Acessibilidade / Reportar erro

Floristic and Structure of Woody Vegetation in a Caatinga Area Between 2015 and 2019, in ASSÚ/RN

Abstract

To characterize the floristic composition and horizontal structure of the National Forest of Açú from 2015 to 2019, 20 permanent plots of 400 m² were allocated, and all woody individuals with a diameter at breast height (CBH) ≥ 2 cm were measured on both occasions. Between 2015 and 2019, there was an increase in floristic richness from 23 to 34 species, especially Cenostigma pyramidale and Handroanthus impetiginosus due to their high phytosociological values. Although an 8.7% reduction in the number of individuals in the 4.4 cm class center was observed between the respective years, there was a volumetric increase of 4.85 m³ ha-1, that is 1.21 m³ ha-1 year-1. Changes in floristic composition, diameter distribution, and volumetry reflect the development of vegetation and part of its dynamics; indicating its state of conservation and, consequently, the achievement of the conservation objectives proposed by the Unit.

Keywords:
Phytosociological parameters; dynamic processes; conservation unit

1. INTRODUCTION AND OBJECTIVES

The length of the Caatinga biome occupies 11% of the national territory. There are about 27 million people inserted in this area, dependent on the resources extracted from this biome. As for its environmental importance, much of its biological heritage is endemic, that is, it cannot be found elsewhere in the world. Such importance, however, does not prevent 46% of its territory (844,453 km²) from being deforested (Brazil, 2019aBrasil, Ministério do Meio Ambiente (MMA). ICMBIO - Caatinga. 2019a [cited 2019 abr. 8] Available from: Available from: http://www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/caatinga
http://www.icmbio.gov.br/portal/unidades...
).

Given this, over the last few years, the government has sought to solve the issue of deforestation through the initiative of creating more Conservation Units, such as the creation of the Furna Feia National Park in 2012, in the Municipalities of Baraúna and Mossoró, in the state of Rio Grande do Norte, with 8,494 ha. With these new units, the area now protected by conservation units in the biome increased to around 7.5%. Even though the biome will remain one of the least protected in the country as little more than 1% of such units are Full Protection (Brasil, 2018aBrasil. Ministério do meio ambiente (MMA). Caatinga. 2018a [cited 2018 abr. 8] Available from: Available from: http://www.mma.gov.br/biomas/caatinga
http://www.mma.gov.br/biomas/caatinga...
).

In this reality, the Açú National Forest is inserted, an area occupied by the Caatinga biome in the Rio Grande do Norte. This Flona, which consists of one of the categories called the Conservation Unit for Sustainable Use, aims to make nature conservation compatible with the sustainable use of resources, reconciling the human presence in this conservation unit (Brazil, 2018aBrasil. Ministério do meio ambiente (MMA). Caatinga. 2018a [cited 2018 abr. 8] Available from: Available from: http://www.mma.gov.br/biomas/caatinga
http://www.mma.gov.br/biomas/caatinga...
).

Thus, for the conservation objectives of these areas to be achieved, it is essential to formulate knowledge about the dynamic processes that occur in them. However, biodiversity conservation represents one of the greatest challenges of this century, due to the high level of anthropogenic disturbances in natural ecosystems. Therefore, it is necessary to carry out studies in forests to provide knowledge and maintenance of biodiversity, in addition to enabling the exploration of its products, goods, and/or services in a planned and rational way, ensuring their continuous flow of the resources that have been explored intensively around the world.

For Feeley et al. (2011Feeley KJ, Davies SJ, Perez R, Hubbell SP, Foster RB. Directional changes in the species composition of a tropical forest. Ecology 2011; 92(4): 871-82. DOI: https://doi.org/10.1890/10-0724.1
https://doi.org/https://doi.org/10.1890/...
) studying changes in composition improves not only the understanding of the ecology of tropical forests and their response to local and regional disturbances but also the ability to predict how future global changes may influence some vital services provided by these ecosystems.

Also, understanding the study of forest dynamics in protected areas allows future predictions regarding the development of the plant community. These studies are generally carried out using data from censuses in permanent plots, where countings, measurements, and then recount and remediation of surviving individuals (losses and gains) are carried out (Sheil & May, 1996Sheil D, May RM. Mortality and recruitment rate evaluations in heterogeneous tropical forests. Revista Journal of Tropical Ecology 1996; 84(1): 91-100. DOI: https://doi.org/10.2307/2261703
https://doi.org/https://doi.org/10.2307/...
).

The amount of studies evaluating the structure and composition of the Caatinga areas in Rio Grande do Norte, Brazil, is still small. Some of the more recent examples are Batista et al. (2019Batista FG, Oliveira BT, Almeida MEA, Brito MS, Melo RR, Alves AR. Florística e fitossociologia de um remanescente florestal da Caatinga Caicó-RN, Brasil. Revista Desafios 2019; 6(3). DOI: http://dx.doi.org/10.1590/1517-869220162203142486
https://doi.org/http://dx.doi.org/10.159...
) who analyzed a closed shrub-tree Caatinga area in the municipality of Caicó; and Souza et al. (2020Souza MR, Ferreira MB, Sousa GG, Alves AR, Holanda AC. Caracterização florística e fitossociológica do componente lenhoso de um fragmento florestal de Caatinga em Serra do Mel, Rio Grande do Norte, Brasil. Nativa 2020; 8(3): 329-335. http://dx.doi.org/10.31413/nativa.v8i3.9136
https://doi.org/http://dx.doi.org/10.314...
) in the municipality of Serra do Mel, in a shrub-tree Caatinga; among others (Amorim et al., 2005Amorim IL, Sampaio EVSB, Araújo EL. Flora e estrutura da vegetação arbustivo-arbórea de uma área de Caatinga do Seridó, RN, Brasil. Acta Botanica Brasilica 2005; 19(3): 615-623. https://doi.org/10.1590/S0102-33062005000300023
https://doi.org/https://doi.org/10.1590/...
; Oliveira et al., 2012Oliveira ACP, Penha AS, Souza RF, Loiola MIB. Composição florística de uma comunidade savânica no Rio Grande do Norte, Nordeste do Brasil. Acta Botanica Brasilica 2012; 26(3). DOI: https://doi.org/10.1590/S0102-33062012000300006
https://doi.org/https://doi.org/10.1590/...
; Souza & Medeiros, 2013Souza GF, Medeiros JF. Fitossociologia e florística em áreas de caatinga na microbacia hidrográfica do Riacho Cajazeiras-RN. GeoTemas 2013; 3(1):161-176. DOI: https://doi.org/10.33237/geotemas.v3i1.587
https://doi.org/https://doi.org/10.33237...
; Santana et al., 2016Santana JAS, Júnior Santana JAS, Barreto WS, Ferreira ATS. Estrutura e distribuição espacial da vegetação da Caatinga na Estação Ecológica do Seridó, RN. Pesquisa Florestal Brasileira 2016; 37(88): 355-361. https://doi.org/10.4336/2016.pfb.36.88.1002
https://doi.org/https://doi.org/10.4336/...
). The low number of studies of this nature in the region of Rio Grande do Norte results in a knowledge gap about the dynamics, structure, and composition of its flora and, consequently, it impoverishes the conservation and preservation policy of the remnant of Caatinga in the state that, currently, is more 2 million hectares - 91% of its total area of natural forests (Brasil, 2018bBrasil. Ministério do Meio Ambiente (MMA). Inventário Florestal Nacional: Rio Grande do Norte. [technical report] Serviço Florestal Brasileiro 2018b: 64 p. Available from: https://www.florestal.gov.br/documentos/informacoes-florestais/inventario-florestal-nacional-ifn/resultados-ifn/3991-resultados-ifn-rn-2018/file
https://www.florestal.gov.br/documentos/...
).

