011; Houghton et al., 2009; 
Hudak et al., 2012; Li et al., 2010; Lu, 2006; Tangki 
& Chappell, 2008). Many studies have produced 
regional or global AGB estimates using a combination 
of field data and remote sensing. In order to make 
these estimates feasible, it is necessary that field data 
relate to the existing biomass/carbon stocks in the 
field and the variables collected by remote sensors.

Forest biomass can be obtained by direct methods 
which involve felling and weighing all the arboreal plant 
material, or by indirect methods involving the use of 
allometric equations, satellite images (Silva et al., 2015) 
or artificial intelligence (Schoeninger et al., 2009) 
and expansion factors (Silveira, 2010). Field data 
collection is extremely time consuming and expensive 
(Chave et al., 2014). On the other hand, indirect methods 
consist of using allometric models which relate biomass 
or carbon (difficult variables to obtain), with commonly 
measured variables (tree diameter and height) in the 
field in forest inventory work (Sanquetta et al., 2014; 
Schikowski et al., 2013).

Despite the growing scientific advancement in 
AGB quantification, some types of forests, such as the 
Atlantic Forest, have few studies that model their biomass 
using remote sensing methods (Freitas et al., 2005). In 
addition, this is a biome of great territorial extension, 
which contains many areas of difficult access with 
accented slopes (Munroe et al., 2007; Southworth & 
Tucker, 2001, Teixeira et al., 2009), making it even 
more difficult to determine AGB by the destructive 
method (Lu, 2006). Thus, techniques which enable 
estimating biomass in an automated way such as by 
remote sensing should be more deeply researched 
(He et al., 2012; Soenen et al., 2010; Sun et al., 2002).

Remote sensing is an important tool that can 
support estimating and monitoring forest resources 
(Turner et al., 2003; Zolkos et al., 2013), as well as 
the distribution of AGB on a large scale (Gao, 2007). 
However, the use of advanced instruments is necessary in 
order to provide useful fine scale data for environmental 
management purposes (Corona, 2016). It is possible to 
highlight the Airborne Laser Scanner system (ALS), based 
on Light Detection and Ranging (LiDAR) technology, 
which obtains direct measurements of vegetation 
through an airborne platform (Dubayah et al., 2000; 
Popescu et al., 2011). This system is the most used to 
obtain phytostructural parameters because it is easy to 
use and provides accurate results (Anderson et al., 2006; 
Dean et al., 2009; Roberts et al., 2005).

Thus, the use of this sensor is indicated for estimating 
forest biomass, since the variables that can be directly 
measured by LiDAR correlate with the AGB data 
measured in the field (Drake et al., 2003). However, it 
is important to note that no remote sensing instrument 
can provide direct biomass measurements, so that direct 
field measurements are required to establish relationships 
between remote sensing and biomass signals to estimate 
AGB on large scales (Rosenqvist et al., 2003).

In view of the above, the present study had the 
objective to test the approach based on airborne LiDAR 
for quantifying the AGB of A. angustifolia individuals 
in a native forest fragment of the Atlantic Forest. The 
specific objectives of the study were: (1) to test the 
performance of LiDAR data for detecting canopies of 
A. angustifolia individuals; and (2) to apply a model 
to estimate AGB of the same individuals.

2. MATERIALS AND METHODS

2.1. Field study and inventory area

The study area comprises a mixed Ombrophilous 
forest (MOF) fragment located in Curitiba, Paraná 
(PR), between the coordinates 25º26’50” and 25º27’33” 
S and 49º14’16” and 49º14’33” W, at approximately 
900 m altitude (Machado et al., 2012). The climate is 
classified as subtropical humid mesothermal (Cfb) 
with undefined dry season, with average temperature 
in the hottest month of 22°C and 12°C in the coldest 
month (Peel et al., 2007).
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A forest census was carried out in the study area 
in the year 2015. The area was divided into blocks 
of 50 m x 50 m, which were georeferenced from the 
north on a map of the region and materialized in the 
field with the use of a theodolite. All individuals with 
diameter at breast height (DBH, 1.30 m) above 10 cm 
were measured, identified, recorded and georeferenced 
from the apex of each block, as described by Machado et 
al. (2009) and Machado et al. (2010). Only individuals 
of the A. angustifolia species were selected for this 
study, and they all had their coordinates determined 
in the field using a Garmin GPS 62CSX.

