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Abstract
This study was conducted to assess the physicochemical characteristics of urban forest soil contaminated by copper 
and the dynamics of macro- and micronutrients uptake by Schinus terebinthifolia and Eugenia uniflora seedlings. 
The seedlings received 0 (control), 60, 120, 180 or 240 mg Cu kg-1 soil applied to urban forest soil within São Paulo 
City, Brazil. Our results showed that K was reduced in Cu-contaminated soil used for S. terebinthifolia cultivation 
and that organic matter was higher in Cu- contaminated soil used for E. uniflora cultivation. Other physicochemical 
properties of soil remained unaltered. S. terebinthifolia presented nutritional imbalances in N, K and Mg on leaves, 
while E. uniflora presented nutritional imbalances in K on leaves and in S on roots. It can be concluded that copper 
contamination can negatively affect chemical and nutritional characteristics of urban forest soil, as well as the 
nutritional dynamics of S. terebinthifolia and E. uniflora.
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1. INTRODUCTION AND OBJECTIVES

Copper (Cu) is an essential micronutrient for plant growth 
and development, playing key roles in several physiological 
processes, such as cell respiration, photosynthesis, ATP generation 
(Marques et al., 2018), participation in redox reactions and 
in oxidative stress protection (Rehman et al., 2019). Despite 
its necessity, copper in high concentrations can be toxic to 
plants, inducing adverse effects on plant physiology and 
biochemistry, such as excessive formation of reactive oxygen 
species (ROS) (Saleem et al., 2020), nutritional imbalance (Zeng 
et al., 2019), reduced growth and morphological alterations 
(Hossain et al., 2020). 

Many factors influence the uptake of nutrients by terrestrial 
plants, such as temperature, pH and aeration of soils, organic 
matter, and soil contaminated with heavy metals (Hu et al., 
2018). In general, excess copper in soil can disrupt plant 
nutritional metabolism by inhibiting the uptake of nutrients 
from soil and interfering with nutrient translocation from 
roots to shoots (Kumar et al., 2020). However, the degree 
of nutritional imbalance caused by Cu toxicity in plants is 
dependent on environmental factors, including the concentration 

and bioavailability of Cu in soil, length of exposure to heavy 
metal, and environmental growth conditions, as well as the 
morphophysiological characteristics of each plant species 
(Adrees et al., 2015).

 In recent years, the accumulation of copper in soils 
has become a worldwide environmental concern. Human 
activities like mining, excessive use of copper-based pesticides, 
chemical and organic fertilizers, untreated sewage sludge 
and combustion of fossil fuels increase copper levels in soils, 
reaching concentrations that present risks for the biota and 
human health (Farias et al., 2018; Shabbir et al., 2020). Toxic 
concentration of Cu can be observed in highly urbanized 
regions, such as large cities, compared to more forested areas 
or areas with native vegetation, such as urban forest fragments 
(Argyraki et al., 2018; Li et al., 2019). Urban forest fragments 
are remnants of native and secondary forests inserted in the 
urban environment. These fragments play a specific role in the 
existence and long-term maintenance of ecosystem services, 
conservation of biodiversity and habitat for several plant 
species (Dislich & Pivelo, 2002). However, the sheer proximity 
of various pollutants places urban forest fragments at risk of 
particulate material from the emissions of automotive fleets 
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and industry. These emissions contain heavy metals and can 
contaminate both soil and ground water (Nakazato et al., 
2021; Ferreira et al., 2019). Air pollution and deposition of 
particulate matter from human activities can also negatively 
affect the nutritional status of trees, reducing their development 
in urban forest remnants (Bulbovas et al., 2020).

Studies with tree species have already reported that excess 
copper in soil can negatively affect plant growth (Marco et al., 
2016) and biomass production (Siqueira et al., 2021). It can also 
lower CO2 assimilation by reduced efficiency of the electron 
transport chain (Li et al., 2019). However, the direct effects of 
copper contamination on urban forest fragment soils, as well 
as the nutritional consequences observed in Brazilian native 
tree species from the Atlantic Forest cultivated in polluted soil, 
remain under investigated. It is herein hypothesized that the 
addition of increasing concentrations of copper in the soil of an 
urban forest fragment will alter its nutritional characteristics, 
thereby affecting the bioavailability of other elements, such as K 
or Mg, triggering nutritional imbalance in tree species. Therefore, 

this study aimed to validate if copper contamination changes 
the physicochemical properties of experimental plots of urban 
forest fragment in a manner that directly affects the nutritional 
dynamics of two tree species native to the Atlantic Forest.

