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ABSTRACT
Fusarium Head Blight (FHB) is a disease of great concern in wheat (Triticum aestivum). Due to its relatively

narrow susceptible phase and environmental dependence, the pathosystem is suitable for modeling. In the present work,
a mechanistic model for estimating an infection index of FHB was developed. The model is process-based driven by
rates, rules and coefficients for estimating the dynamics of flowering, airborne inoculum density and infection frequency.
The latter is a function of temperature during an infection event (IE), which is defined based on a combination of daily
records of precipitation and mean relative humidity. The daily infection index is the product of the daily proportion of
susceptible tissue available, infection frequency and spore cloud density. The model was evaluated with an independent
dataset of epidemics recorded in experimental plots (five years and three planting dates) at Passo Fundo, Brazil. Four
models that use different factors were tested, and results showed all were able to explain variation for disease incidence
and severity. A model that uses a correction factor for extending host susceptibility and daily spore cloud density to
account for post-flowering infections was the most accurate explaining 93% of the variation in disease severity and 69%
of disease incidence according to regression analysis.

Additional keywords: Fusarium graminearum, plant disease modeling, disease forecast.

RESUMO
Um modelo de simulação do risco de infecção da giberela do trigo

O curto período relativo de suscetibilidade da planta e a dependência ambiental, fazem com que epidemias de
giberela do trigo possam ser modeladas matematicamente. No presente trabalho, foi desenvolvido um modelo mecanístico
para previsão da epidemia de giberela. O modelo é dividido em sub-processos, os quais são governados por taxas, regras
e coeficientes que definem: progresso do espigamento; extrusão de anteras; densidade de inóculo aéreo e frequência de
infecção. Esta última é influenciada pela temperatura durante a ocorrência de evento de infecção (EI). A combinação de
dados diários de precipitação e umidade relativa média é que determina a ocorrência do EI. O índice diário de infecção
é calculado em função da proporção de tecido suscetível presente,  freqüência de infecção e densidade da nuvem de
esporos, durante cada EI. A avaliação do modelo foi feita com dados de cinco anos de epidemia variando de não epidemica
a severa epidemia observada na localidade de Passo Fundo. Quatro modelos que combinam diferentes fatores foram
avaliados. Todos os modelos explicaram consideravelmente a variação da incidência e severidade. Um modelo que
utiliza um fator de correção no hospedeiro para contabilizar infecções após o florescimento um outro fator para a densidade
diária da nuvem de esporos, produziu estimativas mais acuradas, explicando 93% da variação da severidade da doença
e 69% da variação de incidência, conforme sugerido pela análise de regressão.

Palavras-chave adicionais: Fusarium graminearum, modelagem de doenças de plantas, previsão de epidemias,
simulação de sistemas.

INTRODUCTION

Fusarium head blight (FHB) of wheat (Triticum
aestivum L.), also called wheat scab, is an important disease
throughout much of the world’s wheat-growing areas where
severe epidemics have been reported in recent years
(McMullen et al., 1997). Several Fusarium species can cause
head blight, although Gibberella zeae Schwain (Petch.)

(anamorph Fusarium graminearum Schwabe) is the
predominant pathogen in most growing regions and has been
reported as the main causal agent in Brazil (Reis, 1986;
Bottalico & Perrone, 2002). The FHB emerged in Brazil as
an important disease in recent years promoting serious yield
losses (Panisson et al., 2003). Wheat contamined with
deoxynivalenol (DON) in excess of permitted levels results
in rejection of sale or severe price dockage by millers and
other grain buyers in some countries that have adopted DON
regulation (Schaafsma et al., 2001).
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Giberella zeae is a facultative saprophyte with an
important part of its cycle occurring in crop residue, which
serves as the main reservoir for inoculum that leads to
infection (Sutton, 1982). It has been stated that monoculture,
reduced tillage, and maize-wheat rotations have greatly
increased inoculum levels in soil (Miller et al., 1998). The
FHB is best known as a flowering disease with anthers as
the primary infection site where fungus spores land and then
grow into the kernels, glumes or other spike tissues (Sutton,
1982; McMullen et al., 1997). Some evidence suggests
wheat may be susceptible up through the soft dough stage
of kernel development (Andersen, 1948; Fernando et al.,
1997). Although post-flowering infections may have a low
impact on crop yield, infected and DON-contaminated
plump kernels are likely to contribute to the final mycotoxin
levels in mature grains (Hart et al., 1984; Del Ponte et al.,
2003).

