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ABSTRACT
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Viruses of to the family Geminiviridae are considered some
of the most important pathogens in tropical and subtropical regions
of the world. Members of one Geminiviridae genus, Begomovirus,
have been causing severe losses, particularly in tomato (Lycopersicon
esculentum) production in the Americas and the Caribbean. Several
new begomoviruses have been reported in the region and, at least
one, Tomato yellow leaf curl virus (TYLCV), has been brought in
from the Old World via infected transplants. In addition, the
recombination events that are playing an important role in

Begomovirus diversity have increased the complexity of their control.
This scenario has led to the search for control measures that go beyond
traditional host genetic resistance, chemical controls and cultural
practices. In this review, besides the recommended classical control
measures, transgenic approaches will be discussed, as well as the
mechanisms involved in their successful control of viruses.

Additional key words: whitefly-transmitted geminivirus,
gene silencing, plant transformation, tomato begomovirus, geminivirus
control, Geminiviridae.

RESUMO
Estratégias tradicionais e transgênicas para o controle de begomovirus que infetam tomateiro

Membros do gênero Begomovirus, família Geminiviridae,
estão entre os vírus mais importantes que infetam plantas nas regiões
tropicais e subtropicais do mundo. Nas Américas, begomovirus vêm
causando danos significativos especialmente para a produção de
tomates (Lycopersicon esculentum). Inúmeros novos vírus têm sido
relatados na região, e ao menos um, o Tomato yellow leaf curl virus
(TYLCV), foi introduzido do Velho Continente através de plântulas
infetadas. Além disso, recombinação aparentemente é um fator

importante contribuindo para uma maior diversidade desses vírus,
dificultando seu controle. Esta situação levou à procura de medidas
de controle que vão além das normalmente utilizadas como
resistência genética, controle químico e cultural. Nesta revisão, além
de medidas tradicionais de controle de begomovirus, são discutidas
principalmente estratégias de controle alternativas, como a utilização
de plantas transgênicas, assim como os mecanismos envolvidos em
tais estratégias

BRIEF HISTORY AND TAXONOMY
OF GEMINIVIRUSES

Symptoms now known to be associated with
geminiviruses have been observed in plants grown in tropical
and subtropical regions of the world since the mid-1800s
(Wege et al., 2000). However, it was not until the 1970s that
a distinct group of single-stranded DNA (ssDNA) viruses was
shown to be associated with such symptoms, and these were
placed in the “Geminivirus” group (Gálvez & Castaño, 1976;
Goodman 1977a; 1977b; Harrison et al., 1977). Geminiviruses
are characterized by the twinned, small (ca. 18-30 nm), quasi-
icosahedral morphology of the virion particles and by their

genomes consisting of one or two molecules of ssDNA 2.5-
3.0 kb in length (Rybicki et al., 2000).

During the last decade, the geminiviruses were
classified into the Geminiviridae family (Rybicki, 1994),
which contains four genera: Mastrevirus, Curtovirus,
Topocuvirus, and Begomovirus, classified according to their
host range, genome organization, and vector species (Palmer
& Rybicki, 1998; Fauquet et al., 2000).

Members of the genus Begomovirus, such as the type
species Bean golden yellow mosaic virus - Puerto Rico
(BGYMV) [formerly named Bean golden mosaic virus
(BGMV-PR) by Fauquet et al., 2000], are transmitted by the
whitefly Bemisia tabaci Genn. in what is believed to be a
persistent, circulative, non-propagative manner (Rybicki et
al., 2000), although some authors have proposed otherwise
(Mehta et al., 1994). Begomoviruses infect dicotyledonous
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plants and most have bipartite genomes, although some, such
as, Tomato yellow leaf curl virus (TYLCV), have a single
DNA component.

As there are already some recent reviews on
geminivirus genome organization and replication
(Castellano et al., 1999; Hanley-Bowdoin et al., 1999; Faria
& Zerbini, 2000; Gutierrez, 2000), as well as their interference
with host cell cycle and gene expression (Gutierrez, 1998;
2000; Kong et al., 2000; Settlage et al., 2001), these topics
will not be addressed in this review.