Given the above and the need to know the floristic composition and the behavior of the forest in response to human changes and natural disturbances, the Açú National Forest presents itself as an important resource for the study of these structural elements. Mainly, due to its conservationist character, which, due to its geographical location, is bordered by a local community, in addition to nearby ceramics industries. Thus, the objective of this work was to characterize the floristic composition and structure of the woody vegetation, in the period between 2015 and 2019, in an area of Caatinga in Assú/RN.

2. MATERIALS AND METHODS

2.1. Characterization of the study area

The study area is located in the municipality of Assú, in Rio Grande do Norte, which corresponds to the National Forest of Açú (5º34’20’’S; 36º54’33’’ W), with a total area of 432,518 ha. The climate, according to the Köppen classification, is characterized as BSh (Dubreuil et al., 2018Dubreuil V, Fante KP, Planchon O, Sant’anna Neto JL. Os tipos de climas anuais no Brasil: uma aplicação da classificação de Köppen de 1961 a 2015. Confins 2018; 37. https://doi.org/10.4000/confins.15738
https://doi.org/https://doi.org/10.4000/...
), with an average annual temperature of 28.1°C. The average annual rainfall is 646 mm (IDEMA, 2018Instituto de Desenvolvimento Sustentável e Meio Ambiente do Rio Grande do Norte - IDEMA. Perfil do seu município - Assú. [cited 2018 abr. 5] Available from: Available from: http://adcon.rn.gov.br/ACERVO/idema/DOC/DOC000000000016656.PDF
http://adcon.rn.gov.br/ACERVO/idema/DOC/...
). Between January 2015 and September 2019, there was an accumulated rainfall of 2,980.6 mm in the municipality (EMPARN, 2019Empresa de Pesquisa Agropecuária do Rio Grande do Norte - EMPARN. Precipitação acumulada: Rio Grande do Norte. [cited 2019 abr. 5] Available from: Available from: http://189.124.135.176/monitoramento/monitoramento.php
http://189.124.135.176/monitoramento/mon...
).

The predominant soil in the region is the Litholic Neosols in association with Latosol. Being it deep and demonstrates a developed weathering stage, with strong removal of silica and soil bases. In addition to the Chernozem, which has a good degree of fertility (Bandeira et al., 2016Bandeira JMA, Viana CPS, Moura KC, Nascimento VX. Floresta Nacional de Açú/RN: (RE) Conhecendo a Caatinga Através do Livro Didático e Estudo do Meio. III Congresso Internacional das Licenciaturas 2016. DOI: https://doi.org/10.31692/2358-9728.IIICOINTERPDVL.2016.00053
https://doi.org/https://doi.org/10.31692...
).

According to the technical manual on Brazilian vegetation (Brazil, 2019bBrasil. Instituto Brasileiro de Geografia e Estatística (IBGE). Manual técnico da vegetação brasileira. 2019b [cited 2019 jul. 2] Available from: Available from: https://biblioteca.ibge.gov.br/visualizacao/livros/liv63011.pdf
https://biblioteca.ibge.gov.br/visualiza...
), the vegetation is classified as steppe wooded savanna, once two strata were observed: a sparse upper shrub-tree and a lower grassy-woody one, with the presence of some endemic species that characterize this vegetation, such as Commiphora leptophloeos (Imburana) and Pilosocereus gounellei (Xique-xique).

From 1950 to 2001, when the area was a forest garden, seedling production activities were carried out, with distribution even to other states. Thus, for playing the role of an experimental station for a long period, two areas of forestry experiment with native species were implanted in Flona, namely: Auxemma oncocalyx, Myracrodruon urundeuva, Aspidosperma pyrifolium and Mimosa Caesalpiniifolia, with an area of 2,022 ha, in addition to an area of 3.124 ha designated for the experiment with Eucalyptus. However, currently, maintenance activities are not carried out in these experimental areas.

2.2. Data collection

In 2015, twenty permanent plots of 20 x 20 m were randomly installed, corresponding to a sample area of 8,000 m² (Figure 1). In 2019, by partial replacement of parcels, a new forest inventory was carried out. The partial replacement occurred due to the lack of elements (wooden pickets and biodegradable demarcation tapes) that characterized the same parcel, referring to the year 2015. But, in any case, the parcels were very close, because of the use of the corresponding geographical coordinates.

Figure 1
Location of plots within the limits of the National Forest of Açú, in Assú/RN, Brazil.

On both occasions (2015 and 2019) all woody shrub-tree individuals with a Diameter at Breast Height (DBH) ≥ 2 cm were measured and labeled. The height of the individuals was estimated using a 6-meter long trimmer.

The unidentified species in the field had their botanical material collected, registering the plant number for later identification. Financial limitations, distance, logistics, and ignorance of the phenological patterns of some species in the Caatinga, made it impossible to travel, coinciding with periods favorable to the collection of fertile material. Therefore, the recognition of the species was based on the experience of the team members, a handyman, a forest worker, who has worked at Flona for many years and, in the absence of this, green branches were collected to assemble dried mushrooms and sent to the Ecology Laboratory of the EAJ/UFRN. For the botanical classification, the APG IV system (2016)APG VI. An update of the Angiosperm Phylogeny Group Classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 2016; 181: 1-20. was followed.

2.3. Data analysis

To analyze the sample sufficiency for the years 2015 and 2019, the Statistical and Genetic Analysis System (SAEG) was used. The parameters of the horizontal structure and floristic diversity of the vegetation were analyzed according to Felfili & Rezende (2003Felfili JM, Rezende RP. Conceitos e métodos em fitossociologia. Brasília: Comunicações técnicas florestais; Universidade de Brasília; 2003. 68 p.), and the calculations were performed with the help of the Software Mata Nativa © version 2.0.

The parameters of richness and diversity were calculated for the survey years, as follows: (1) Shannon Index - H’ (Shannon, 1948Shannon CE. A Mathematical Theory of Communication. The Bell System Technical Journal 1948; 27: 623-656.); (2) Pielou Equability - J’ (Pielou, 1975Pielou EC. Ecological Diversity. New York, Wiley InterScience 1975; 165p.); and (3) Simpson dominance - C (Simpson, 1949Simpson EH. Measurement of diversity. Nature 1949; 163: 688.).

H ' = - i = 1 S p i ln p i (1)

J = H H max (2)

C = i = 1 S n i n i - 1 N N - 1 (3)

Where: ni = number of individuals sampled from the i-th species; N = total number of individuals sampled; S = number of species or richness; pi = relative abundance of each species, calculated by: ni/N; Hmax = ln(S).

To determine the diametric distribution, the Sturges Finger Method (1992Finger CAG. Fundamentos de Biometria Florestal. Santa Maria: UFSM/CEPEF/FATEC; 1992. p. 269.) was applied. Considering the existence of trees with more than one shaft in the plots, the equivalent diameter was used to define the diametric classes. This, in turn, was obtained by the following formula 4 (Soares et al., 2011Soares CPB, Paula Neto F, Souza AL. Diâmetro, circunferência e área basal. In: Soares CPB, Paula Neto F, Souza AL, editors. Dendrometria e Inventário Florestal. 2rd ed. Editora UFV; 2011.):

d e q = D B H 2 (4)

Calculations of volume and increment were performed according to UNDP / FAO / IBAMA (1992)Projeto PNUD/FAO/IBAMA/BRA/87/007. Plano de manejo florestal para a região do Seridó do Rio Grande do Norte. Natal: MMA, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis; 1992., applying the following expressions 5, 6 and 7:

C V c / c = π D B H 2 * C H 40000 (5)

A V = C V c / c * f f (6)

Where: CVc / c = cylindrical volume of the bark tree; π = 3.1416; DBH² = diameter at breast height, squared (cm); CH = commercial height of the tree (m); 40,000 = DBHquadratic conversion factor from centimeters to meters; AV = actual volume (m³); ff = form factor (0.7 dimensionless).

S V = A V * S f (7)

Where: SV = stacked volume (ts); AV = actual volume (m³); sf = stacking factor (3.14 dimensionless).