Although research progress has been made for
decades, disease control is still challenging due to the
complex disease nature. The FHB still poses a significant
threat to yield, quality of wheat and other small grains
(McMullen et al., 1997). Most cultivars do not possess
desirable levels of resistance that could lead to good genetic
control (Lima et al., 2000; Bai et al., 2001). Breeding for
wheat scab resistance is a long, difficult task, but some
progress has been accomplished (Mesterhazy, 1997; Bai et
al., 2000). A range of fungicides has been identified with
good activity against the pathogen, but dose rate, application
timing and spray quality for adequate coverage of the spike
tissues are critical for control efficacy in the field (Reis et
al., 1996; Picinini & Fernandes, 2001). Others have stressed
that inconsistent success with fungicide treatments may
occur due to a lack of disease forecasting information
(McMullen et al., 1997). The development of a forecasting
system has been suggested as an important tool to be
integrated into FHB management to effectively use
fungicides in conjunction with other management strategies
(McMullen et al., 1997; Xu, 2003). Regarding the
development of FHB prediction models, different modeling
approaches are found in the literature. Correlation and
regression studies among environmental variables and
historical records of some disease variables have led to the
development of empirical regression models. On the other
hand, process-oriented simulation models have been
proposed as well. Detailed information on several FHB
models has been reviewed recently (Del Ponte et al., 2004b).

The aims of this work were to develop a process-
based risk infection simulation model for estimating FHB
epidemics in a location in Southern Brazil and to evaluate
the performance of the model in explaining disease observed
for five years at the same location.

MATERIAL AND METHODS

The present model, GIBSIM, is a significant
improvement over previous efforts for developing a

phenology-based FHB simulation model (Vargas et al., 2000;
Fernandes & Pavan, 2002). Several components were added
and/or modified by the inclusion of functions, rules and
environmental variables supported by local experimentation
and data from the literature. Briefly, the model aims to
calculate the proportion of tissue infected taking into account
the dynamics of the host, environment and inoculum during
an infection event.

Model  description
A diagram for the model is presented in Figure 1

according to the principles of system analysis. Simulation
is initiated when the first heads fully emerge in the field
(FHE). The daily proportion of heads emerged (HEMG) is
a function of the heading rate (HNG). Anther’s extrusion
rate (EXT) calculates the daily proportion of extruded
anthers in a cohort of heads. The coupling of a heading
model, an anther extrusion model and a rule for anther
longevity, determines the daily proportion of anthers exposed
(ANT), which translates into susceptible tissue (ST=ANT).
Inoculum is assumed to be present on the residues (IRES).
The density of an airborne G.. zeae spore cloud (GZ) is a
function of dispersal rate (DIS). An infection event (IE) is
determined based on a combination of rainfall and relative
humidity in a two-day window. Infection frequency (INF)
is a function of average mean daily temperature in the two-
day window of the IE. The daily infection risk index (GIB)
is the product of the proportion of susceptible tissue (ST),
infection frequency (INF) and G.. zeae spore cloud density
(AGZ). Rates and rules in the models are influenced by daily
weather variables such as mean temperature (T), solar
radiation (RAD), relative humidity (RH) and precipitation
(PREC).

Model structure
Host factor: A Weibull function was empirically

adjusted to the daily cumulative proportion of heads emerged
(HNG) observed in a 1-meter section of several Brazilian
spring wheat varieties (Del Ponte et al., 2004a).