IMPORTANCE OF GEMINIVIRUSES

The Geminiviridae family has received a great deal of
attention in recent years and is becoming one of the most
important and studied families of plant virus. Some reasons
why so much effort has been dedicated to their study include
the economic and social impact of the diseases they cause
(Palmer & Rybicki, 1998; Harrison & Robinson, 1999;
Morales & Anderson, 2001); their use as episomal vectors
and gene silencing inducers (Hayes et al., 1988; Shen & Hohn,
1995; Atkinson et al., 1998; Kjemtrup et al., 1998); and their
contribution as models for studying intracellular and
intercellular movement strategies of macromolecules (Noueiry
et al., 1994; Sanderfoot & Lazarowitz, 1995; 1996; Sanderfoot
et al., 1996; Rojas et al., 1998; Gutierrez, 1999; Lazarowitz,
1999; Ward & Lazarowitz, 1999).

In addition, concern for this family has increased due
to the emergence of new geminiviruses through recombination
or pseudorecombination among strains and/or species in
various crops; the role of the recently discovered satellite-
like DNA-ß components; and findings regarding the
integration of begomovirus sequences into the genome of
plants such as Nicotiana species (Bejarano et al., 1996; Ashby
et al., 1997; Zhou et al., 1997; Navas-Castillo et al., 2000;
Saunders et al., 2000; Saunders et al., 2001; Harper et al.,
2002; Mette et al., 2002; Ribeiro et al., 2002).

These findings indicate that recombination has
contributed to the diversity of geminiviruses and therefore,
to the emergence of new variants and species reported
worldwide. In the particular case of tomato (Lycopersicon
esculentum Mill.)-infecting begomoviruses, recombination is
likely an important factor in their evolution, even in the short
and medium term (Zhou et al., 1997; Navas-Castillo et al.,
2000; Saunders et al., 2001; Ribeiro et al., 2002). In the
1970s, there were only three begomoviruses reported to infect
tomatoes  in the Americas. Less than 30 years later, at least
14 new begomoviruses have been found in tomatoes in the
region (Polston & Anderson, 1997; Morales & Anderson,
2001), and this number could be significantly higher since
at least eight new putative whitefly-transmitted geminivirus
(WTG) species were reported recently to infect this
solanaceous plant in Brazil alone (Faria et al., 2000; Ribeiro
et al., 2001; 2002).

Besides the large number of viruses, the losses they
cause in tomato crops are extensive and some of them, such

as TYLCV, can cause total yield loss (Czosnek & Laterrot,
1997). Morales & Anderson (2001) stated that the
introduction of TYLCV to the Dominican Republic was the
greatest tragedy in the history of WTG affecting economically
important crops in the Caribbean, and caused the collapse of
the tomato industry in that country.

TRADITIONAL APPROACHES FOR
CONTROLLING BEGOMOVIRUSES

 INFECTING TOMATOES

As mentioned above, there are several reasons why
geminiviruses are studied worldwide. Their main importance,
however, is related to their ability to cause significant yield
losses to numerous crops. Several approaches have been used
in attempts to control begomoviruses infecting tomato plants,
but only a few of them have proven to be effective. There is a
possibility of controlling B. tabaci biologically, but it has not
been used for tomato production since the results are very
unsatisfactory (Mason et al., 2000). Additional information
on the current situation, problems, and the potential use of
fungi and predators or parasitoids to control whiteflies can
be found in reviews by Faria & Wraight (2001) and Gerling
et al. (2001), respectively.

Cultural practices such as roguing, intercropping,
avoidance, use of barriers, crop residue disposal, among
others, are recommended, but they should be combined with
the use of insecticides and/or resistant varieties in order to be
effective, especially in tropical areas, where tomato production
occurs throughout the year (Polston & Anderson, 1997; Villas
Bôas et al., 1997; Faria et al., 2000; Hilje et al., 2001).
Reductions in the incidence of TYLCV (Cohen, 1982;
Suwwan et al., 1988) and Tomato mottle virus (ToMoV)
(Csizinszky et al., 1995) in tomatoes were observed with
different levels of efficiency when yellow or orange
polyethylene films and aluminum mulches were used.
However, despite of some positive results, the use of mulches
is not always practical and cost-effective, especially when
tomatoes are grown in large areas.