The following formula 8 was used to analyze the annual periodic increment (Imaña-Encinas, 2005Imaña-Encinas J, Silva GF, Pinto JRR. Idade e crescimento dás árvores. Brasília: Universidade de Brasília. Comunicações técnicas florestais 2005; 7(1): 35-38. https://repositorio.unb.br/handle/10482/10018
https://repositorio.unb.br/handle/10482/...
):

P A I = V 2019 - V 2015 P (8)

Where: PAI= Periodic Annual Increment, in volume; V2015 = Cylindrical volume calculated in 2015 (m³ ha-1 year-1); V2019 = Cylindrical volume in 2019 (m³ ha-1 year-1), P = measuring interval of 4 years.

3. RESULTS AND DISCUSSION

3.1. Floristic and diversity

In both measurements, it was found that the sampled area of 8,000 m² was sufficient for the floristic characterization of the remainder, with stabilization of the curve at 4,200 m2 and 6,800 m2. That is, for the twenty sample units inventoried between the years 2015 and 2019, the minimum floristically representative area was reached.

In 2015, 2,408 individuals were inventoried, belonging to 15 botanical families and distributed in 23 species. In 2019, 2,271 individuals were sampled, belonging to 16 families and distributed in 34 species, of which, three species were not identified (Table 1).

Table 1
List of species found in the 2015 and 2019 surveys, in the National Forest of Açú, in Assú/RN.

Considering that in 2015 the species richness (23 species) was lower compared to 2019 (34 species), it is possible to infer that in this interval the vegetation was expressed in a positive floristically.

This increase in richness may be associated with the increase in rainfall recorded between 2015 and 2019. In the year of the first collection, the average rainfall was 449.7 mm, while until September 2019 the average rainfall was 716.4 mm, an increase of 24.03% in precipitation compared to 2015. This issue was also reported by Silva (2017Silva DFN. Fitossociologia em Relação as Propriedades do Solo e Índices de Vegetação em Área de Caatinga, Pernambuco [dissertação]. Recife: Ciências Florestais, Universidade Federal Rural de Pernambuco; 2017. http://www.ppgcf.ufrpe.br/sites/www.ppgcf.ufrpe.br/files/documentos/damares_felix_do_nascimento_silva.pdf
http://www.ppgcf.ufrpe.br/sites/www.ppgc...
), in a 50-hectare Caatinga fragment in the city of Floresta/PE which, due to the low rainfall recorded between the years 2011 and 2015, it was possible to verify a decrease in the composition and number of individuals (Table 2).

Table 2
Data from some of the studies carried out in Caatinga areas.

As for floristic diversity, the Shannon-Weaver (H’) diversity indexes for 2015 and 2019 were: 1.81 nats ind-1 and 2.18 nats ind-1, respectively (Table 3). These results corroborate with the interval found by Silva (2017Silva DFN. Fitossociologia em Relação as Propriedades do Solo e Índices de Vegetação em Área de Caatinga, Pernambuco [dissertação]. Recife: Ciências Florestais, Universidade Federal Rural de Pernambuco; 2017. http://www.ppgcf.ufrpe.br/sites/www.ppgcf.ufrpe.br/files/documentos/damares_felix_do_nascimento_silva.pdf
http://www.ppgcf.ufrpe.br/sites/www.ppgc...
) in areas of Caatinga, where Shannon’s diversity index varied from 0.23 to 3.74. While the equability indices (J’) remained close to 0.7 in both periods, the dominance index (C) increased in 2019, indicating that certain species stood out in population density.

Table 3
Wealth and diversity parameters between the years 2015 and 2019 in the Açú National Forest, in Assú/RN.

Some authors obtained lower values of H’ than that found for Flona de Açú, as shown by Pessoa et al. (2008Pessoa MF, Guerra AMNM, Maracajá PB, Lira JFB, Diniz Filho ET. Estudo da cobertura vegetal em ambientes da Caatinga com diferentes formas de manejo no Assentamento Moacir Lucena, Apodi-RN. Revista Caatinga 2008; 21(3): 40-48. https://periodicos.ufersa.edu.br/index.php/caatinga/article/download/787/399
https://periodicos.ufersa.edu.br/index.p...
), in a Caatinga area in the Rio Grande do Norte, whose value was 1.10 nats ind.-1, Andrade et al. (2005Andrade LA, Barbosa MRV, Pereira IM, Leite UT. Análise da cobertura de duas fitofisionomias de Caatinga, com diferentes históricos de uso, no município de São João do Cariri, Estado da Paraíba. Revista Cerne 2005; 11(3): 253-262. https://www.redalyc.org/articulo.oa?id=74411305
https://www.redalyc.org/articulo.oa?id=7...
), in two areas in the Cariri of Paraíba, who reported rates of 1.51 and 1.43 nats ind.-1; and Holanda et al. (2015Holanda ACD, Lima FTD, Silva BM, Dourado RG, Alves AR. Estrutura da vegetação em remanescentes de caatinga com diferentes históricos de perturbação em Cajazeirinhas (PB). Revista Caatinga 2015; 28(4): 142-150. DOI: https://doi.org/10.1590/1983-21252015v28n416rc
https://doi.org/https://doi.org/10.1590/...
), whose diversity values, for two environments, were 0.8 and 1.21 nats ind-1.

In fragments of Caatinga in the state of Minas Gerais, transition zones with the Cerrado, where the Caatinga has a more arboreal size, Apgaua et al. (2014Apgaua DMG, Coelho PA, Santos RM dos, Santos PF, Oliveira-Filho AT. Tree community structure in a seasonally dry tropical forest remnant, Brazil. Revista Cerne 2014; 20(2): 173-182. DOI; https://doi.org/10.1590/01047760.201420021540
https://doi.org/https://doi.org/10.1590/...
) and Menino et al. (2015Menino GCDO, Santos RMD, Apgaua DMG, Pires GG, Pereira DGS, Fontes MAL, Almeida HDS. Florística e estrutura de florestas tropicais sazonalmente secas. Cerne 2015; 21(2): 277-291. https://www.scielo.br/scielo.php?pid=S0104-77602015000200277&script=sci_arttext
https://www.scielo.br/scielo.php?pid=S01...
) recorded H ‘values greater than 3.0 nats ind-1. As shown by Andrade et al. (2005Andrade LA, Barbosa MRV, Pereira IM, Leite UT. Análise da cobertura de duas fitofisionomias de Caatinga, com diferentes históricos de uso, no município de São João do Cariri, Estado da Paraíba. Revista Cerne 2005; 11(3): 253-262. https://www.redalyc.org/articulo.oa?id=74411305
https://www.redalyc.org/articulo.oa?id=7...
): the higher the diversity index, the more uniform the distribution of individuals between species; this index has a positive correlation with the number of species.

3.2. Horizontal structure

Regarding phytosociological parameters (Table 4), it is observed that the species with the highest absolute density were repeated in the years of collection, being: Handroanthus impetiginosus and Cenostigma pyramidale, representing 53.94% and 54.20% respectively, about the total density of the area.

Table 4
Phytosociological parameters refer to Absolute Density (AD), Absolute frequency (AF), Absolute dominance (DoA), and importance value (IV) of the woody species sampled in the years 2015 and 2019 in the Açú National Forest, in Assú/RN.

The species with the highest frequency values, that is, those that occur in all parcels, were repeated for the two years analyzed, being: Cenostigma pyramidale, Mimosa arenosa and Handroanthus impetiginosus, this indicates not only abundance but good distribution in the area. Standing out C. pyramidale and H. impetiginosus for their high values of density, frequency, and dominance over other taxa, reflecting their relevance in the forest formation of Flona.

However, it is noteworthy that an isolated phytosociological parameter does not provide a clear ecological idea of the community or plant populations. Together, they can characterize formations, and their subdivisions, and provide information about stages of community development, distribution of environmental resources among populations, and possibilities of using plant resources, among others (Sampaio et al., 1993Sampaio EVSB, Salcedo IH, Kauffman JB. Effect of different fire severities on coppicing of caatinga vegetation in Serra Talhada, PE, Brazil. Biotropica 1993; 25(4): 452-460. DOI: http://dx.doi.org/10.2307/238886
https://doi.org/http://dx.doi.org/10.230...
).

