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ABSTRACT

The objective of this study was to model the potential effect of future climate change on the
distribution of a tree species indicator of Cerrado. For the modeling, we used 488 occurrence
points of the species and also bioclimatic variables corresponding to 2050 and 2070, for the more
optimistic and pessimistic scenarios. All generated models were classified as consistent, getting
an area under curve higher than 0.90. The current modeling of Connarus suberosus showed that
88% of the area with a high probability of species occurrence is inside the Cerrado domain. Future
projections suggest losses in the environmental suitability area around 40.8% and 44.8% in the
optimistic scenario, 61.6% and 81.6% in the pessimistic scenario considering 2050 and 2070,
respectively. Furthermore, we found a tendency of the C. suberosus to move in the Atlantic Forest
direction. This modeling is an alert that the C. suberosus will suffer from future climate change.

Keywords: bioclimatic variable, Connarus suberosus, environmental suitability,
Neotropical savanna, maximum entropy.
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1. INTRODUCTION

Several scientists believe that extremes of hot
temperatures will occur with higher frequency and
duration. The increment on global warming is associated
with the rising on the concentration of greenhouse
gases caused by anthropic interventions (Stocker et al.,
2013). Rapid changes in the climatic conditions can
harm the migration of species to environments suitable
for its adaptation. These effects become even more
emphasized on tree species, which usually are much
more adapted to specific microclimatic conditions
(Buckeridge et al., 2007).

Understanding geographic patterns of species
distribution is a fundamental key for the identification
of areas with elevated conservation importance (Siqueira
& Durigan, 2007). Also, it may help to recognize the
susceptibility of areas to environmental and anthropic
changes (Cupertino-Eisenlohr et al., 2017) on the
potential risk of species extinction (Thomas et al., 2004;
Malcolm et al., 2006; Ohlemiiller et al., 2008) and how
it can affect the economy of communities that depend
on these resources to live (Nabout et al., 2011, 2016).

The potential species distribution modeling (SDM)
using bioclimatic variables is an efficient way to study
geographic distribution of species (e.g. Elith et al.,
2006; Pearson et al., 2007; Werneck et al., 2012).
Moreover, SDM can be applied as a tool to indicate how
environmental changes can modify the characteristics
of forests, including changes in spatial distribution
(Williams et al., 2003). Approaches applying models can
predict the geographic distribution of communities and
tropical forests structure (Dubuis et al., 2011), including
assessments about dynamics of phytogeographic patterns
(Collevatti et al., 2012a). That includes the conversion
of the Latin American savannas into different biomes
(Moncrieff et al., 2016) and the savannization process
of tropical forests in Brazil (Salazar et al., 2007).

The Cerrado domain, also known as the neotropical
savanna, has suffered from continuous deforestation
during the last decades, becoming one of the most
endangered savannas in the world and one of the
most threatened biomes in Brazil (Silva & Bates, 2002;
Aguiar et al., 2016).

The Connarus suberosus Planch is a typical
Cerrado vegetation species (Matheus et al., 2009)
reported with high indicator value (Bueno et al,,

2016). Many indicator species can be used to monitor
trends in forest dynamics (Carignan & Villard, 2002)
and to characterize the environmental preferences
(Caceres et al., 2010). Furthermore, species strongly
associated with particular habitat features could also
be useful as an indicator for conservation purposes,
land management, landscape mapping or design of
natural reserves (Dufréne & Legendre, 1997; Carignan
& Villard, 2002; Céceres et al., 2010).

The objective of this study was to evaluate the
effect of future climate change on the C. suberosus
distribution. The modeling was performed for both
the most optimistic and the most pessimistic IPCC
scenarios in terms of temperature increment, projecting
to 2050 and 2070.

2. MATERIAL AND METHODS

Covering around 2 million square kilometers, the
Cerrado domain occupies approximately 22% of the
Brazilian territory and works as a corridor between
the Amazon and Atlantic Forest domains (Ribeiro &
Walter, 2008). The typical Cerrado vegetation grows on
acid and dystrophic soils (Oliveira-Filho & Ratter, 2002;
Mendonga et al., 2008) and is considered the richest
tropical savanna in the world in terms of biodiversity
(Klink & Machado, 2005).