The best results of WTG cultural control in tomatoes
reported to date seem to occur when ultraviolet-absorbing
plastic films are used as greenhouse covers or as insect-proof
nets (Antignus et al., 1998; Antignus, 2000). Besides being a
physical barrier for the insects, these UV-absorbing films can
reduce virus incidence through the inhibition of whitefly
movement, and have proven especially efficient for the control
of begomoviruses. Antignus et al. (1996) demonstrated that
TYLCV incidence in tomato plants grown under the UV-
absorbing sheets was only 1% compared with approximately
80% in the uncovered control. Because of its high efficacy,
the use of screens has become a standard pest management
strategy for the production of tomatoes in Israel (Taylor et
al., 2001). It is important to note, however, that besides the
higher production cost, these screens alone may not
sufficiently protect against TYLCV, and their use may result
in increased temperature and humidity inside greenhouses
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(Mason et al., 2000; Moriones & Navas-Castillo, 2000).
Although the elimination of alternative hosts is often

recommended for reduction of viruses in general, weeds are
not normally considered to be important reservoirs of tomato-
infecting begomoviruses under natural conditions (Polston
& Anderson, 1997; Ucko et al., 1998; Moriones & Navas-
Castillo, 2000). Some exceptions include the relevance of few
weeds in the TYLCV epidemics in the Jordan Valley, Israel
(Cohen et al., 1988) and the possibility of their contribution
to WTG variability in the tropics. The most important aspect
of removing weeds around tomato fields, however, has been
considered to be the likelihood of diminishing the vector
population. Whiteflies, particularly the B. tabaci biotype B,
are polyphagous and have been reported in at least 506 species
within 74 plant families of dicots and monocots (Villas Bôas
et al., 1997; Chatterji & Fauquet, 2000). However, Hilje et
al. (2001) suggest that it may not be worthwhile to spend
resources on weed removal for the control of the New World
begomoviruses. In addition, weeds also serve an important
function as reservoirs of whitefly predators, parasites and
pathogens.

Regulatory measures have also been taken in a few
instances. A mandatory three-month tomato-free period from
June through August has been issued in the Dominican
Republic and has helped to drastically reduce the incidence
of TYLCV in the first half of the growing season. By the end
of the season, however, high incidences of the virus can be
seen in the fields, and losses can be significant if TYLCV-
susceptible cultivars are planted (Polston & Anderson, 1997;
Salati et al., 1999).

The use of resistant tomato plants is undoubtedly the
best way to control begomoviruses (Polston & Anderson,
1997; Mason et al., 2000). A great effort has been made to
obtain genetic resistance to begomoviruses, with much of it
directed against TYLCV. Several groups of researchers have
looked for TYLCV resistance and tolerance among wild
Lycopersicon species and have found some promising
materials within L. chilense Dun., L. pimpinellifolium (Jusl.)
Mill., L. hirsutum Dun., L. cheesmani Riley, and L.
peruvianum (L.) Mill. (Kasrawi et al., 1988; Zakay et al.,
1991; Michelson et al., 1994; Picó et al.; 1998; Vidavsky &
Czosnek, 1998, among others). Some accessions of tomato
wild relatives exhibited good levels of resistance and tolerance
to bipartite begomovirus as well, such as Tomato yellow
mosaic virus (Piven & Uzcátegui, 1995) and the DF1 isolate
(Ferreira et al., 1999; Santana et al., 2001).

Besides the direct genetic resistance to begomoviruses,
resistance to the whitefly vector has been reported in some wild
Lycopersicon species, such as L. hirsutum and L. peruvianum
(Morales, 2001). It has been associated with the large amounts
of sticky substances that plants of these species exudate,
entrapping the whiteflies and significantly reducing the
transmission of begomoviruses (Channarayappa &
Shivashankar, 1992; Morales, 2001). Unfortunately, this is
not a desired trait for commercial tomato plants.

With such a broad range of tolerance and resistance

in nature, only a few breeding lines and varieties have been
produced (Rom et al., 1993; Lapidot et al., 1997; Mason et
al., 2000). However, in commercial fields of most regions of
the world, tomato plants are still largely susceptible to various
begomoviruses (Polston & Anderson, 1997; Mason et al.,
2000; Diaz-Plaza et al., 2001). In addition, it is a concern
that some asymptomatic, tolerant cultivars support the
replication of the virus, and can act as sources of begomovirus
for susceptible crops (Lapidot et al., 2001).

Liu & Stansly (2000) have tested several surfactants
and oils against whitefly nymphs on tomato plants. Although
there were good levels of insect mortality in some cases,
phytotoxicity was observed in many instances. Their effects
on yields were not reported.

Ultimately, the management of begomoviruses
infecting tomatoes relies heavily on the use of a combination
of systemic and topical insecticides to control the vector
(Polston & Anderson, 1997; Villas Bôas et al., 1997; Faria et
al., 2000; Mason et al., 2000; Ahmed et al., 2001). However,
although effective for some time, there are some concerns
about chemical controls. In Honduras, there were outbreaks
of secondary pests such as leafminers due to the repetitive
use of insecticides to control whiteflies (Rafie et al., 1999).
Cahill et al. (1996) reported the development of whiteflies
resistant to imidacloprid in Spain. This observation is of major
concern because this active ingredient is the most important
insecticide used to control whiteflies and thus, begomoviruses
(Cahill et al., 1996; Polston & Anderson, 1997; Ahmed et
al., 2001).