2. MATERIALS AND METHODS

2.1. Characterization of plants and soil

Soil used in the experiment (Table 1) was a red-yellow 
latosol (LVA) (Santos et al., 2018) collected between 0.0 
and 40.0 cm in depth in a forest area in the Parque Estadual 
Fonte dos Ipiranga (PEFI), São Paulo City, São Paulo State, 
Brazil. The experiment was carried out in a greenhouse at 
the Institute of Botany (23º30’S and 46º40’W; 770 m altitude) 
located inside the PEFI. Seedlings of the pioneer tree species 
Schinus terebinthifolia Raddi. (aroeira-vermelha) and the 
non-pioneer tree species Eugenia uniflora L. (pitanga), both 
native to the Atlantic Forest, were used in the experiment.

Table 1. Soil chemical composition at the beginning of the experimentation.

pH O.M. Presin H+Al K Ca Mg BS CEC
V%

B Cu Fe Mn Zn
CaCl2 g dm3 mg dm3 mmolc dm-3  mmolc dm-3 

5.1 42.0 5.5 33.6 1.6 50.7 9.6 61.9 95.5 64.8 0.6 1.3 25.7 21.3 9.0
Base summatory (BS) = K+Ca+Mg; Cation exchange capacity (CEC) = Ca+Mg+K+Al+H; Base saturation (V%) = BS/CEC*100

2.2. Experimental conditions and design

The seedlings were transplanted into 2.6 L vases containing 
natural PEFI soil and remained there for 30 days to allow 
acclimatization. The experiment consisted of the application 
of 75 ml Hoagland and Arnon solution n.1. (Hoagland & 
Arnon, 1950) modified with 0 (control), 60, 120, 180 or 240 
mg Cu (CuSO4

.5H2O) kg-1 soil dry weight (DW) (Table 2). 
Copper concentrations were based on the Environmental 
Agency of São Paulo State (CETESB, 2016) prevention 
value for Cu (60 mg Cu kg-1 DW soil). Ionic balance of the 

solutions was carried out in order to maintain the constancy 
of the other macro- and micronutrients, and pH was adjusted 
to 5.8. The plants were irrigated weekly with ¼ of the total 
concentration, repeating the procedure 4 times to obtain the 
total values ​​of copper in the soil for each treatment. During 
the experimental period, distilled water was used to irrigate 
the plants whenever necessary. The experiment lasted 120 
days after soil contamination with copper between the spring 
and summer seasons in Brazil (September to December 2019) 
with a mean temperature of 26 °C and relative humidity of 
56% inside the greenhouse.

Table 2. Ion balance of Hoagland and Arnon nutritional solution modified with 0, 60, 120, 180 or 240 mg Cu kg-1.

Ion source
Treatments (mg Cu kg-1 soil DW)

0 60 120 180 240
Released Ions (mmol L-1)

NH4
+- (NH4)2SO4 18 13.65669 9.313379 4.970069 0.626759

NH4
+ - NH4NO3 1 3.171655 5.34331 7.514966 9.686621

NO3
- - NH4NO3 1 3.171655 5.34331 7.514966 9.686621

[NH4
+] + [NO3

-]  20 20 20 20 20
SO4

2- - (NH4)2SO4 9 6.828345 4.65669 2.485034 0.313379
SO4

2- - CuSO4.5H2O 0 2.171655 4.34331 6.514966 8.686621
[SO4

2-] 9 9 9 9 9
Cu2+- CuSO4.5H2O 0 2.171655 4.34331 6.514966 8.686621

[Cu2+] 0 2.171655 4.34331 6.514966 8.686621
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2.3. Analyses of soil and macro- and 
micronutrient content in plant tissues

After the experimental period, soil samples of each 
treatment were homogenized, fractioned and oven-dried 
at 60 °C until constant weight. The pH, total organic matter 
(O.M.), potential acidity (H+Al) and content of total macro- 
and micronutrients were determined following the method 
adopted and described by Raij et al. (2001). Soil pH was 
potentiometrically determined in 0.01 mol L-1 CaCl2. O.M. was 
determined by the colorimetric method after soil digestion with 
sulfochromic solution. H+Al was determined using 1 mol L-1 
calcium acetate at pH 7. Calcium (Ca) and magnesium (Mg) were 
determined by atomic absorption spectrophotometry (AAS); 
potassium (K) by flame spectrophotometry; and phosphorus 
(P) by Ultraviolet-visible (UV/Vis) spectrophotometry after 
extraction with ion exchange resin. Boron (B) was determined 
by the colorimetric method (azomethine-H) after extraction 
with barium chloride. Iron (Fe), manganese (Mn) and zinc 
(Zn) were determined by atomic absorption spectrometry 
(AAS) after extraction in DTPA solution at pH 7.3.