2.2. Airborne LiDAR data collection

Airborne LiDAR data were collected in 2012 and 
a high resolution orthorectified aerial image of the 
same area was obtained. The main characteristics of 
the collected data are: LiDAR point cloud with average 
point density of 4 points.m-2; altimetric accuracy of ~ 
10 cm; orthoimage ground sampling distance (GSD) 
of 18 cm; and scale of 1:2,000.

2.3. Basic processing of the LiDAR point cloud

Prior to basic cloud processing, the LiDAR 
data organization and preparation of the M-DOS 
environment was performed on the Windows system. 
The process was divided into two steps: basic ALS 

cloud processing and digital processing of the models. 
The former was processed using Lastools v.111216 
software (Isenburg, 2014), while the latter was carried 
out using ArcGIS 10.4 software. Figure 1 illustrates 
the flowchart of the main processing steps.

The first processing corresponded to classifying 
the soil and surface points in order to obtain the 
digital terrain model (DTM) and the digital surface 
model (DSM). After obtaining them, a subtraction 
was performed among models to obtain the canopy 
height model (CHM). This was performed using the 
raster calculator tool available in the ArcGIS 10.4 
software program.

Next, the CHM underwent a series of smoothing 
filters for noise reduction, a step that is essential 
in studies of automatic canopy identification for 
extracting information (Suárez et al., 2005). Search 
windows, which are matrices of pixels with variable 
size, were used to find the highest value referring to 
the tops of the trees using the raster calculator and 
focal statistics tools. The input image corresponded to 
the CHM and the output to a smoothed CHM image 
(sCHM) with only pixels of the points referring to the 
treetops, which was converted to a point shapefile. 
In summary, mean and minimum filters were used 
at this stage, as well as corrections to verify whether 
the image pixel had a lower value than its counterpart 
in the CHM image.

Figure 1. Flowchart of the main data processing stages. DTM: digital terrain model; DSM: digital surface model; 
CHM: canopy height model; sCHM: smooth canopy height model; AGB: above-ground biomass.
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2.4. Segmentation of A. angustifolia individuals

Segmentation of A. angustifolia individuals was 
performed using the algorithm by region growth 
implemented in the eCognition software, which has 
an object-oriented approach as its main characteristic. 
According to Mitri & Gitas (2004), the object-oriented 
classification was developed to overcome the limitations 
of traditional methods for extracting information when 
using high spatial resolution.

Some intervals were tested for delimiting tree 
canopies in the segmentation process, namely Scale 
Parameter (SP 15 to 20; amplitude of 1), while the 
default values of the software were used (0.1 and 
0.5) for other parameters (shape and compactness). 
After the segmentation procedure, the vector file was 
imported into the ArcGis 10.4 software and filtered in 
order to leave only the A. angustifolia canopies. As the 
occurrence points of the individuals in the field were 
known, the values corresponding to the area in square 
meters (m²) of each canopy were then extracted.

Regarding the orthorectified image, a visual 
interpretation of A. angustifolia crowns present in the 
area was performed, with the purpose of serving as 
controls for the present study. To do so, the location 
points of trees collected in the field with the GPS were 
used and the on-screen interpretation was performed 
in the ArcGIS 10.4 software.

2.5. AGB modeling of A. angustifolia 
individuals 

The objective of this study was to test the biomass 
expression as a function of the crown area (m²). Thus, the 
database of a direct biomass quantification by Watzlawick 
(2003) in a MOF was used to develop the mathematical 
model that expressed this relation. All A. angustifolia 
individuals to be used in the present study were selected 
from this database. Next, the equation developed by 
Sanquetta et al. (2011) was used for estimating crown areas 
of these individuals, in which measurements were taken 
from a MOF fragment with a sampling of 47 A. angustifolia 
trees with the projection of at least four canopy rays per 
tree. The result is presented in Equation 1:

CA dbh dbh= + + −35 6111 2 0132 0 005 2. . ( ) . ( ) 	 (1)
Coefficient of determination (R²): 0.77.; Syx% = 47.7%.
CA: crown area (m²); dbh: diameter at 1.30 m height (cm).