It is understood that these are the species most adapted to the forestry component, mainly concerning site conditions, such as soil texture, regeneration maturity, unevenness, and relief. This demonstrates better adaptability of H. impetiginosus and C. pyramidale in an area with stony soil, slightly inclined relief, and regeneration in a medium to an advanced stage, indicating that these qualitative characteristics intrinsic to the area, favor the establishment and survival of these species.

Notably, C. pyramidale adapts very well to different types of soil, including the poorest, and especially the stony soils, common in the Caatinga (Maia, 2012Maia GN. Caatinga: árvores e arbustos e suas utilidades. 2rd. ed. Fortaleza: Printcolor Gráfica e Editora; 2012. 413 p.). Its distribution is not linked to landscape units (Silva et al., 2013Silva ACDC, Prata APDN, Souto LS, Mello AAD. Aspectos de ecologia de paisagem e ameaças à biodiversidade em uma unidade de conservação na Caatinga, em Sergipe. Revista Árvore 2013; 37(3): 479-490. DOI: https://doi.org/10.1590/S0100-67622013000300011
https://doi.org/https://doi.org/10.1590/...
), and may occur both on crystalline basement soils and sedimentary sandy surfaces (Cardoso & Queiroz, 2008Cardoso DBOS, Queiroz LP. Floristic composition of seasonally dry tropical forest fragments in Central Bahia, Northeastern Brazil. Revista J. Bot. Res. Inst. Texas 2008; 2(1): 551-573. https://www.jstor.org/stable/41971674
https://www.jstor.org/stable/41971674...
). It is endemic to the Caatinga biome and has a wide geographical distribution in the Northeast of Brazil, being found in several environments and often occupying the top of the floristic lists in the region (Sampaio, 1996Sampaio EVSB. Fitossociologia. In: Sampaio EVSB, Mayo SJ, Barbosa MRV, editors. Pesquisa botânica nordestina: progressos e perspectivas. Recife: Sociedade Botânica do Brasil/Seção Regional de Pernambuco; 1996.; Sabino et al., 2016Sabino FGS, Cunha MCL, Santana GM. Estrutura da vegetação em dois fragmentos de Caatinga antropizada na Paraíba. Revista Floresta e Ambiente 2016; 23(4): 487-497. DOI: https://doi.org/10.1590/2179-8087.017315
https://doi.org/https://doi.org/10.1590/...
; Matias et al., 2017Matias JR, Silva FFS, Dantas BF. Catingueira-verdadeira Poincianella pyramidalis [Tul.] L.P. Queiroz. Associação brasileira de tecnologia de sementes: Comitê técnico de sementes florestais. Technical note 2017; 6. Available from: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1089204/1/NotaTecnica06.pdf
https://www.alice.cnptia.embrapa.br/alic...
). It is not only environmental but also social, because of its therapeutic and medicinal potential (Silva et al., 2015Silva FDBD, Sales MAG, Sá ORM, Santana GM, Deus MSM, Sousa JMDC, Ferreira PMP, Peron AP. Potencial citotóxico, genotóxico e citoprotetor de extratos aquosos de Caesalpinia pyramidalis Tul., Caesalpinia ferrea Mart. e Caesalpinia pulcherrima Sw. Revista Brasileira de Biociências 2015; 13(2): 101-109. http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/3252
http://www.ufrgs.br/seerbio/ojs/index.ph...
).

In contrast to the frequency and dominance of C. pyramidale in the Flona area, in 2015 and 2019, the species H. impetiginosus resulted in a larger number of individuals sampled, therefore having a higher density. This is a species with high landscaping and timber potential, in addition to its ecological value. It demonstrates plasticity to the variation of water and light, with instant and intrinsic efficiency in the use of water under water stress, which favors the survival and establishment of the species in the field (Dombroski et al., 2014Dombroski JLD, Freitas RMO, Tomczak VE, Pinto JRS, Farias RM. Ecophysiology of water-stressed (Handroanthus impetiginosus (Mart. Ex. DC) Mattos) seedlings. Scientia Forestalis 2014; 42(101): 155-163. https://www.ipef.br/publicacoes/scientia/nr101/cap14.pdf
https://www.ipef.br/publicacoes/scientia...
).

Thus, the occurrence of a greater number of individuals of H. impetiginosus in the years 2015 and 2019, highlights the importance of conservation units, guaranteeing the conservation of species that, due to their vegetative characteristics of social and economic interest, have been targeted by anthropic action. Therefore, it can be said that Flona de Açú has contributed to the perpetuation of this, and other species present in its area of occurrence favoring the conservation of this Caatinga forest remnant.

As for the importance value between the years, 2015 and 2019 indices of less than one percent were found. In 2015, these species with low VI were: Mimosa tenuiflora (0,58%), Lachesiodendron viridiflorum (0.52%), Brunfelsia uniflora (0.31%), and Sarcomphalus joazeiro (0.15%), that together represent 17.39% of total species. While in 2019, VI was less than one percent in 48.38% of total species, which are: Guettarda angélica (0.17%), Guapira laxa (0.29%), Libidibia ferrea (0.52%), Undetermined I (0.82%), Undetermined II (0.69%), Undetermined III (0.94%), Tabebuia roseoalba (0.40%), Ximenia americana (0.89%), Combretum leprosum (0.18%), Mimosa tenuiflora (0.47%), Brunfelsia uniflora (0.90%), Genipa americana (0.87%), Mimosa ophthalmocentra (0.48%), Pityrocarpa moniliformis (0.21%) and Jatropha mollissima (0.21%).

It is possible to infer that after four years, there was a significant increase in the percentage of species with VI below one percent, from 17.39% in 2015 to 48.38% in 2019. Possibly, due to the greater number of species found in the 2019 survey. Santana & Souto (2006Santana JAS, Souto JS. Diversidade e estrutura fitossociológica da Caatinga na estação ecológica do Seridó-RN. Revista de Biologia e Ciências da Terra 2006; 6(2): 232-242. DOI: https://doi.org/10.4336/2016.pfb.36.88.1002
https://doi.org/https://doi.org/10.4336/...
); Maker & Andrade (2007)Fabricante JR, Andrade LA. Análise estrutural de um remanescente de caatinga no Seridó paraibano. Revista Oecologia Brasiliensis 2007; 11(3): 341-349. DOI: https://doi.org/10.4257/oeco.2007.1103.04
https://doi.org/https://doi.org/10.4257/...
state that the presence of a high number of species with VI less than one percent, is not common in areas of Caatinga. Thus, it is noted that the plantations carried out in the area, with native species from the Flona, have been reflected in the increase in the floristic diversity of the area.

In studies on the Caatinga, it is noted that the species with the highest density and importance value commonly remain the same over time (Pimentel, 2012Pimentel DJO. Dinâmica de vegetação lenhosa em área de Caatinga, Floresta, PE [Dissertação] Recife: Ciências Florestais, Universidade Federal de Pernambuco; 2012.; Barreto, 2013Barreto TNA. Dinâmica de espécies lenhosas em área de Caatinga, Floresta PE [Dissertação]. Recife: Ciências Florestais, Universidade Federal Rural de Pernambuco; 2013.; Silva et al., 2020Silva LS, Costa TR, Salomão NV, Alves AR, Santos TR, Machado ELM. Mudanças temporais na estrutura vegetacional de um fragmento de Caatinga, sul do Piauí. Revista Scientia Plena, 2020; 16(2): 12. DOI: https://doi.org/10.14808/sci.plena.2020.020203
https://doi.org/https://doi.org/10.14808...
), Table 2. In this study, this pattern was observed, except for some species that showed an increase in VI in 2019, which are: A. oncocalyx, S. glandulosum, and P. marginatum.