Plants were removed from the pots, and the leaves, stems 
and roots were sectioned. The roots were washed under distilled 
running water. After oven-drying at 60 °C until constant weight, 
the plant material was weighed and milled in a knife mill to 
obtain a homogeneous powder. The total contents of macro- 
and micronutrients in vegetable material were determined 
according to the methods described by Malavolta (1997). 
Cu, Ca, Mg, Zn, Fe, and Mn were determined by atomic 
absorption spectrophotometry (AAS); P was determined by 
the ammonium metavanadate colorimetric method; K was 
determined by flame spectrophotometry; and sulfur (S) was 
determined by the turbidimetric method (BaCl2.2H2O) after 
nitric-perchloric acid digestion. Nitrogen (N) was evaluated 
by the Kjeldahl method after sulfuric digestion, and B was 
assessed by the colorimetric method (azomethine-H) after 
incineration.

2.4. Absolute copper content in tissues

The absolute copper content (mg Cu kg-1 DW) in leaves 
and roots of S. terebinthifolia and E. uniflora was determined 
by multiplying the total copper content in each tissue by the 
tissue’s dry weight (DW) as Cutissue * DWtissue.

2.5. Statistical analyses

The experimental design adopted completely randomized 
blocks, consisting of 5 blocks with 5 treatments and 20 

plants per plot, totaling 100 plants of each species. Data 
were submitted to Shapiro-Wilk normality test and Brown-
Forsythe homoscedasticity test (Tables S1, S2, S3, S4, S5 
and S6) using the statistical software GraphPad, v 9.0. If the 
data were determined to meet assumptions of normality 
and homogeneity of variance, then they were submitted 
to analysis of variance (One-Way ANOVA), and means 
were compared by Tukey’s test at 5% probability (p ≤ 0.05). 
Otherwise, data were submitted to the Kruskal-Wallis non-
parametric test, followed by Dunn’s multiple comparison 
test at 5% probability (p ≤ 0.05).

3. RESULTS

3.1. Soil

O.M. levels in the soil cultivated with E. uniflora showed 
an increase after treatment with 240 mg Cu kg-1 when 
compared to 180 mg Cu kg-1, while no change in O.M. levels 
was observed in the soil cultivated with S. terebinthifolia 
(Table 3). No difference was observed for pH and H+Al 
among treatments in soil cultivated with S. terebinthifolia 
and E. uniflora. 

Table 3. Chemical properties of soils cultivated with S. terebinthifolia 
and E. uniflora. Lowercase letters compare treatments within each 
species. 

Species
Treatments pH O.M. H+Al
mg Cu kg-1 

soil DW CaCl2 g dm-3 mmolc dm-3

S.
 te

re
bi

nt
hi

fo
lia 0 4.8 a 40.0 a 38.6 a

60 4.9 a 42.4 a 40.4 a
120 4.9 a 38.9 a 39.4 a
180 5.0 a 41.0 a 40.1 a
240 5.0 a 40.0 a 35.8 a

E.
 u

ni
flo

ra

0 5.0 a 40.7 ab 36.9 a
60 4.9 a 40.7 ab 34.2 a

120 5.0 a 43.4 ab 38.5 a
180 4.9 a 38.9 b 37.7 a
240 4.9 a 46.4 a 37.6 a

Means followed by same letters in each column do not differ by Tukey’s test at 
5% probability.

The K contents in soil cultivated with S. terebinthifolia 
decreased after treatment with 240 mg Cu kg-1 compared to 
120 mg Cu kg-1, but copper-contaminated soil did not affect 
K content in the soil cultivated with E. uniflora (Figure 1). No 
difference was observed for Ca and Mg or the micronutrients 
B, Fe, Mn, and Zn among treatments in soil cultivated with 
S. terebinthifolia and E. uniflora.
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Figure 1. Nutritional composition of soils cultivated with S. terebinthifolia and E. uniflora. Lowercase letters compare treatments within each 
species. Means followed by same letters in each column do not differ by parametric Tukey’s or non-parametric Dunn’s test at 5% probability.

3.2. Absolute concentration of copper content in 
tissues

The absolute concentration of copper in both species 
increased as the concentration of copper applied to the soil 
increased (Figure 2). The absolute concentration of copper 

in the leaves of S. terebinthifolia varied from 0.025 to 0.028 
mg Cu kg-1 leaf DW, while in roots, it increased from 0.222 
to 0.537 mg Cu kg-1 root DW (Figure 2a). E. uniflora showed 
variation in absolute concentration of copper in the leaves 
from 0.028 to 0.033 mg Cu kg-1 leaf DW and in the roots from 
0.040 to 0.105 mg Cu kg-1 root DW (Figure 2b).
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Figure 2. Absolute copper contents in leaves and roots of S. terebinthifolia (a) and E. uniflora (b). Bars represents standard error.