In other words, dbh data from the database of 
Watzlawick (2003) were used to estimate crown 
areas using the equation developed by Sanquetta 
et al. (2011). The biomass model was then expressed 
as a function of crown area (m²) of A. angustifolia 
individuals.

After that, the model for estimating AGB was 
developed based on the crown areas of the individuals. 
The accuracy of the model was evaluated by R², root-
mean-square error (RMSE) and BIAS, according to 
Equations 2 and 3.

RMSE y y
n

i
n

i i=
−=S 1

2( )


	 (2)

BIAS
n

y yi
n

i i= −=
1

1S ( )


	 (3)

n: number of A. angustifolia individuals; yi : observed 
value of above-ground biomass (kg); i and 

yi : 
predicted value of above-ground biomass (kg) i.

Three treatments were defined (T1 = Control, T2 
= Automatic Classification and T3 = Semi-automatic 
Classification) to evaluate the results. T1 refers to 
the census used as the basis for this work, meaning 
the inventory at 100% of A. angustifolia, totaling 336 
individuals. T2 refers to the correctly identified crowns, 
which represents the correctness of the classifier without 
manual intervention; and T3 represents the canopies 
that the classifier did not identify, requiring manual 
intervention by the photo interpreter.

3. RESULTS 

The products generated by processing the LiDAR 
cloud were the DTM, which varied in altitude from 
890.5 m to 922.7 m, and the DSM from 894.8 m to 
937.9 m. The CHM is a byproduct of these models 
and the one which enables the obtention of the tree 
heights. This model presented a value of 32.79 m, 
being the value of the largest tree present in the area. 
The image was highlighted with the smoothing filters 
applied in the CHM, leaving the tree tops softer 
so that the segmentation process was optimized. 
Applying the filters promoted smoothing of the 
maximum peaks and reducing the altitude of the 
CHM, for which its application had a maximum 
value of 26.5 m (Figure 2).
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Figure 2. A1) Canopy Height Model (CHM); A2) CHM with zoom focusing on areas with A. angustifolia canopy; 
B1) Smooth Canopy Height Model (sCHM); B2) sCHM with zoom focusing on areas with A. angustifolia canopy.

Application of smoothing filters generally allowed 
removal of image noise, as well as reducing the likelihood 
of trees being falsely identified. In the segmentation 
process, the value for the scaling parameter that 
provided the best result was 18, while 382 polygons 
were obtained as the result of the CHM segmentation, 
and they correspond to the canopies of A. angustifolia 
individuals. This value was found due to the classifier 
targeting a single canopy in multiple regions.

Some adjustments were necessary based on the result 
of the overlapping segmentation in the orthophoto, 
mainly the exclusion of polygons that the software 
could not homogenize as a single canopy. After the 
filters were applied (exclusion and adjustment of the 
polygons) to the canopies, 297 crowns were identified 
and extracted automatically (T2), meaning that T2 
correctly identified 88.4% in relation to the control 
(T1). On the other hand, 90.8% were correctly identified 
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in T3 in delimiting the crowns, as 305 crowns were 
identified in this process which corresponds to the 
sum of the result of T2 (297 crowns), in addition to the 
eight crowns from the semi-automatic classification 
(T3). Figure 3 shows the segmentation result of the 
crowns of the tested classifiers.

Summarizing, 297 individuals of A. angustifolia 
(polygons delimited in white) were automatically 
classified (T2). However, eight trees (in black) were 
identified using only the semi-automatic classification 
(T3), despite being the target species. In this sense, by 
adding the result of the T3 (eight trees) with the 297 
individuals of the T2, we have a total of 305 individuals 
identified with the present methodology, which represents 
a final agreement of 90.8% in relation to the census of 
336 A. angustifolia individuals.