HNG = 1 -  exp (-0.0127  t
 
2.4352)                [1]

Where: t= 1 day
The HNG calculates groups of heads (cohort)

emerged in the same day and it is assumed that each cohort
partially emerged  (code 55 - Zadoks et al., 1974) has its
first anthers extruded three days later. The daily rate of
cumulative proportion of extruded anthers in a cohort of
heads (ANText) is calculated by another Weibull function,
which parameters’ values vary according to the daily mean
temperature [2] (Del Ponte et al., 2004b).

ANText
 
= 1 - exp (a t b)                                 [2]

Where  t= 1 day; a= 0.255 - 0.029T + 0.0009T2;  b= - 5.773 +
0.966T - 0.0278T2; where: T= Daily mean temperature (ºC)
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An empirical rule was determined to define the
longevity of anthers: the period of time they remain attached
to wheat spikelets before dropping on the ground. In the
model, this was translated into the following rule: anther’s
longevity is a minimum of two days. If daily solar radiation
is <10 MJ/m2/dia on the second or following day, anthers
remain attached for an extra day up to a maximum of five
days. The rule was based on empirical observations that
reported an extension of flowering during a sequence of
cloudy days suggesting anthers remained attached for a
longer period (Reis, 1989; Vargas et al., 2000).

Hence, the proportion of anthers present in a single
day (ANT) is a result of the summation of anthers extruded
and attached in each cohort of heads subtracted by the
anthers that were removed from the cohorts (no longer
attached). The curve for ANT follows a bell shape and is
regulated by temperature and solar radiation.

Coefficients were created to determine the proportion
of susceptible tissue (ST) based on ANT and coefficients for
post peak flowering infections. ST =ANT until ANT reaches
the peak and decreases to 0.25. After peak flowering, if ANT
< 0.25, then ST=0.25 until ANT=0.01. After flowering
(ANT<0.01), ST = 0.25 for the next seven days, while
ST=0.10 from eight to 14 days after flowering. These rules

were created to account for late infections that may occur
from the post-peak of flowering up to stages of kernel filling,
as previously reported (Fernando et al., 1997; Del Ponte et
al., 2003).

Inoculum factor
Models for predicting the daily relative density of a

GZ spore cloud were developed by the observation on the
night- and day-time deposition of G. zeae airborne inoculum
in Passo Fundo, Brazil (Del Ponte et al., 2005). A linear
equation was adjusted to the relative density of colony
forming units that was observed during the night-time to
estimate the relative density of a spore cloud [3].

GZ = (-0.6306 + 0.0152 RH + 0.1076 CRD)2        [3]

Where: RH= daily mean relative humidity (%); CRD =
dummy variable for a position of a rainy (>0.3mm) day in a
consecutive period of rainy days (for four consecutive days:
CRD=1; 2; 2.5; or 0.3 for each following day).

In that study, peaks of airborne inoculum at night-
time were associated with mean daily relative humidity
values over 80% and rainfall occurrence. Hence, GZ is a
fraction (0<GZ<1) that adjusts the daily infection index by
accounting for a lower or higher inoculum pressure during
an infection event.

Environmental factor
The INF calculates the proportion of susceptible

tissue likely to be infected at any time. Simple rules were
determined for the combination of daily records of rainfall
and mean relative humidity to be compared to head wetness
duration ranging from 30 to 48 h. Every infection event is
recorded in a two-day window by the following:

1) PREC (>0.3mm) in both days with mean daily RH >
80% averaging the two days;

2) PREC in one day (>0.3mm) with mean RH > 80%
preceded or succeeded by a non rainy day with mean RH >
85%.

An exponential model [4] was developed using data
from literature for estimating infection frequency by F.
graminearum under the effect of temperature (10 to 30 ºC)
for 48 h of head wetness duration (Rossi et al., 2001).