This scenario, associated with increasing concerns for
obtaining more environmentally friendly ways to control pests
and diseases, has encouraged a search for alternatives to
control begomoviruses in tomatoes, especially through
transgenic approaches. The strategies used by various research
groups and the results obtained so far will be discussed after
a brief review of the mechanisms involved in transgenic
resistance against plant viruses.

MECHANISMS OF GENETIC ENGINEERING
FOR PLANT VIRUS RESISTANCE

The Concept of Pathogen-Derived Resistance (PDR)
Sanford & Johnson (1985), working with

bacteriophages, described the concept of pathogen-derived
resistance (PDR), which can be used in plant virology. It can
be defined as the transformation of plants with portions of
viral genomes that can generate lines of plants resistant to
the virus from which the sequence was derived. Only one
year after Sanford and Johnson’s publication, Powell-Abel et
al. (1986) reported that tobacco (Nicotiana tabacum L.) plants
transformed with the capsid protein (CP) gene of Tobacco
mosaic virus (TMV) genus Tobamovirus were resistant to
infection by TMV.

Since then, numerous papers and reviews have been
published on PDR, and the concept has been proven valid for
a wide variety of plants, for a number of genes or portions of
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genes, and for members of virtually every genus of plant
viruses.

Several researchers classify PDR based on the open
reading frame (ORF) used for transformation or its product.
In this review we briefly describe what we consider to be the
three major groups within PDR, regardless of the viral
sequence that led to resistance. It is important to note that so
far these concepts have been accepted for RNA viruses, but
not yet proven for DNA viruses. However, the observations
suggest that the mechanisms involved in resistance are similar
for both RNA and DNA viruses.

Protein-Mediated Resistance
Early experiments demonstrated that plants

transformed with the CP gene of TMV were more resistant
when high levels of the viral capsid protein were expressed,
confirming the importance of the actual protein in resistance
(Powell-Abel et al., 1986). Because of that, it was named
protein-mediated resistance (PMR) or, in this particular case,
coat protein-mediated resistance (CPMR). Other
characteristics associated with PMR are that the resistance is
normally broken down or reduced when the inoculum is
nucleic acid rather than intact virions, it is often manifested
as a delay in the appearance of symptoms, it is normally partial
but broad-spectrum, and it is dependent on inoculum
concentrations and environmental conditions (Powell-Abel
et al., 1986; Nejidat & Beachy, 1989; Pappu et al., 1995;
Baulcombe, 1996).

At least for plants transformed with the TMV CP gene,
the formulated hypothesis to explain resistance is that it occurs
by the inhibition of challenge virion disassembly in the initial
infected cells (Bendahmane et al., 1997). Interestingly, this
agrees with the concept of cross protection, defined as the
ability of one virus to inhibit or prevent infection or the
manifestation of a closely related second virus (Dodds, 1982).
Yet, another similarity between CPMR and cross protection
is that, in both cases, unencapsidated viral RNA can overcome
the resistance suggesting that the protective virus in cross
protection blocks the disassembly of the challenge virus as
well (Sherwood & Fulton, 1982; Register & Beachy, 1988).

Similarly to what was described for the CPMR,
movement protein-mediated resistance (MPMR) has often
been associated with high levels of protein production by
transgenic plants, but only when dysfunctional, rather than
full-length MP, is expressed (Ziegler-Graff et al., 1991;
Lapidot et al., 1993; Beck et al., 1994; Cooper et al., 1995).

It is thought that the resistance obtained in plants
transformed with a dysfunctional TMV MP gene occurs due
to competition for plasmodesmatal binding sites between the
mutant MP and the wild-type MP of the inoculated virus
(Lapidot et al., 1993). Some examples of the broad-spectrum
MPMR suggest that different virus movement proteins interact
with the same plasmodesmatal components (Baulcombe,
1996), likely pectin methyl esterase (Chen et al., 2000).
Lapidot et al. (1993) observed a correlation between the
accumulation of a defective TMV MP and resistance to the

viral infection. This is characteristic of a dominant negative
mutation, defined as the ability of a mutant gene to code for
a mutant product, which then inhibits the wild-type gene
product in a cell, causing the cell to be deficient in the function
of that gene product (Herskowitz, 1987).