Among the species with a high importance value, C. leptophloeos and M. urundeuva stand out as indicator species of the protected environment. According to Andrade et al. (2005Andrade LA, Barbosa MRV, Pereira IM, Leite UT. Análise da cobertura de duas fitofisionomias de Caatinga, com diferentes históricos de uso, no município de São João do Cariri, Estado da Paraíba. Revista Cerne 2005; 11(3): 253-262. https://www.redalyc.org/articulo.oa?id=74411305
https://www.redalyc.org/articulo.oa?id=7...
), these species are commonly found in more protected areas or well-preserved plant formations, and rarely found in areas with a high degree of anthropization.

3.3. Diametric distribution

Regarding the diametric distribution, in both periods, it follows the inverted J curve, common in unequal forests, bringing together most individuals in the smaller diameter classes (Figure 2), which represents the forest’s self-regenerative capacity (dynamic balance). The highest values were observed in 2015, in the first (1936) and second (258) classes, corresponding to 80.39% and 10.71% of the total number of individuals, respectively. Similarly, in 2019 there was a greater concentration of individuals in the first two classes, which together make up 90.48% of the total number of individuals.

Figure 2
Diametric distribution of individuals inventoried in 2015 and 2019 in the Caatinga area in the Flona de Açú, in Assú/RN.

The reduction of 8,7% of the number of individuals in the first-class center (4,4 cm) between 2015 and 2019 is related to the rain factor since for the years 2015 and 2016 rainfall of 449.7 and 400.0 mm were recorded respectively.

In several studies (Dantas et al., 2010Dantas JG, Holanda AC, Souto LS, Japiassu A, Holanda EM. Estrutura do componente arbustivo/arbóreo de uma área de caatinga situada no município de Pombal - PB. Revista Verde 2010; 5(1): 134-142. https://www.gvaa.com.br/revista/index.php/RVADS/article/view/253/253
https://www.gvaa.com.br/revista/index.ph...
; Pereira Junior et al., 2012; Marangon et al., 2013Marangon GP, Ferreira RLC, da Silva JAA, de Souza DF, Silva EA, Loureiro GH. Estrutura e padrão espacial da vegetação em uma área de caatinga. Floresta 2013; 43(1): 83-92. https://revistas.ufpr.br/floresta/article/view/27807
https://revistas.ufpr.br/floresta/articl...
) carried out in the Caatinga area, the diametric distribution followed the inverted J curve. Like the work developed in Barra de Santa Rosa/PB, where 2,690 individuals were inventoried, of which 73.4% were in the first-class center, followed by 21%, in the second class center (Almeida Neto et al., 2009Almeida Neto JX, Andrade AP, Lacerda AV, Félix LP, Bruno RLA. Composição florística, estrutura e análise populacional do Feijão-Bravo (Capparis flexuosa L.) no semiárido Paraibano, Brasil. Revista Caatinga 2009; 22(4): 187-194. https://periodicos.ufersa.edu.br/index.php/caatinga/article/view/1138/pdf
https://periodicos.ufersa.edu.br/index.p...
). Similar results, in heterogeneous multi-forest, were obtained by Lima et al. (2013Lima RB, Aparício PS, Silva WC, Silva DAS, Guedes ACL. Emprego da Distribuição Diamétrica na Predição do Estado de Perturbação em Floresta de Várzea, Macapá-AP. Enciclopédia Biosfera 2013; 9(16): 1018.), Hoffmann (2013Hoffmann PP. Caracterização de Fragmentos de Floresta Estacional Decidual do Parque Estadual da Lapa Grande, Montes Claros, MG. 2013. Dissertação (Mestrado em Ciências Agrárias) Montes Claros/MG. https://repositorio.ufmg.br/handle/1843/NCAP-9BLNXL
https://repositorio.ufmg.br/handle/1843/...
), and Silva et al. (2020Silva LS, Costa TR, Salomão NV, Alves AR, Santos TR, Machado ELM. Mudanças temporais na estrutura vegetacional de um fragmento de Caatinga, sul do Piauí. Revista Scientia Plena, 2020; 16(2): 12. DOI: https://doi.org/10.14808/sci.plena.2020.020203
https://doi.org/https://doi.org/10.14808...
).

Souza et al. (2006Souza DR, Souza AL, Leite HG, Yared JAG. Análise Estrutural em Floresta Ombrófila Densa de Terra Firme Não Explorada, Amazônia Oriental. Revista Árvore 2006; 30(1): 75-87. http://dx.doi.org/10.1590/S0100-67622006000100010
https://doi.org/http://dx.doi.org/10.159...
), affirm that the diametric structure of the forest is characterized by the higher frequency of small trees in the smallest diameter classes. For Menino et al. (2015Menino GCDO, Santos RMD, Apgaua DMG, Pires GG, Pereira DGS, Fontes MAL, Almeida HDS. Florística e estrutura de florestas tropicais sazonalmente secas. Cerne 2015; 21(2): 277-291. https://www.scielo.br/scielo.php?pid=S0104-77602015000200277&script=sci_arttext
https://www.scielo.br/scielo.php?pid=S01...
), the high number of young individuals points to a good development of regeneration and the differences in the diametric structure indicate the use of different strategies for vegetation. While in environments with fewer resources, plants tend to adopt conservative strategies, under more favorable conditions, acquisition strategies with greater investment in reproduction and rapid growth predominate (Lohbeck et al., 2015Lohbeck M, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Poorter L, Bongers F. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession. Plos One 2015; 10(4): 1-15, 2015. https://doi.org/10.1371/journal.pone.0123741
https://doi.org/https://doi.org/10.1371/...
).

3.4. Volumetry and increment

The absolute dominance estimated for the survey in 2015 was 10.85 m² ha-1 and, for 2019, 11.31 m² ha-1 2019 (Table 5). This increase between the first and the second collection explains the satisfactory development of the forest community. On the other hand, in an area of Caatinga in Paraíba, still considered to be in the process of natural regeneration, with a tendency of anthropic disturbance for logging, Cordeiro et al. (2017Cordeiro JMP, Souza BI, Felix LP. Florística e fitossociologia em floresta estacional decidual na Paraíba, nordeste do Brasil. Revista Gaia Scientia 2017; 11(1): 01-16. DOI: https://doi.org/10.22478/ufpb.1981-1268.2017v11n1.33245
https://doi.org/https://doi.org/10.22478...
) found a low basal area value (7.82 m²).

Table 5
Distribution by diameter class of absolute dominance (DoA), Volume, and Periodic Annual Increment (PAI) in a Caatinga area in Flona de Açú, in Assú/RN.

Stereo volumes for Caatinga areas are directly influenced by anthropogenic factors and changes in the edaphoclimatic conditions inherent to the region, as can be seen in studies conducted by Riegelhaupt et al. (2010)Riegelhauop E, Pareyn FGC, Bacalini P. O Manejo Florestal na Caatinga: Resultados da Experimentação. In: Gariglio MA, Sampaio EVSB, Cestaro LA, Kageyama PY. Uso sustentável e conservação dos recursos florestais da caatinga . Brasília: Serviço Florestal Brasileiro , 2010. 368p. when carrying out the inventory at Fazenda Recanto III, in the municipality of Lagoa Salgada/RN where they estimated a wood volume between 70 and 170 st ha-1, already in the Sobral National Forest, in the municipality of Sobral/CE, these same authors report that the stacked volume varying between 119 to 149 st ha-1.

Taking into consideration the adoption of the conversion factor (ff) 0.7 (UNDP/FAO/IBAMA, 1992Projeto PNUD/FAO/IBAMA/BRA/87/007. Plano de manejo florestal para a região do Seridó do Rio Grande do Norte. Natal: MMA, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis; 1992.), a solid volume of 44.50 m3 ha-1 and 49.35 m3 ha-1 was estimated for 2015 and 2019 respectively, allowing, in four years, a volumetric increase of 4.85 m3 ha-1, which may be associated with the increase in rainfall and partial replacement of some plots. In the year of the first collection, the average rainfall was 449.7 mm, the second-lowest average among the years in which the study was conducted. In contrast, until September 2019, the average rainfall was 716.4 mm, an increase of 24.03% in rainfall compared to the year 2015 (EMPARN, 2019Empresa de Pesquisa Agropecuária do Rio Grande do Norte - EMPARN. Precipitação acumulada: Rio Grande do Norte. [cited 2019 abr. 5] Available from: Available from: http://189.124.135.176/monitoramento/monitoramento.php
http://189.124.135.176/monitoramento/mon...
).