INF
 
= 0.001029 exp (0.1957 T)

                             
[4]

Where: T = average mean daily temperature in the two-day
window of the infection event

Daily and accumulated infection index
Four models were developed to calculate the daily

infection index by combining and excluding factors [5]. The
accumulated infection index (GIB%) is calculated by the
summation of partial infection indices by different models
along the susceptible period [6]. A correction factor (x100)
was used to express infection index as a percentage, since

FIG. 1 - Relational diagram of GIBSIM a mechanistic model
estimating risk infection index of Fusarium head blight of wheat
(Triticum aestivum). State variables: FHE = First heads emerged;
HEMG = proportion of heads emerged; ANT = daily proportion
of anthers present; ST = proportion of susceptible tissue based on
ANT and coefficients for susceptibility after peak flowering up to
14 days after flowering ends; IRES = Inoculum present on crop
residues; GZ= relative density of a spore cloud; GIB = daily risk
infection index.  Rate variables: HNG = daily heading rate; EXT
= daily anther’s extrusion rate; INF = daily infection frequency;
DIS = daily inoculum dispersal rate; Driving variables: T =daily
mean temperature (oC); RAD = daily solar radiation (MJ/m2/dia);
RH = daily mean relative humidity (%) and PREC = daily
precipitation (mm).
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ANT is on a 0-1 scale.

GIB1 = ANT * INF                                   [5]
GIB2 = ANT * INF * GZ
GIB3 = ST * INF
GIB4 = ST * INF * GZ

Where: ANT= daily mean proportion of anthers during a
two-day infection event (IE); ST = mean daily proportion
of susceptible tissue during IE; INF = infection frequency
at the second day of IE; GZ = mean G. zeae spore cloud
density during IE;

GIB% =   (GIB * 100)                             [6]

Where: GIB is the daily infection index for each of the four
models

Model evaluation
Data collection: Observations of mid-flowering date

(50% of heads showing anthers), disease incidence, severity
and Fusarium-damaged kernels (%FDK) were conducted
in several spring wheat varieties grown in experimental plots
in Embrapa Trigo, Passo Fundo (latitude 28º 15’S, longitude
52º 24’W, altitude 684 m) in 1998-2001 and 2003, with
two to three planting dates per year. For incidence and
severity, a sample of 100 to 150 heads was hand-harvested
in a planting row at early dough stage of grain development
(28 to 35 days after mid-flowering) and taken to the
laboratory. Incidence (proportion of infected heads in the
sample) and severity (proportion of infected spikelets in the
sample) values were determined using a visual scale for
spring wheat (Stack & McMullen, 1995). Severity is the
same as the FHB index since it is the product of incidence
and severity in infected heads. The FDK was evaluated in
mature kernels randomly sampled after harvesting the plots.
A sample of 30 cases ranging from very light to severe
epidemics, representative of all years and planting dates,
was selected. The initial sample was reduced to 20 cases,
with similar mid-flowering dates (two-day window), which
resulted in more than one cultivar per case in some instances.
Thus, the dataset consisted of either single or average values
of disease for different cultivars (Table 1). For FDK, data
collection was performed in 1998-2000 only. Daily weather
data was recorded at a standard weather station located
approximately 1 km away from the experimental plots.

Model implementation: Software was developed to
perform simulations using Java language. Since the model
starts by entering the day when first heads emerge,
preliminary runs were conducted for every case in order to
match the simulated date when 50% of anthers were present
at the observed mid-flowering date in the field. Simulation
results starting from that matched date were regressed to
observations.

Model validation: Since the models estimate an
infection index, not disease level, regression was used to

validate the model by verifying its adequacy in explaining
disease levels. The different models were compared by
analyzing the coefficient of determination for the regression
between accumulated infection index and observations of
the disease.

RESULTS

The FHB epidemics recorded in Passo Fundo varied
among years and, in some instances, during the same year,
reflecting the environmental dependence of the epidemics
(Table 1). Light levels of epidemic were recorded in 1998.
In 1999, no epidemic levels were found for the early
plantings, while light epidemics occurred in the later
plantings. In 2000, severe levels were recorded for late
plantings, while light levels were recorded in 2001. For
2003, there was no epidemic level recorded. Among disease
parameters, higher significant correlations (P<0.01) were
found between incidence and severity (R=0.84) and
incidence and FDK (R=0.82), whereas a lower correlation
was observed between severity and FDK (R=0.60).