3.3. Macro- and micronutrient content in plant 
tissues

S. terebinthifolia showed a reduction in N levels in the 
leaves after treatment with 60 mg Cu kg-1 when compared to 
the control, while E. uniflora showed no statistical differences 
for N (Figure 3). S. terebinthifolia leaves showed a reduction 
in K levels after treatment with 60 and 180 mg Cu kg-1 when 
compared to the control. E. uniflora leaves also showed a 
reduction in K levels after treatment with 180 mg Cu kg-1 

compared to control and 60 mg Cu kg-1. S. terebinthifolia 
leaves showed an increase in Mg levels after treatments with 
180 and 240 mg Cu kg-1 compared to 120 mg Cu kg-1, but no 
difference compared to control. No difference was observed 
for P, Ca, S, Fe, B, Mn, Zn in S. terebinthifolia and E. uniflora 
leaves among treatments (Figure 3).

E. uniflora roots showed an increase in S levels after treatment 
with 120 mg Cu kg-1 compared to 60 mg Cu kg-1, while no 
alteration of macro- and micronutrient levels in the roots of 
S. terebinthifolia among treatments was observed (Figure 4).
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Figure 3. Macro- and micronutrient content in leaves of S. terebinthifolia and E. uniflora. Lowercase letters compare treatments within 
each species. Means followed by same letters in each column do not differ by Tukey’s test at 5% probability.
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Figure 4. Macro- and micronutrient content in roots of S. terebinthifolia and E. uniflora. Lowercase letters compare treatments within 
each species. Means followed by same letters in each column do not differ by Tukey’s test at 5% probability.
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4. DISCUSSION

Copper contamination can induce different effects on 
the physicochemical properties of soils (Seguel et al., 2019). 
Changes in soil characteristics caused by excess of copper 
result from the effects of copper on the chemical bonds 
between the soil and the aggregated particles that adhere 
strongly to O.M., preventing its decomplexation (Karkush 
& Ali, 2019). The difference in the contents of O.M. between 
species is likely related to the heterogeneity of soils from urban 
forest fragments, which have different levels of O.M. from 
soil microbiota activities and particulate matter deposition 
(Ferreira et al., 2019). More specifically, the release of 
exudates of each species and the chelation of metals in the 
soil surrounded by plant roots (rhizosphere) can also change 
nutrient contents and physicochemical characteristics of soils 
(Campillo-Cora et al., 2019).

Decrease in total K content in soil caused by excess of 
copper can be related to competition for adsorption sites in 
soil particulates (Wyszkowski, 2019), as well as the negative 
influence of excess copper on the natural cycling of nutrients 
(Bulbovas et al., 2020). However, the availability of nutrients in 
copper-contaminated soils is dependent on the plant species 
present and their uptake capacity (Vendruscolo et al., 2018), 
as well the release of exudates from each species, which may 
modify the availability of nutrients in soil (Campillo-Cora et 
al., 2019). Therefore, the distinct responses in the nutritional 
status of soil with S. terebinthifolia or E. uniflora is a result of 
the difference between species uptake capacity and nutrient 
availability.

The copper we added to the soil was effectively uptake by 
S. terebinthifolia and E. uniflora roots and incorporated into 
plant tissues, mostly accumulated in the root system. Copper 
uptake by roots is carried out through several specific and 
non-specific carriers of heavy metals located in the plasma 
membrane of root cells (Printz et al., 2016). Copper naturally 
has a strong affinity for groups of enzymes and proteins 
present in the apoplast and cell wall of root cells, promoting 
its retention in plant roots (Girotto et al., 2016). In addition, 
under situations of toxicity and excess of copper, several species 
of plants have physiological mechanisms of tolerance to heavy 
metals, such as release of exudates by the roots, as well as 
chelation, sequestration and compartmentalization of metal 
ions in the vacuoles of root cells (Kumar et al., 2020). The 
increase in copper concentration in tissues, with preferential 
accumulation in the roots of S. terebinthifolia and E. uniflora, 
is a defense response for these tree species, restricting heavy 
metal to the roots and preventing translocation to leaves and 
causing a negative impact on the photosynthetic efficiency 
of plants (Marques et al., 2018).