This fact was also confirmed by Barreto (2013Barreto TNA. Dinâmica de espécies lenhosas em área de Caatinga, Floresta PE [Dissertação]. Recife: Ciências Florestais, Universidade Federal Rural de Pernambuco; 2013.), in research on the dynamics of woody species in the Caatinga area, in the municipality of Floresta/PE, where he verified an increase in PAI, possibly associated with the adaptive characteristics of woody species and the higher values of precipitation in the years 2009 and 2010.

In a study on the stocks of volume, biomass, and carbon in the wood of Caatinga species in Caicó/RN, Santos et al. (2016Santos RC, Castro RVO, Carneiro ADCO, Castro AFNM, Pimenta AS, Pinto EM, Marinho IV. Estoques de volume, biomassa e carbono na madeira de espécies da Caatinga em Caicó, RN. Pesquisa Florestal Brasileira 2016; 36(85): 1-7. https://doi.org/10.4336/2016.pfb.36.85.772
https://doi.org/https://doi.org/10.4336/...
) obtained a volume estimate of 15.5 m³ ha-1, considered low when compared to the other Brazilian phytophysiognomies. Fact justified by the occurrence of small and spaced trees. Thus, Meira Junior et al. (2016Meira Junior MS, Imaña-Encinas J, Pinto JRR, Mota SLL. Functional diversity influence in forest wood stock: a study of the Brazilian Savanna. Bioscience Journal 2016; 32(6): 1619-1631. https://doi.org/10.14393/BJ-v32n1a2016-33189
https://doi.org/https://doi.org/10.14393...
), show that the volume is closely linked to functional diversity and that, based on this relationship, it is possible to infer about the ecosystem services generated.

As for PAI, Araújo & Silva (2010Araújo LVC, Silva JA. Unidade Experimental Fazenda Belo Horizonte - Mossoró/RN. In: Gariglio MA, Sampaio EVSB, Cestaro LA, Kageyama PY. Uso sustentável e conservação dos recursos florestais da caatinga. Brasília: Serviço Florestal Brasileiro, 2010. 368p.) conducted a study at Fazenda Belo Horizonte, Mossoró/RN, in three years of inventory, obtained a result superior to that found in this work, of 1.83 m3 ha-1 year-1. While at Fazenda Dominga, Caicó/RN, Santos et al. (2016Santos RC, Castro RVO, Carneiro ADCO, Castro AFNM, Pimenta AS, Pinto EM, Marinho IV. Estoques de volume, biomassa e carbono na madeira de espécies da Caatinga em Caicó, RN. Pesquisa Florestal Brasileira 2016; 36(85): 1-7. https://doi.org/10.4336/2016.pfb.36.85.772
https://doi.org/https://doi.org/10.4336/...
) calculated an increase of 0.77 m3 ha-1year-1, considered very low by the authors.

Thus, the results presented in Table 5 show a progressive increase in dendrometric variables between the measurement periods, influencing the increase in the volumetric stock. This demonstrates the growth of Flona de Açú in the period from 2015 to 2019, considering the genetic and site factors.

4. CONCLUSIONS

The change in floristic composition in the range from 2015 to 2019 shows the advance of the forest, reflected in the increase in its richness and floristic diversity.

The species Handroanthus impetiginosus and Cenostigma pyramidale represent, in a more expressive way, the horizontal structure of the National Forest of Açú, presenting higher values of density, frequency, dominance, and importance value; thus, contributing to Flona’s forestry formation.

The emphasis given to the species H. impetiginosus evidences the need for the continuous preservation of this species on site, to guarantee its survival and permanence in the plant community. Since the predominance of this species has not been common in other studies in the region.

The increase in woody biomass observed between the measurement years reflects the development of the vegetation, indicating its conservation status and part of its dynamics. Consequently, it indicates the achievement of the conservation objectives proposed by the Flona management plan.