Regression between the accumulated infection index
and observations for all four models showed they were able
to explain disease variation except for FDK. The GIB3%
and GIB4%, which consider a wider window of susceptibility
and disease variation is better explained in the dataset. The
inclusion of the GZ factor also improved model predictions
as demonstrated by the increase in the coefficient of
determination for the regression analysis (Table 2). Disease
severity had the highest correlation parameter with GIB4%,
whereas incidence had a lower correlation.

Figure 2 shows the daily increase of GIB4% index
for two cases of severe (A -SEV=19.8%) and light epidemics
(B - SEV=8.6%). In A (mid-flowering on October 13, 2000),
the model simulated 17 days of ANT>0.01 and five days of
ANT>0.5 (peak flowering). Eight events of infection were
calculated from day 284 to 291 covering the flowering
period. A total of seven rainy days, mean RH of 87% and
mean temperature of 19.6 oC, were recorded for the eight-
day infection period resulting in an accumulated infection
index of 15.4.  A single infection event occurred at day 300.
In B (mid-flowering on October 2, 1998), the model
simulated 16 days of ANT>0.01 and seven days of ANT>0.5.
Three infection events were calculated for the days 276-
278, right after peak flowering. A total of four consecutive
rainy days, mean RH 84% and mean temperature of 17.1 oC
were recorded for the three-day infection period which
resulted in an accumulated index of 4.7.  Another five
infection events were recorded at post-flowering increasing
the infection index from 4.7 to 6.0.

The model was designed to simulate the part of the
epidemic cycle corresponding to the percentage of tissue
likely to be infected which showed a strong correlation with
actual disease severity for the conditions of Passo Fundo,
Brazil. The spread of the disease, upward and downward,
in the primary infected spike tissues, which is a factor not
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FHB parameters (%) 2

Year # cases FD1 Cultivar
INC3 SEV4 FDK 5

1998 1 240 BR35 645 8.8 20.0
1998 2 257 BR23, BR35 55 9.3 7.5
1998 1 265 CEP24 42 4.8 6.5
1998 2 275 BR23, BR35 63 8.6 13.0
1998 2 278 Frontana, CEP24 35 5.1 5.0
1998 1 283 BRS177 35 4.6 4.0
1999 1 255 BR18 15 2.4 1.5
1999 1 259 CEP24 8 0.8 0.5
1999 1 280 BR23 47 10.5 3.0
1999 1 284 Embrapa40 20 10.6 1.5
2000 3 264 BR23, BRS119, CEP27 51 5.8 12.0
2000 1 271 Frontana 61 8.9 4.0
2000 1 281 BRS119 90 18.8 22.5
2000 2 283 BR23, Frontana 93 26.3 14.5
2000 1 286 BRS120 82 19.8 -
2001 1 245 BR23 21 7.4 -
2001 1 252 BRS179 44 8.0 -
2001 2 273 BR35, BRS120 50 9.3 -
2003 3 257 BR23 , Embrapa40, Fundacep29 11 1.7 -
2003 3 282 BRS Camboatá , BRS49, BR15 34 5.1 -

TABLE 1 - Information on the dataset used for model validation. Fusarium head blight (FHB) of wheat (Triticum
aestivum) was observed in experimental plots at Passo Fundo, RS, Brazil. Thirty observations were grouped by
similarity of flowering date (two-day window) resulting in 20 epidemic cases used for validation of the GIBSIM
model

1 50% of anthers present, expressed in day-of-year (Zadoks 65)
2 Single or mean values for the number of cases
3 Infected heads out in sample of heads (n=100)
4 Disease severity according to Stack & Mac Mullen (1995). Same as FHB index.
5 Fusarium damaged kernel (n=100)

taken into account in the model, may account for the increase
and variation in severity levels. Figure 3 presents regressions
between GIB4% and SEV and GIB4% and INC.The linear
equation (Figure 3) suggests that 36% of disease increase
may be due to new infected sites from spreading in infected
heads. In order to make an interpretation of the model output
easier, FHB severity classes were created, and disease
severity values were estimated by the linear equation adjusted
to the independent dataset used for validation (Table 2).