A. angustifolia individuals were easily identified 
in the image. The process of obtaining the crowns 
automatically was also efficient. In addition, it is 
important to note that the use of GPS navigation in 
this process did not interfere with the methodology 
used to identify the individuals in the image, since 
this instrument was used to ensure the veracity of 
the information.

The crown area (CA) values of A. angustifolia 
individuals presented a mean of 107.22 m² ± 45.12 m² 
and of 108.44 m² ± 45.41 m², respectively for the semi-
automatic (T3) and automatic classifications (T2). 
The minimum and maximum CA values were 26.17 m² 
and 290.63 m², respectively. Evaluating the distribution 
of the variable in question (Figure 4), it can be seen that 
both treatments (T2 and T3) present a high concentration 
of individuals with values close to the observed means 
(107.22 m² and 108.44 m2). The presence of a peak near 
the final CA classes (180 m²-200 m²) was also observed, 
indicating a bimodality pattern.

In relation to the identified individuals, the LiDAR 
technology is very efficient, especially when associated 
with other tools such as object-oriented classification 
(segmentation). Through the implemented methodology, 
it was possible to delimit about 90.8% of the individuals. 
Considering that the census of the area listed a total of 
336 A. angustifolia individuals, there is a high percentage 
of identification, especially because the species occurs 
among others in a natural ecosystem. There are few works 
developed in native forests in this context, mainly due 
to the complexity of the environment and the various 
ecological interferences it suffers.

Figure 3. Digital orthoimagery of the area with the best segmentation result after adjustment and exclusion of deflection 
polygons and visual identification of the canopies not extracted by the segmentation process.
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The development of two equations were necessary 
for AGB estimation due to the great variation of crown 
areas found and to the distinct behavior of this variable 
as a function of the size of individuals. With the use of 
these, it was possible to better represent the AGB as a 
function of the crown area. Equation 4 was developed 
and applied to crown areas smaller than 183 m², while 
Equation 5 was applied to crown areas equal to or 
greater than 183 m².

AGB E AC= −5 05 3 4478( ) , 	 (4)
For CA < 183 m².
AGB: above-ground biomass (kg); CA: crown area (m²).

AGB CA CA= − −0 13512 7 8836 63 4872. * . * . 	(5)

For CA ≥ 183 m².
AGB: above-ground biomass (kg); CA: crown area (m²).

The developed equations indicate good performance 
for estimating the AGB of A. angustifolia individuals, 

since the coefficient of determination (R²) values were 
0.96 and 0.98 for Equations 4 and 5, respectively. 
The respective RMSE (%) and BIAS (%) values were 
0.03 and 0.95 and 1.01 and –0.95. In summary, the 
AGB estimated for A. angustifolia presents mean 
values ranging from 65.96 kg to 9,058.52 kg for the 
crown area classes. The total AGB stock in the entire 
study area (which is approximately 15 hectares) was 
264.333 kg (Table 1).

The highest AGB value (98.462  kg) was found 
in the class of CA 126.15 m²-176.15 m², in which 65 
A. angustifolia individuals were found. With only 
one individual, the CA class 276.17 m²-326.17 m² 
presented a total of 9,058 kg of biomass, representing 
about 3.42% of the estimated total area for these 
individuals. The largest number of individuals was 
found in the CA class of 76.17 m² to 126.17 m², with 
136 trees whose biomass totals were 58.877 kg, which 
is about 22% of the total. The class 26.17 m²-76.17 m², 
with 79 individuals, presented 1.97% of the total 
above-ground biomass.

Table 1. Statistical information from the polygon extraction of the A. angustifolia crowns.