This biome has a high level of endemism for many
groups of animals and plants (Machado et al., 2004).
Studies have already listed more than 11,000 vascular
plants species (Mendonga et al., 2008) where
approximately 44% of the species is endemic (Klink
& Machado, 2005). The elevated presence of endemic
species and the constant process of habitat loss classifies
the Cerrado domain as one of the global biodiversity
hotspots (Myers et al., 2000).

An important Cerrado species is the Connarus
suberosus Planch (Matheus et al., 2009). This species
belongs to the Connaraceae botanic family and can reach
7 min height. The flowering happens between August
and October. The seeds have low germination and its
fruits get mature between November and February
(Lorenzi, 2002; Matheus et al., 2009). The species
is listed between the top 10 species of the typical
Cerrado vegetation (Bueno et al., 2016). Due to the
large number of records within this biome this species
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can be considered an indicative of the Cerrado domain
(Matheus et al., 2009).

We extracted 488 occurrence points from NeoTropTree
(Oliveira-Filho, 2017) to be used during the modeling
step (Figure 1). NeoTropTree database contains tree
species checklist gathered from literature and prepared
for sites distributed across the Neotropical region.
It has been used as support for several researches,
such as floristic and geographic patterns, phylogenetic
diversity and conservation strategies (see details at
Oliveira-Filho, 2017).

We used rasters files of 19 bioclimatic variables with
resolution of 1 Km (Hijmans et al., 2005). To avoid
collinearity, we excluded variables which correlation
is above 90% based on ecological relevance. From
the 19 bioclimatic variables we ended up with 10:
annual mean temperature, mean diurnal range,
isothermality, maximum temperature of warmest
month, annual temperature range, annual precipitation,
driest month precipitation, precipitation seasonality,

70.00°W 60.00°W

Colombia

0.00°

10.00°§

Bolivia

20.00°5

Paraguay

Argentina

30.00°S

precipitation of warmest quarter and precipitation

of coldest quarter.

The modeling process was based on the principle
of maximum entropy, considering only the observed
data. The algorithm subscribes the known distribution
by the estimated distribution, avoiding the insertion of
unfounded constraints (Phillips et al., 2006; Pearson et al.,
2007). The presence-only data are more appropriate for
predicting potential distribution such as climate change
impact applications (Miller, 2010) and this characteristic
was used for the choice of the algorithm (Bueno et al,,
2016). Besides, many studies have already demonstrated
the effectiveness of the MaxEnt approach on ecological
niche modeling. The algorithm is also considered robust
and consistent (Elith et al., 2006; Pearson et al., 2007;
Werneck et al., 2012; Aguiar et al., 2016; Bueno et al.,
2016) and was implemented in the MaxEnt 3.4 software.
We used replicated subsample, the minimum training
presence threshold, and a maximum of 5000 iterations.
The data were divided into 75% for training and 25%
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Figure 1. Geographic distribution of Connarus suberosus showing the 488 occurrence points. The shaded area and
the red points indicate the Brazilian Cerrado domain and the species occurrence points, respectively.
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for validation. So, we applied the maximum entropy
algorithm on 366 occurrence points to estimate the
species distribution and the remaining 122 points
were used to validation. Twenty-five models were
generated and the analysis was performed averaging
the constructed models results.

In order to model the current C. suberosus
distribution, we used climatic layers based on an
average value from 1960 to 1990 Worldclim data.
The climate change forecast was based on the climate
projections of the Fifth Intergovernmental Panel on
Climate Change (IPCC,) from the Global Climate
Models (GCMs) for four representative pathways of
greenhouse gases concentration (RCP) (Worldclim,
2017). The possible effects of climate change were
evaluated using the RCP 2.6 and 8.5 for both 2050
and 2070 (Community Climate System Model -
CCSM 4.0; CESM, 2017). The RCP 2.6 is the most
optimistic scenario and represents an increase in
the global temperature varying from 0.3 to 1.7 °C
until 2100. However, the RCP 8.5 shows a more
pessimistic scenario with an increase in the global
temperature ranging from 1.4 to 4.8 °C until 2100
(Stocker et al., 2013).