It is important to note, however, that in many cases
plants transformed with viral CP or MP genes (Lindbo &
Dougherty, 1992a; Van der Vlugt et al., 1992; Sijen et al.,
1995, 1996; Prins et al., 1997; Sinisterra et al., 1999) do not
produce the corresponding viral protein, and yet are resistant
to the challenge homologous virus. These examples are
normally associated with a different class of PDR, the RNA-
mediated resistance.

RNA-Mediated Resistance and Post-Transcriptional Gene
Silencing

According to Prins & Goldbach (1996), the RNA-
mediated resistance (RMR) approach arose as an unexpected
spin off from the concept of PDR. In contrast to what was
expected, the resistance observed in several transgenic lines,
especially those transformed with the replicase gene (Rep)
had no direct correlation with the levels of protein produced
(Anderson et al., 1992; Audy et al., 1994; Baulcombe, 1994).
In addition, in the early 1990s, several research groups
reported that plants transformed with untranslatable sequences
of viruses were resistant to their challenge homologous viruses
(Lindbo & Dougherty, 1992a, b; Van der Vlugt et al., 1992).

Lindbo et al. (1993) demonstrated through run-on
analysis that tissues that exhibited a typical “recovery
phenotype” (tissues that initially exhibited symptoms, but
whose symptoms would disappear with time) had high levels
of transcription of the transgenes in the nucleus and very low
levels in the cytoplasm. These observations led them to
propose the presence of an RNA-degradation mechanism,
which would be activated by the presence of high levels of a
specific transcript. Lindbo et al. (1993) also demonstrated
that extensive methylation of the transgene sequence was
likely associated with induction of the specific cytoplasmic
RNA degradation mechanism. These observations were
typical of gene silencing, which had been recently described
in plants and was getting a great deal of attention (Napoli et
al., 1990; Van der Krol et al., 1990). Since the degradation
occurred after transcription took place, it was named post-
transcription gene silencing (PTGS).

In addition to the recovery phenotype (that may or
may not occur) and the failure to detect the product of the
transgene due to mRNA degradation, there are other features
normally associated with gene silencing. The RMR is often
complete or almost complete (high levels of resistance or
immunity), regardless of the inoculum concentration or
environmental conditions, but it is specific to the virus from
which the sequence was derived (low-spectrum resistance)
(Lomonossoff, 1995).

In contrast to what was originally thought, gene
silencing (GS) is not only induced by transgenes, but also by
viruses carrying sequences with homology to host transgenes
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or endogenous genes (Lindbo et al., 1993; English et al.,
1996). Since 1997, it has been noticed that GS has striking
similarities with natural plant defense mechanisms against
viruses and that plant virus infections in the absence of any
known homology to host genes could also induce GS (Covey
et al., 1997; Ratcliff et al., 1997; Al-Kaff et al., 1998; Covey
& Al-Kaff, 2000).

In 1998, four groups of researchers demonstrated,
virtually at the same time, that PTGS is indeed a plant defense
mechanism by showing that some viruses have a counter-
defensive strategy involving the suppression of GS
(Anandalakshmi et al., 1998; Beclin et al., 1998; Brigneti et
al., 1998; Kasschau & Carrington, 1998). This discovery
provided some explanation to the phenomenon that had been
heavily associated with transgenic plants, but that in reality,
is normally targeted against naturally invading nucleic acids,
particularly viruses and transposable elements (Smyth, 1999;
Waterhouse et al., 2001).

The phenomenon of PTGS appears to be quite common
in nature. With the exception of baker’s yeast  (Aravind et
al., 2000), apparently all eukaryotes have mechanisms similar
to gene silencing, often called RNA interference (RNAi). This
demonstrates that organisms such as fungi (Cogoni et al.,
1996; Cogoni & Macino, 1997; Faugeron, 2000), protozoa
(Ngo et al., 1998), a variety of animals (Fire et al., 1998;
Lohmann et al., 1999; Sánchez-Alvarado & Newmark, 1999;
Wargelius et al., 1999; Cogoni & Macino, 2000; Ketting &
Plasterk, 2000; Wianny & Zernicka-Goetz, 2000; Elbashir et
al., 2001) and plants have possibly a common ancestral origin
(Cogoni & Macino, 2000, Fagard et al., 2000; Zamore et al.,
2000; Hammond et al., 2001a; Zamore, 2002).