REFERENCES

  • Almeida Neto JX, Andrade AP, Lacerda AV, Félix LP, Bruno RLA. Composição florística, estrutura e análise populacional do Feijão-Bravo (Capparis flexuosa L.) no semiárido Paraibano, Brasil. Revista Caatinga 2009; 22(4): 187-194. https://periodicos.ufersa.edu.br/index.php/caatinga/article/view/1138/pdf
    » https://periodicos.ufersa.edu.br/index.php/caatinga/article/view/1138/pdf
  • Amorim IL, Sampaio EVSB, Araújo EL. Flora e estrutura da vegetação arbustivo-arbórea de uma área de Caatinga do Seridó, RN, Brasil. Acta Botanica Brasilica 2005; 19(3): 615-623. https://doi.org/10.1590/S0102-33062005000300023
    » https://doi.org/https://doi.org/10.1590/S0102-33062005000300023
  • Andrade LA, Barbosa MRV, Pereira IM, Leite UT. Análise da cobertura de duas fitofisionomias de Caatinga, com diferentes históricos de uso, no município de São João do Cariri, Estado da Paraíba. Revista Cerne 2005; 11(3): 253-262. https://www.redalyc.org/articulo.oa?id=74411305
    » https://www.redalyc.org/articulo.oa?id=74411305
  • APG VI. An update of the Angiosperm Phylogeny Group Classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 2016; 181: 1-20.
  • Apgaua DMG, Coelho PA, Santos RM dos, Santos PF, Oliveira-Filho AT. Tree community structure in a seasonally dry tropical forest remnant, Brazil. Revista Cerne 2014; 20(2): 173-182. DOI; https://doi.org/10.1590/01047760.201420021540
    » https://doi.org/https://doi.org/10.1590/01047760.201420021540
  • Araújo LVC, Silva JA. Unidade Experimental Fazenda Belo Horizonte - Mossoró/RN. In: Gariglio MA, Sampaio EVSB, Cestaro LA, Kageyama PY. Uso sustentável e conservação dos recursos florestais da caatinga. Brasília: Serviço Florestal Brasileiro, 2010. 368p.
  • Bandeira JMA, Viana CPS, Moura KC, Nascimento VX. Floresta Nacional de Açú/RN: (RE) Conhecendo a Caatinga Através do Livro Didático e Estudo do Meio. III Congresso Internacional das Licenciaturas 2016. DOI: https://doi.org/10.31692/2358-9728.IIICOINTERPDVL.2016.00053
    » https://doi.org/https://doi.org/10.31692/2358-9728.IIICOINTERPDVL.2016.00053
  • Barreto TNA. Dinâmica de espécies lenhosas em área de Caatinga, Floresta PE [Dissertação]. Recife: Ciências Florestais, Universidade Federal Rural de Pernambuco; 2013.
  • Batista FG, Oliveira BT, Almeida MEA, Brito MS, Melo RR, Alves AR. Florística e fitossociologia de um remanescente florestal da Caatinga Caicó-RN, Brasil. Revista Desafios 2019; 6(3). DOI: http://dx.doi.org/10.1590/1517-869220162203142486
    » https://doi.org/http://dx.doi.org/10.1590/1517-869220162203142486
  • Brasil, Ministério do Meio Ambiente (MMA). ICMBIO - Caatinga. 2019a [cited 2019 abr. 8] Available from: Available from: http://www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/caatinga
    » http://www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/caatinga
  • Brasil. Instituto Brasileiro de Geografia e Estatística (IBGE). Manual técnico da vegetação brasileira. 2019b [cited 2019 jul. 2] Available from: Available from: https://biblioteca.ibge.gov.br/visualizacao/livros/liv63011.pdf
    » https://biblioteca.ibge.gov.br/visualizacao/livros/liv63011.pdf
  • Brasil. Ministério do meio ambiente (MMA). Caatinga. 2018a [cited 2018 abr. 8] Available from: Available from: http://www.mma.gov.br/biomas/caatinga
    » http://www.mma.gov.br/biomas/caatinga
  • Brasil. Ministério do Meio Ambiente (MMA). Inventário Florestal Nacional: Rio Grande do Norte. [technical report] Serviço Florestal Brasileiro 2018b: 64 p. Available from: https://www.florestal.gov.br/documentos/informacoes-florestais/inventario-florestal-nacional-ifn/resultados-ifn/3991-resultados-ifn-rn-2018/file
    » https://www.florestal.gov.br/documentos/informacoes-florestais/inventario-florestal-nacional-ifn/resultados-ifn/3991-resultados-ifn-rn-2018/file
  • Cardoso DBOS, Queiroz LP. Floristic composition of seasonally dry tropical forest fragments in Central Bahia, Northeastern Brazil. Revista J. Bot. Res. Inst. Texas 2008; 2(1): 551-573. https://www.jstor.org/stable/41971674
    » https://www.jstor.org/stable/41971674
  • Cordeiro JMP, Souza BI, Felix LP. Florística e fitossociologia em floresta estacional decidual na Paraíba, nordeste do Brasil. Revista Gaia Scientia 2017; 11(1): 01-16. DOI: https://doi.org/10.22478/ufpb.1981-1268.2017v11n1.33245
    » https://doi.org/https://doi.org/10.22478/ufpb.1981-1268.2017v11n1.33245
  • Dantas JG, Holanda AC, Souto LS, Japiassu A, Holanda EM. Estrutura do componente arbustivo/arbóreo de uma área de caatinga situada no município de Pombal - PB. Revista Verde 2010; 5(1): 134-142. https://www.gvaa.com.br/revista/index.php/RVADS/article/view/253/253
    » https://www.gvaa.com.br/revista/index.php/RVADS/article/view/253/253
  • Dombroski JLD, Freitas RMO, Tomczak VE, Pinto JRS, Farias RM. Ecophysiology of water-stressed (Handroanthus impetiginosus (Mart. Ex. DC) Mattos) seedlings. Scientia Forestalis 2014; 42(101): 155-163. https://www.ipef.br/publicacoes/scientia/nr101/cap14.pdf
    » https://www.ipef.br/publicacoes/scientia/nr101/cap14.pdf
  • Dubreuil V, Fante KP, Planchon O, Sant’anna Neto JL. Os tipos de climas anuais no Brasil: uma aplicação da classificação de Köppen de 1961 a 2015. Confins 2018; 37. https://doi.org/10.4000/confins.15738
    » https://doi.org/https://doi.org/10.4000/confins.15738
  • Empresa de Pesquisa Agropecuária do Rio Grande do Norte - EMPARN. Precipitação acumulada: Rio Grande do Norte. [cited 2019 abr. 5] Available from: Available from: http://189.124.135.176/monitoramento/monitoramento.php
    » http://189.124.135.176/monitoramento/monitoramento.php
  • Fabricante JR, Andrade LA. Análise estrutural de um remanescente de caatinga no Seridó paraibano. Revista Oecologia Brasiliensis 2007; 11(3): 341-349. DOI: https://doi.org/10.4257/oeco.2007.1103.04
    » https://doi.org/https://doi.org/10.4257/oeco.2007.1103.04
  • Feeley KJ, Davies SJ, Perez R, Hubbell SP, Foster RB. Directional changes in the species composition of a tropical forest. Ecology 2011; 92(4): 871-82. DOI: https://doi.org/10.1890/10-0724.1
    » https://doi.org/https://doi.org/10.1890/10-0724.1
  • Felfili JM, Rezende RP. Conceitos e métodos em fitossociologia. Brasília: Comunicações técnicas florestais; Universidade de Brasília; 2003. 68 p.
  • Finger CAG. Fundamentos de Biometria Florestal. Santa Maria: UFSM/CEPEF/FATEC; 1992. p. 269.
  • Hoffmann PP. Caracterização de Fragmentos de Floresta Estacional Decidual do Parque Estadual da Lapa Grande, Montes Claros, MG. 2013. Dissertação (Mestrado em Ciências Agrárias) Montes Claros/MG. https://repositorio.ufmg.br/handle/1843/NCAP-9BLNXL
    » https://repositorio.ufmg.br/handle/1843/NCAP-9BLNXL
  • Holanda ACD, Lima FTD, Silva BM, Dourado RG, Alves AR. Estrutura da vegetação em remanescentes de caatinga com diferentes históricos de perturbação em Cajazeirinhas (PB). Revista Caatinga 2015; 28(4): 142-150. DOI: https://doi.org/10.1590/1983-21252015v28n416rc
    » https://doi.org/https://doi.org/10.1590/1983-21252015v28n416rc
  • Imaña-Encinas J, Silva GF, Pinto JRR. Idade e crescimento dás árvores. Brasília: Universidade de Brasília. Comunicações técnicas florestais 2005; 7(1): 35-38. https://repositorio.unb.br/handle/10482/10018
    » https://repositorio.unb.br/handle/10482/10018
  • Instituto de Desenvolvimento Sustentável e Meio Ambiente do Rio Grande do Norte - IDEMA. Perfil do seu município - Assú. [cited 2018 abr. 5] Available from: Available from: http://adcon.rn.gov.br/ACERVO/idema/DOC/DOC000000000016656.PDF
    » http://adcon.rn.gov.br/ACERVO/idema/DOC/DOC000000000016656.PDF
  • Lima RB, Aparício PS, Silva WC, Silva DAS, Guedes ACL. Emprego da Distribuição Diamétrica na Predição do Estado de Perturbação em Floresta de Várzea, Macapá-AP. Enciclopédia Biosfera 2013; 9(16): 1018.
  • Lohbeck M, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Poorter L, Bongers F. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession. Plos One 2015; 10(4): 1-15, 2015. https://doi.org/10.1371/journal.pone.0123741
    » https://doi.org/https://doi.org/10.1371/journal.pone.0123741