Heavy metal stress can cause disturbances in the regulation 
of N uptake by roots and its translocation to shoots, leading to 
a decrease in the total N levels in leaves (Hippler et al., 2018). 
Toxicity produced by excess of Cu in plants reduces N uptake 
and translocation by decreasing the expression level of genes 
encoding NO3

- transporters (Huo et al., 2020). The changes 
in K levels could be triggered by an impairment in uptake and 
translocation of K from roots to leaves as a result of copper 
toxicity. Cu toxicity induces the reduction of macronutrient 
content in shoot (i.e., K) as a result of interferences from ion 
uptake and translocation from root to shoot (Marastoni et al., 
2019), producing an imbalance in homeostasis and distribution 
of nutrients throughout the plant (Souza et al., 2014; Zaouali 
et al., 2020). Furthermore, since cationic transporters can 
act in the transport of different ions in a nonspecific way, a 
decrease in potassium concentration (K+) in the aerial part of 
plants may be related to K in competition with copper ions 
(Cu+ and Cu2+) in the translocation processes (Cao et al., 2017; 
Kobayashi et al., 2019). Excess of copper can induce an increase 
of Mg translocation from roots to leaves, thus maintaining the 
homeostasis of mineral composition in shoots (Zeng et al., 
2019). With enough concentration of Mg in plant tissues, the 
effects of excess Cu caused by the ionic competition between 
elements can be mitigated, preventing excess Cu from binding 
to vital action sites and causing toxicity (Juang et al., 2014). 

Cu toxicity can also cause impairment in nutrient uptake by 
roots by the competition among ions for uptake and nutritional 
imbalance as a consequence of saturation of nonspecific ionic 
transporters (Freitas et al., 2015). However, these effects are 
highly dependent on copper concentrations and method of 
cultivation. For example, plants cultivated in nutritive solutions 
have higher copper toxicity by the elevated availability of 
elements and fast uptake by the roots (Mezzavilla & Neto, 
2017,), while plants grown in soils present lower copper uptake 
by the strong adhesion of copper to soil particles and a host 
of soil-system biotic and abiotic relationships that can lead to 
less adverse effects on nutritional balance (Kelepertzis et al., 
2015; Chua et al., 2019). Since our study was carried out with 
soil, it is possible that copper remained partially aggregated 
to the soil, suggesting that the concentrations uptake by both 
tree species were insufficient to cause nutritional imbalance 
in all measured elements. It is also possible that higher doses 
or longer exposure to Cu could have increased the amount 
uptake by roots, causing nutritional imbalances and negatively 
interfering with the homeostasis of more elements. In addition 
to factors related to experimental condition, copper effects 
on the nutritional imbalance in plants are associated with 
synergism and/or competition between copper and mineral 
nutrients for specific absorption sites and transporters (Printz 
et al., 2016), and some nutrients have weak competition against 
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copper as a result of different ionic characteristics and lack of 
affinity with the same carriers (Andrés-Bordería et al., 2017). 
Thus, the concentration and translocation of the unaffected 
elements may be a consequence of their weak competition with 
copper for specific absorption sites and carriers (Kobayashi et 
al., 2019). The irregular responses in nutrient concentration 
of S. terebinthifolia and E. uniflora to copper stress can also be 
explained by the fact that different species grown in copper-
contaminated soils present different dynamics of accumulation, 
transport, and nutritional homeostasis in relation to their uptake 
capacity and the rate of development for each tissue (Zeng et al., 
2019; Zabotto et al., 2020). Furthermore, a variety of tolerance 
mechanisms and strategies are adopted by plants which can 
result in distinct nutritional imbalances for each species when 
cultivated in copper-contaminated soils (Yruela, 2009). 

In our study, we observed that excess copper can modify 
the chemical properties of urban forest fragment soil. However, 
the magnitude of these changes can be affected by the species 
inhabiting that soil. Moreover, when cultivated in soils with 
high concentrations of copper, we found that the level of 
nutrients of S. terebinthifolia and E. uniflora can be affected 
in different ways. For instance, while the pioneer species 
S. terebinthifolia presents nutritional imbalance only in the 
leaves, the non-pioneer species E. uniflora presents nutritional 
imbalance in both leaves and roots. During the experiment, a 
small number of characteristics of soil and plant nutrition were 
altered. Therefore, it can be assumed that the applied dose or 
time was insufficient to cause major nutrient imbalance, but 
that larger doses or longer cultivation time could possibly result 
in more significant nutritional imbalance. We conclude that 
the excess of copper can change the chemical and nutritional 
characteristics of soil, as well as the nutritional dynamics of 
Schinus terebinthifolia and Eugenia uniflora seedlings. 
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