In this review, the mechanisms involved in PTGS as
well as the role of double-stranded (ds) RNA transcripts and
small (s) RNA in GS will not be discussed since several
reviews covering these aspects have already been written
(Wassenegger & Pélissier, 1998; Waterhouse et al., 1998;
Bass, 2000; Marathe et al., 2000; Hammond et al., 2001b;
Hutvágner et al., 2000; Zamore et al., 2000; Li & Ding, 2001;
Miller et al., 2001; Zamore, 2002).

Interestingly, it has been recently proposed that
common processing machinery generates sRNAs that mediate
both RNAi and endogenous gene regulation involved in
development (Elbashir et al., 2001; Grishok et al., 2001;
Hutvágner et al., 2001; Zamore, 2002). This suggests that
PTGS might not only be a defense mechanism against viruses
and transposable elements, but also might be part of a
developmental regulation system (Hutvágner & Zamore,
2002).

RNA- and Protein-Mediated Resistance
Some researchers have found yet more complex results

in their studies on transgenic resistance. Pang et al. (1994)
reported that the mechanisms involved in the CP gene-
mediated resistance against tospoviruses were variable. When
the resistance was against closely related isolates, it was RNA-
mediated, but when it was against more distantly related

tospoviruses, it was protein-mediated. Wintermantel & Zaitlin
(2000) suggested that, in tobacco plants transformed with
the Cucumber mosaic virus (CMV) family Bromoviridae,
genus Cucumovirus replicase gene, the resistance obtained
is likely a result of a complex mechanism involving both
transgene mRNA and its expressed protein.

Recently, Goregaoker et al. (2000) demonstrated that
in TMV replicase-mediated resistance, both RNA and
protein are involved in protecting against the challenge
virus. Interestingly, over the years many authors have reported
divergent conclusions regarding the mechanism involved in
the resistance of plants transformed with the TMV RdRp
gene. In some cases, the resistance seemed to be mediated
by the RNA transcripts (Tenllado et al., 1996; Marano &
Baulcombe, 1998), while in others, it seemed to be protein-
mediated (Carr et al., 1992; Donson et al., 1993).

Finally, Goregaoker et al. (2000) propose that the
protection conferred by segments of the TMV RdRp gene
expressed from a heterologous viral vector can be credited to
the RdRp mRNA and also to the protein expression from
segments of the polymerase (POL) domain, the latter
conferring greater delays in the accumulation of challenge
TMV when compared to the RNA-mediated mechanism. The
authors further propose that both mechanisms possibly work
cooperatively, with the protein-mediated mechanism
functioning to slow down wild-type virus replication to a level
that allows the RNA-mediated mechanism to be more effective
(Goregaoker et al., 2000).

Nonpathogen-Derived Approaches
Although most of the transgenic resistance to viruses

has been obtained by PDR, there are some cases where it can
be achieved through nonpathogen-derived approaches. The
ribosome-inactivating proteins (RIPs), such as dianthin
extracted from Dianthus caryophyllus L., have natural control
effects against several plant and animal viruses. Although
their use for genetic engineering has not been reported for
any tomato-infecting begomovirus so far, the dianthin gene,
under the control of the African cassava mosaic virus
(ACMV) family Geminiviridae, genus Begomovirus
promoter, has been used successfully to confer resistance in
N. benthamiana Domin against this WTG (Hong et al., 1996;
Hong & Stanley, 1996).

To our knowledge, other nonpathogen-derived
strategies such as the expression of antiviral proteins (i.e.
ribozymes), ribonucleases, and antibodies, have not yet been
reported as alternative methods to control begomoviruses, and
will not be addressed in this review.

TRANSGENIC APPROACHES USED FOR
CONTROLLING BEGOMOVIRUSES

INFECTING TOMATO PLANTS

As previously mentioned, most of what is known about
PDR derives from plants transformed with RNA viral
sequences, but an increasing number of papers have been
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published on transgenic resistance for DNA viruses as well.
Of the 104 begomoviruses characterized to date,

approximately 30 are reported as pathogens of tomato
(Fauquet et al., 2000). However, transgenic approaches have
been used so far in attempts to control only a few of them,
mainly ToMoV, TYLCV, Tomato yellow leaf curl Sardinia
virus (TYLCSV), Tomato golden mosaic virus (TGMV), and
Pepper huasteco virus (PHV). Most of the effort has been
directed toward the control of TYLCV and TYLCSV, which
are considered the most important tomato-infecting
begomoviruses in several countries. However, most of those
studies have been carried out on N. tabacum or N.
benthamiana plants, and only a few transgenic tomato lines
have been produced that are resistant to WTGs.