  • Maia GN. Caatinga: árvores e arbustos e suas utilidades. 2rd. ed. Fortaleza: Printcolor Gráfica e Editora; 2012. 413 p.
  • Marangon GP, Ferreira RLC, da Silva JAA, de Souza DF, Silva EA, Loureiro GH. Estrutura e padrão espacial da vegetação em uma área de caatinga. Floresta 2013; 43(1): 83-92. https://revistas.ufpr.br/floresta/article/view/27807
    » https://revistas.ufpr.br/floresta/article/view/27807
  • Matias JR, Silva FFS, Dantas BF. Catingueira-verdadeira Poincianella pyramidalis [Tul.] L.P. Queiroz. Associação brasileira de tecnologia de sementes: Comitê técnico de sementes florestais. Technical note 2017; 6. Available from: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1089204/1/NotaTecnica06.pdf
    » https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1089204/1/NotaTecnica06.pdf
  • Meira Junior MS, Imaña-Encinas J, Pinto JRR, Mota SLL. Functional diversity influence in forest wood stock: a study of the Brazilian Savanna. Bioscience Journal 2016; 32(6): 1619-1631. https://doi.org/10.14393/BJ-v32n1a2016-33189
    » https://doi.org/https://doi.org/10.14393/BJ-v32n1a2016-33189
  • Menino GCDO, Santos RMD, Apgaua DMG, Pires GG, Pereira DGS, Fontes MAL, Almeida HDS. Florística e estrutura de florestas tropicais sazonalmente secas. Cerne 2015; 21(2): 277-291. https://www.scielo.br/scielo.php?pid=S0104-77602015000200277&script=sci_arttext
    » https://www.scielo.br/scielo.php?pid=S0104-77602015000200277&script=sci_arttext
  • Oliveira ACP, Penha AS, Souza RF, Loiola MIB. Composição florística de uma comunidade savânica no Rio Grande do Norte, Nordeste do Brasil. Acta Botanica Brasilica 2012; 26(3). DOI: https://doi.org/10.1590/S0102-33062012000300006
    » https://doi.org/https://doi.org/10.1590/S0102-33062012000300006
  • Pessoa MF, Guerra AMNM, Maracajá PB, Lira JFB, Diniz Filho ET. Estudo da cobertura vegetal em ambientes da Caatinga com diferentes formas de manejo no Assentamento Moacir Lucena, Apodi-RN. Revista Caatinga 2008; 21(3): 40-48. https://periodicos.ufersa.edu.br/index.php/caatinga/article/download/787/399
    » https://periodicos.ufersa.edu.br/index.php/caatinga/article/download/787/399
  • Pielou EC. Ecological Diversity. New York, Wiley InterScience 1975; 165p.
  • Pimentel DJO. Dinâmica de vegetação lenhosa em área de Caatinga, Floresta, PE [Dissertação] Recife: Ciências Florestais, Universidade Federal de Pernambuco; 2012.
  • Projeto PNUD/FAO/IBAMA/BRA/87/007. Plano de manejo florestal para a região do Seridó do Rio Grande do Norte. Natal: MMA, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis; 1992.
  • Riegelhauop E, Pareyn FGC, Bacalini P. O Manejo Florestal na Caatinga: Resultados da Experimentação. In: Gariglio MA, Sampaio EVSB, Cestaro LA, Kageyama PY. Uso sustentável e conservação dos recursos florestais da caatinga . Brasília: Serviço Florestal Brasileiro , 2010. 368p.
  • Sabino FGS, Cunha MCL, Santana GM. Estrutura da vegetação em dois fragmentos de Caatinga antropizada na Paraíba. Revista Floresta e Ambiente 2016; 23(4): 487-497. DOI: https://doi.org/10.1590/2179-8087.017315
    » https://doi.org/https://doi.org/10.1590/2179-8087.017315
  • Sampaio EVSB, Salcedo IH, Kauffman JB. Effect of different fire severities on coppicing of caatinga vegetation in Serra Talhada, PE, Brazil. Biotropica 1993; 25(4): 452-460. DOI: http://dx.doi.org/10.2307/238886
    » https://doi.org/http://dx.doi.org/10.2307/238886
  • Sampaio EVSB. Fitossociologia. In: Sampaio EVSB, Mayo SJ, Barbosa MRV, editors. Pesquisa botânica nordestina: progressos e perspectivas. Recife: Sociedade Botânica do Brasil/Seção Regional de Pernambuco; 1996.
  • Santana JAS, Júnior Santana JAS, Barreto WS, Ferreira ATS. Estrutura e distribuição espacial da vegetação da Caatinga na Estação Ecológica do Seridó, RN. Pesquisa Florestal Brasileira 2016; 37(88): 355-361. https://doi.org/10.4336/2016.pfb.36.88.1002
    » https://doi.org/https://doi.org/10.4336/2016.pfb.36.88.1002
  • Santana JAS, Souto JS. Diversidade e estrutura fitossociológica da Caatinga na estação ecológica do Seridó-RN. Revista de Biologia e Ciências da Terra 2006; 6(2): 232-242. DOI: https://doi.org/10.4336/2016.pfb.36.88.1002
    » https://doi.org/https://doi.org/10.4336/2016.pfb.36.88.1002
  • Santos RC, Castro RVO, Carneiro ADCO, Castro AFNM, Pimenta AS, Pinto EM, Marinho IV. Estoques de volume, biomassa e carbono na madeira de espécies da Caatinga em Caicó, RN. Pesquisa Florestal Brasileira 2016; 36(85): 1-7. https://doi.org/10.4336/2016.pfb.36.85.772
    » https://doi.org/https://doi.org/10.4336/2016.pfb.36.85.772
  • Shannon CE. A Mathematical Theory of Communication. The Bell System Technical Journal 1948; 27: 623-656.
  • Sheil D, May RM. Mortality and recruitment rate evaluations in heterogeneous tropical forests. Revista Journal of Tropical Ecology 1996; 84(1): 91-100. DOI: https://doi.org/10.2307/2261703
    » https://doi.org/https://doi.org/10.2307/2261703
  • Silva ACDC, Prata APDN, Souto LS, Mello AAD. Aspectos de ecologia de paisagem e ameaças à biodiversidade em uma unidade de conservação na Caatinga, em Sergipe. Revista Árvore 2013; 37(3): 479-490. DOI: https://doi.org/10.1590/S0100-67622013000300011
    » https://doi.org/https://doi.org/10.1590/S0100-67622013000300011
  • Silva DFN. Fitossociologia em Relação as Propriedades do Solo e Índices de Vegetação em Área de Caatinga, Pernambuco [dissertação]. Recife: Ciências Florestais, Universidade Federal Rural de Pernambuco; 2017. http://www.ppgcf.ufrpe.br/sites/www.ppgcf.ufrpe.br/files/documentos/damares_felix_do_nascimento_silva.pdf
    » http://www.ppgcf.ufrpe.br/sites/www.ppgcf.ufrpe.br/files/documentos/damares_felix_do_nascimento_silva.pdf
  • Silva FDBD, Sales MAG, Sá ORM, Santana GM, Deus MSM, Sousa JMDC, Ferreira PMP, Peron AP. Potencial citotóxico, genotóxico e citoprotetor de extratos aquosos de Caesalpinia pyramidalis Tul., Caesalpinia ferrea Mart. e Caesalpinia pulcherrima Sw. Revista Brasileira de Biociências 2015; 13(2): 101-109. http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/3252
    » http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/3252
  • Silva LS, Costa TR, Salomão NV, Alves AR, Santos TR, Machado ELM. Mudanças temporais na estrutura vegetacional de um fragmento de Caatinga, sul do Piauí. Revista Scientia Plena, 2020; 16(2): 12. DOI: https://doi.org/10.14808/sci.plena.2020.020203
    » https://doi.org/https://doi.org/10.14808/sci.plena.2020.020203
  • Simpson EH. Measurement of diversity. Nature 1949; 163: 688.
  • Soares CPB, Paula Neto F, Souza AL. Diâmetro, circunferência e área basal. In: Soares CPB, Paula Neto F, Souza AL, editors. Dendrometria e Inventário Florestal. 2rd ed. Editora UFV; 2011.
  • Souza DR, Souza AL, Leite HG, Yared JAG. Análise Estrutural em Floresta Ombrófila Densa de Terra Firme Não Explorada, Amazônia Oriental. Revista Árvore 2006; 30(1): 75-87. http://dx.doi.org/10.1590/S0100-67622006000100010
    » https://doi.org/http://dx.doi.org/10.1590/S0100-67622006000100010
  • Souza GF, Medeiros JF. Fitossociologia e florística em áreas de caatinga na microbacia hidrográfica do Riacho Cajazeiras-RN. GeoTemas 2013; 3(1):161-176. DOI: https://doi.org/10.33237/geotemas.v3i1.587
    » https://doi.org/https://doi.org/10.33237/geotemas.v3i1.587
  • Souza MR, Ferreira MB, Sousa GG, Alves AR, Holanda AC. Caracterização florística e fitossociológica do componente lenhoso de um fragmento florestal de Caatinga em Serra do Mel, Rio Grande do Norte, Brasil. Nativa 2020; 8(3): 329-335. http://dx.doi.org/10.31413/nativa.v8i3.9136
    » https://doi.org/http://dx.doi.org/10.31413/nativa.v8i3.9136

Edited by

Associate editor: Bruno Mendonça http://orcid.org/0000-0003-0288-0024

Publication Dates

  • Publication in this collection
    07 Oct 2022
  • Date of issue
    2022

History

  • Received
    18 Jan 2021
  • Accepted
    14 Sept 2022
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro Rodovia BR 465 Km 7, CEP 23897-000, Tel.: (21) 2682 0558 | (21) 3787-4033 - Seropédica - RJ - Brazil
E-mail: floram@ufrrj.br