The model validation was performed analyzing
the receiver operating characteristic curve (ROC).
The ROC curve evaluates the absence of commission
error (specificity) and the absence of omission error
(sensitivity), providing the predictive performance
of the model on all possible thresholds (area under
the curve value — AUC). The AUC value varies
between 0 and 1; for values below 0.5, the adjusted
model is worse than a random model. For values closer
to 1, the model used is more efficient than a random
model (Elith et al., 2006; Phillips, 2017). Additionally,
we calculated the loss of area reclassifying the maps
according to the probability of occurrence greater
than 0.5, which means a suitability varying from
moderate to high.

3. RESULTS

According to the jackknife test, the four most
important variables for modeling were: isothermality,
temperature annual range, annual precipitation and
precipitation seasonality. The models had a good
adjustment and were classified as consistent, getting

an AUC higher than 0.90 for all generated models
(Current model, AUC = 0.908; RCP 2.6 model for
year 2050, AUC = 0.908; RCP 8.5 model for year 2050,
AUC =0.902; RCP 2.6 model for year 2070, AUC = 0.905;
and RCP 8.5 model for year 2070, AUC = 0.904).

Considering only the current predictive model, more
than 99% of the total area with probability (probability
of occurrence > 0.5) to finding C. suberosus is found in
Brazil (Figure 2), being 88% included in the Cerrado
domain. Small areas for species occurrence can also be
found in the Atlantic Forest (7.7%), Amazon (3.2%),
Caatinga and Pantanal domains (1% including both).

Comparing the current distribution model and
RCP 2.6, distributions showed a reduction of 40.8% of the
areas suitable for C. suberosus for 2050 (Figure 3a) and
areduction of 44.8% for 2070 (Figure 3b). The RCP 8.5
scenario indicates a reduction of 61.6% of suitable areas
for 2050 (Figure 3c) and 81.6% for 2070 (Figure 3d).

All future scenarios show that the C. suberosus
suitability will be restricted in the Atlantic Forest
direction. The models generated for the RCP 8.5
scenario indicated some fragments with a probability
of C. suberosus occurrence greater than 0.5 on the
Eastern and Southern Cerrado domain.

The RCP 2.6 projected for 2070 and RCP 8.5
projected for 2070 showed C. suberosus occurring in
the West of Bahia state and in large portions of Goias
and Minas Gerais states (Figure 4).
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Figure 2. Current occurrence probability for the
Connarus suberosus species on Neotropics.
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Figure 3. Potential distribution of Connarus suberosus on four representative pathways of greenhouse gases
concentration scenarios: a) increase in the global temperature varying from 0.3 to 1.7 °C for 2050; b) increase in
the global temperature varying from 0.3 to 1.7 °C for 2070; c) increase in the global temperature ranging from
1.4 to 4.8 °C for 2050; and d) increase in the global temperature ranging from 1.4 to 4.8 °C for 2070.
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Figure 4. Potential distribution of Connarus suberosus and protected areas location. a) C. suberosus suitability
projected for RCP 2.6 in 2050; and b) C. suberosus suitability projected for RCP 8.5 in 2070.
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4. DISCUSSION

The model performance was better than a random
model, exhibiting suitable predictive power. Although the
C. suberosus occurrence extends to Pantanal domain, it
is a species that represents a Cerrado typical (lato sensu)
vegetation (IPJBRJ, 2018). SDM have been used to
show how Cerrado is responding to the climate and
precipitation changes (Collevatti et al., 2012b, 2015;
Bueno et al., 2016; Buzatti etal., 2017; Lima et al., 2017).
Studies are reporting that the Cerrado domain will lose
a considerable amount of area due to climate change.
The area loss in the Cerrado domain and movement
towards the Atlantic Forest biome are consistent with
the results presented by Lima et al. (2017), analyzing
another indicator species Tabebuia aurea.