Several viral sequences have been used in attempts to
obtain plants resistant to tomato-infecting begomoviruses,
with results that vary from immunity to complete
susceptibility. The CP genes of TYLCV and ToMoV were
used, respectively, by Kunik et al. (1994) to transform tomato
and by Sinisterra et al. (1999) to transform tobacco plants.
Although in the first case the authors used the full-length of
the CP gene and in the latter, a truncated CP gene (with a
deletion of 30 nucleotides at the 5’end), both studies reported
resistance to challenge TYLCV and ToMoV, respectively.
However, while the resistance reported by Kunik et al. (1994)
was expressed as a delay in symptoms, recovery phenotype,
and was associated with high levels of expressed CP protein,
Sinisterra et al. (1999) observed higher levels of resistance
and suggested that it was mediated by the RNA transcripts.
Unfortunately, Sinisterra et al. (1999) noticed that the progeny
from plants that were resistant in the R1 generation were
susceptible to ToMoV in the R2, and Kunik et al. (1994) did
not seem to have carried out the experiments to further
generations.

Resistance was also observed in tobacco plants
transformed with antisense sequences of the CP gene plus
the 5' portion of the transcription activator (TrAP) and
replication enhancer (REn) genes of TGMV (Bejarano &
Lichtenstein, 1994). In this case, transgenic plants were
asymptomatic after inoculation with the challenge virus,
probably due to a drastic impairment in its replication
(Bejarano & Lichtenstein, 1994).

The cell-to-cell movement and the nuclear shuttle
protein genes (MP and NSP, respectively) also have been used
to confer resistance to begomoviruses. The ToMoV and Bean
dwarf mosaic virus (BDMV) MP and NSP genes have been
used to transform tobacco and tomato by Duan et al. (1997)
and Hou et al. (2000), respectively. Some resistance to ToMoV
was obtained for constructs containing the MP sequence in
the first case, and for NSP and MP constructs in the latter
study. However, even though it appears that the expression of
the protein is involved in the resistance, this was not clearly
demonstrated. Besides, the resistance obtained by Hou et al.
(2000) was expressed as only a delay in the appearance of the
ToMoV symptoms.

A recent report demonstrated that tobacco plants

transformed with ToMoV MP gene behaved biologically as
if the resistance was RNA-mediated (recovery phenotype, high
levels of narrow-range resistance, independent of levels of
inoculum, and even after challenge with viral DNA through
biolistic inoculation), but exhibited some characteristics at
the molecular level that are typical of protein-mediated
resistance (low, but detectable levels of MP mRNA and protein
after challenge with ToMoV) (Freitas-Astúa, 2001; Freitas-
Astúa et al., 2001a). The use of antisense sequences of ToMoV
NSP and MP did not confer resistance to tobacco plants (Duan
et al., 1997; Freitas-Astúa et al., unpublished data).

Another gene often used for obtaining transgenic
resistance to tomato-infecting begomoviruses is the
replication-associated (Rep) gene. Noris et al. (1996) were
the first to demonstrate that the expression of a truncated
TYLCSV Rep, encoding the first 210 amino acids of the Rep
protein and potentially co-expressing the C4 protein, could
confer high levels of resistance in N. benthamiana plants.
However, resistance was overcome with time. This truncated
gene was also used to transform tomato plants (Brunetti et
al., 1997). Transformed plants that expressed high levels of
the truncated TYLCSV Rep protein were resistant to TYLCSV
infection, whereas those tomato lines in which the protein
was not expressed (lines containing the antisense Rep or both
sense and antisense Rep gene) were susceptible to TYLCSV.
However, resistant plants exhibited an undesired, altered
phenotype, and the resistance did not seem to be effective
against a different begomovirus, Tomato leaf curl - Australia
virus (Brunetti et al., 1997). Further studies of the same
research group demonstrated that N. benthamiana plants
expressing the truncated Rep of TYLCSV were resistant to
the homologous virus, but susceptible to the related TYLCV
Murcia strain (TYLCV-ES[1]). According to the authors, the
truncated Rep acts as a trans-dominant-negative mutant
inhibiting transcription and replication of TYLCSV, but not
of TYLCV-ES[1] (Brunetti et al., 2001).

Day et al. (1991) reported the production of resistant
tobacco plants expressing an antisense sequence of the TGMV
Rep gene in the R1 generation; however, the studies did not
continue on further generations. Bendahmane & Gronenborn
(1997) demonstrated that the use of the full-length antisense
Rep conferred moderate resistance to TYLCSV in N.
benthamiana, and this resistance was inherited in the R2
generation as well. Interestingly, in both cases the level of
homology between the antisense RNA and the challenge virus
sequence specified the level of resistance obtained.