Crown area classes (m²)
N

Individual above-ground biomass (kg)
Interval Center Minimum Maximum Mean

26.15-76.15 51.15 79.00 3.87 152.53 65.96 ± 36.7

76.15-126.15 101.15 136.00 163.59 873.08 432.92 ± 173.75

126.15-176.15 151.15 65.00 876.50 2724.66 1514.81 ± 430.10

176.15-226.15 201.15 21.00 2922.43 4697.31 3501.01 ± 342.59

226.15-276.15 251.15 3.00 5584.01 6889.49 6398.49 ± 542.89

276.15-326.15 301.15 1.00 9058.52 9058.52 9058.52

General Total 305.00 - - 875.69 ± 811.66

Figure 4. Frequency histogram for the crown area of A. angustifolia individuals. a) Automatic classification; b) Semi-
automatic analysis.
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Comparing the evaluated treatments using the 
automatic and visual (semi-automatic) crown area 
evaluation, it is observed that the above-ground 
biomass estimates were as follows: i) adopting the 
automatic method, we obtained an above-ground 
biomass stock of 262.756  kg; and ii) in adopting 
the automated method with a visual analysis by the 
interpreter (semi-automatic), we obtained an increase 
of 1.577 kg, resulting in a final stock of 264.333 kg. 
It should be noted that even with good results using 
automatic methods, one must consider the performance 
of a visual analysis to find details that are sometimes 
difficult to measure automatically. It is also noticed 
that new technologies have been improved with the 
advance in science. The use of data from the ALS is an 
example that has shown to be promising in the forest 
area. However, at the same time the adoption of such 
techniques has revealed new challenges for research.

4. DISCUSSION

The application of smoothing filters generated 
a loss of information, as already verified by Nelson 
et al. (2002). However, the goal of smoothing was to 
highlight the tree crowns for better identification and 
segmentation. The high number of polygons generated 
by the segmentation process can be related to the 
classification process itself. According to Sousa et al. 
(2015), it can be understood as a process in which the 
image is partitioned into different regions in order to 
discriminate pixels that have certain characteristics 
predefined by the user, such as gray levels, textural 
properties or average values.

The object-oriented classification process, although 
superior to other processes, usually presents errors 
due to the excess of polygons. Macedo et al. (2012) 
delimited tree crowns in clonal forests using object-
oriented classification and found an overestimation 
due to the excess of polygons classified as crowns 
(commission errors). The study corroborates the results 
found in this work, since 297 crowns were identified 
and automatically extracted after filtering (exclusion 
and adjustment of the polygons) the canopy of the 
A. angustifolia individuals, representing a correct 
rate of 88.4%.

The bimodality pattern in the diametric distribution 
of A. angustifolia in natural forests was verified in other 

studies (Ebling et al., 2013; Orellana et al., 2014), which 
corroborates this study. The use of two equations to 
estimate AGB was due to the heterogeneity of crown 
area values found. The shape of A. angustifolia crowns 
is indicative of its ontogenic stage, with changes as 
the plant goes through stages of youth, maturity 
and senescence. Young trees present crowns with a 
conical shape, while adult and senescent individuals 
have crowns shaped as a cup or umbel. The primary 
branches are cylindrical, curved upward, and the lower 
branches are larger than the upper branches, and both 
have alternating secondary branches (gypsies) and 
grouped at the apex (Reitz & Klein, 1966).

The models developed presented strong coefficient 
of determination (R2 = 0.96 and 0.98) values, evidencing 
that the LiDAR technology is a tool with great potential 
for estimating AGB of A. angustifolia individuals in 
a native ecosystem. Zolkos et al. (2013) conducted a 
global review on AGB estimation and found an average 
R2 of 0.76 for LiDAR studies in different biomes. 
The authors also highlighted typological variations, 
with tropical forests having lower values of precision 
than those of other biomes. Thus, these results agree 
with those presented in this study.

5. CONCLUSIONS

The use of LiDAR data to estimate the above-
ground biomass of the individual plants has shown to 
be promising. It is possible to obtain accurate estimates 
of the AGB stock with this technology and the methods 
used. Two equations were necessary to estimate AGB 
of A. angustifolia; one applied to CA up to 183 m², and 
another for CA above 183 m².

The use of LiDAR technology and the methods 
applied for obtaining information, such as the one 
developed in this study, enabled measuring the crowns 
of A. angustifolia individuals and estimating AGB. In 
addition to providing biomass stock estimates with 
reliability, the use of LiDAR data is an excellent tool 
for obtaining spatial information.
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