Comparing the current model against the future
models obtained for the C. suberosus we can visualize
the proportion of area loss due to the climate change.
Thomas et al. (2004) pointed an extinction risk ranging
between 48% and 56% for Cerrado species, and Siqueira
& Peterson (2003) are suggesting 90% of area loss
in aggressive scenarios. Predictive models for bats,
birds, and trees have shown similar patterns, showing
suitable areas for those species concentrating in Goids,
Minas Gerais and Sdo Paulo states, moving to other
biome limits (Siqueira & Peterson, 2003; Marini et al.,
2009; Aguiar et al., 2016). Forecasts based on climatic
scenarios for 2070 have shown not only a reduction for
the actual savannas domains (Moncrieff et al., 2016)
but also an increase of the savannization process of
tropical forests as a consequence of climate changes
(Salazar et al., 2007). According to Moncrieff et al.
(2016), 57% of savannas domain in South America
may be transformed into other biomes by 2070.

The Cerrado domain is one of the Brazilian’s most
devastated biomes, caused mainly by anthropogenic
deforestation to land use changing (Thomas et al., 2004;
Malcolm et al., 2006; Sano et al., 2008; Fernandes et al.,
2016). Negative impacts on biological diversity and
ecosystem stability should be expected, in addition
to landscape modification due to local and regional
climatic conditions (Parry et al., 2007). The enormous
importance of the Brazilian Cerrado for agribusiness
threats the biome conservation (Aguiar et al., 2016;
Fernandes et al., 2016). The Cerrado biodiversity depends
not only on the climatic conditions but also of the
species ability to resist habitat loss and fragmentation
(Thomas et al., 2004; Malcolm et al., 2006).

The C. suberosus species has economic potential
and has been reported as an important species for
multiple uses (Aquino et al., 2007; Matheus et al., 2009;
Silva etal., 2015). Beyond the effect of climate change,
we still need to investigate the influence of its economic
exploitation. Future climate change scenarios for the
Cerrado domain have shown the possibility of area loss
and geographic distribution reduction considering the
economic use of some species (e.g. Hacornia speciosa
Gomez and Lychnophora ericoides Less.) (Simon et al.,
2013; Nabout et al., 2016). The distribution displacement
of the species of economic interest can affect not only
the biodiversity, but also local economies (Nabout et al.,
2011, 2016).

Avoid the biodiversity losses associated with climate
change is a goal that must be pursued. The protected
areas map in the results section showed that there
are many places with high suitability of C. suberosus
occurrence out of those areas. The creation of new
protected areas and improving conservative practices
should be urgently considered. Investing on projects
for biodiversity conservation and maintenance of
the structure and ecosystems function are important
strategies for the achievement of these goals (Parry et al.,
2007). Therefore, a landscape approach is essential to
implement successful strategies for habitats restoration,
ecological corridors implementation and conservation
areas creation (Thuiller et al., 2008). Fragments of
natural habitats that show an environmental suitability
for Cerrado species occurrence should be maintained
as conservation areas even if they are located in the
agricultural areas (Aguiar et al., 2016). Minas Gerais
state holds the most suitable areas for C. suberosus
for both RCP scenarios, mainly in the regions close
to Serra da Canastra, Serra do Espinha¢o and Serra
da Mantiqueira. Those areas have already protected
areas most likely to the species occurrence (Figure 4).

Our models evidence possible competition between
the C. suberosus and the Atlantic Forest species in the
future, corroborating other studies findings (Scarano
& Ceotto, 2015; Lima et al., 2017).

5. CONCLUSIONS

It is reasonable to expect a concretization of the
movement detected by both scenarios (optimistic and
pessimistic). Keep monitoring the Connarus suberosus
occurrence to validate this study’s finding is crucial
to determine the velocity in which the area loss and
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distribution reduction is happening. Actions aiming
the creation of protected areas and improvement of
conservancy practices are essential to ensure not only
the species survival but also the biome biodiversity
preservation. Ecological corridors should be urgently
implemented to support the species migration to
suitability areas.
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