Recently, Franco et al. (2001) have shown resistance
of N. benthamiana to TYLCSV by a double mechanism
involving antisense RNA of TYLCSV Rep gene and
extrachromosomal molecules; however, the plants were not
protected against TYLCV, which is a more severe virus.

As it can be clearly seen, most studies on transgenic
plants expressing the Rep gene or its antisense RNA were
done on N. benthamiana, a known permissive host. There
are a few exceptions to that, though. Polston & Hiebert
(personal communication) used the full length ToMoV Rep
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gene to obtain tomato plants resistant to ToMoV. Stout et al.
(1997), based on the work by Hanson et al. (1995), who
demonstrated that the NTP-binding domain of BGYMV is
required for replication, mutated this motif in ToMoV,
transformed tomato plants with such construct, and showed
that it interferes with ToMoV replication.

Even though some tomato lines are resistant to ToMoV,
until recently there were no reports of transgenic tomato plants
satisfactorily resistant to TYLCV, a virus that is considered
the most important begomovirus infecting tomatoes, both for
its wide geographical distribution and for the severe losses it
can cause. Only a short time ago, a construct consisting of 2/
5 of the TYLCV Rep gene was demonstrated to confer high
levels of resistance and often immunity to TYLCV in both
tobacco and tomato, probably through the mechanism of
PTGS (Freitas-Astúa et al., 2001b; Polston et al., 2001). The
relevance of these studies is based on the fact that several
lines of transformed tomato and tobacco plants were immune
to TYLCV in the R1 and R2 generations, and that similar
responses were observed in two different hosts, in independent
transformations. These results suggest that the 2/5 TYLCV
Rep construct is a strong gene silencing inducer (Polston,
personal communication).

However, since numerous viruses can infect tomatoes,
often in mixed infections, it is imperative that in some regions
of the world the resistant plants exhibit broad-spectrum
resistance. For that reason, new strategies are leading towards
gene pyramiding or crossing of material already resistant to
one virus with lines resistant to other viruses, or the use of
negative dominant mutants that can confer good levels of
resistance not only to the virus from which the sequence was
derived, but also to related viruses (such as recombinants and
variants or even other begomovirus species).

Diaz-Plaza et al. (2001) reported that tobacco plants
expressing mutated PHV MP gene were resistant to the
homologous virus and also exhibited some resistance to Texas
pepper virus (TPV) family Geminiviridae, genus
Begomovirus, probably through negative dominance. The
authors have transformed tomatoes with the same mutated
PHV MP gene, but the plants have not yet been tested (Diaz-
Plaza & Rivera-Bustamante, personal communication).
However, it is expected that the same construct would provide
similar broad-spectrum resistance in another solanaceous host,
such as tomato plants.

Chatterji et al. (2001) have recently shown that the
transient expression of the Tomato leaf curl New Delhi virus
(ToLCNDV) family Geminiviridae, genus Begomovirus, Rep
protein, mutated at the oligomerization and DNA binding
domains, inhibits viral DNA accumulation in tobacco
protoplasts and in N. benthamiana plants. Interestingly, in
vivo experiments of co-bombardment of this construct with
infectious clones of ACMV, PHV, or Potato yellow mosaic
virus (PYMV) in N. benthamiana suggest that the mutated
protein might interfere, at different levels, not only with the
homologous ToLCNDV, but with these other begomoviruses
as well (Chatterji et al., 2001). These results are also

promising, and transgenic tobacco and tomato plants are being
tested for resistance to begomoviruses (Chatterji et al., 2001).

Finally, a new possibility for broad-spectrum resistance
for begomoviruses relies on a recent study done by Argüello-
Astorga & Ruiz-Medrano (2001). The authors found
similarities among iterons (high affinity binding sites for the
Rep protein, functioning as origin recognition sites) of more
than 100 geminiviruses and proposed that the common
specificities of the Rep-iteron interactions might be used in
developing Rep-based virus resistance to a range of
geminiviruses with similar interaction specificities.

FINAL REMARKS

Only time will tell if strategies chosen today will
actively help control tomato-infecting begomoviruses or if
new approaches will need to be pursued. However, although
no begomovirus-resistant transgenic tomato plants are yet
available to growers, some of these lines are very promising
and might in the near future be cultivated or used in breeding
programs.
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