DISCUSSION

This is the first phenology-based model developed
in South America that estimates daily infection indices over
a simulated susceptible period and uses a factor accounting
for inoculum density by infection time. The distinct weather
conditions in different years and planting dates of the dataset
alowed verification of the adequacy of the model in
explaining variation of disease severity, even though the
dataset is relatively small and has a gap of cases with severity
falling between 11% to 19%. The regression model may be
useful for estimating severity range which is a simple way
to alert for the potential risk and expected level of FHB
outbreaks.

A better correlation with severity was not surprising

given that model takes into account the proportion of
susceptible tissue present during an infection event. Disease
severity is a more realistic representation of the disease
intensity in the field, as incidence accounts only for the
proportion of heads infected that may have distinct portions
of infected spikelets per spike. Hence, a moderate or severe
disease incidence does not necessarily translate into high
levels of severity. Temperatures below 15 °C are not suitable
for rapid spread of disease in an infected wheat head
(Andersen, 1948). Final severity is also affected by the
cultivar’s resistance levels to the spread of the fungus fom
the infected tissues (type II resistance) (Mesterhazy, 1997).
In regards to FDK, heavily infected and lightweight kernels
are frequently lost during harvesting and cleaning operations
which affects the correlation between this parameter and
visual disease data (Schaafsma, et al., 2001). This parameter
showed the lowest correlation with accumulated infection
index produced by the present model although it did present
high correlation with disease incidence.

Despite the simplicity of the rules created to define
an infection event based on daily rainfall and relative
humidty, they seemed to be adequate and have biological
meaning for the location that was evaluated. At temperatures
ranging from 15 to 25 oC (most of the range found in the
dataset), a minimum of wetness duration from 24 to 48 h is
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required for infections (Andersen, 19848). In the model,
this window is expected every time rainfall occurs, and mean
daily relative humidity is over 80% in a two-day window.
Rainfall variables have been used as predictors in other FHB

Disease parameter regressed (%)Model Factor 1

SEV 2 INC 3 FDK 4

GIB%1 ANT, INF 0.73 0.43 0.14
GIB%2 ANT, INF, GZ 0.79 0.46 0.16
GIB%3 ST, INF, 0.88 0.65 0.39
GIB%4 ST, INF, GZ 0.93 0.69 0.37

1 ANT= daily proportion of anthers present; ST= daily proportion of
susceptible tissue by correcting ANT after peak flowering and extending
susceptible window to up to 14 days after flowering; INF= infection
frequency; GZ= relative density of a Gibberella zeae spore cloud

2 Mean proportion of head area infected in a sample of heads
3 Proportion of heads infected out in a sample
4 Fusarium damaged kernels

TABLE 2 - Coefficient of determination for the regression analysis
between simulated accumulated infection index (%GIB) and
Fusarium head blight of wheat (Triticum aestivum) parameters.
The models used different factor to estimating accumulated
infection index

TABLE 3 - Epidemic classes and correspondence of Fusarium
head blight (FHB) of wheat (Triticum aestivum) severity and
infection index estimated by GIBSIM model

1 Accumulated infection index (x) is used to predict severity (y) based on the
following equation:  y = 0.97 + 1.36x (R2=0.93; n=20 cases from five years)

2 Yield loss threshold based on results by Casa et al. (2003).

FIG 2 - Daily progress of Fusarium head blight of wheat (Triticum aestivum) infection index (GIB4%) estimated
by the GIBSIM model, a mechanistic process based simulation model, for two dates of mid-flowering: day-of-year
286 (Oct 13) of 2000 (A) and day-of-year 275 (Oct 2) of 1998 (B). Shaded area in A and B corresponds to percentage
of anthers present (%ANT). A1 and B1, corresponds to weather variables recorded for respectively A and B. Actual
disease severity for A and B was 19.8% and 8.6%, respectively. Prec = daily precipitation; T = daily mean temperature;
RH = daily mean relative humidity.

models (Moschini et al., 1996; Hooker et al., 2002).
Moschini et al. (1996) used a number of events with two
consecutive rainy days from heading to milk stages to predict
FHB incidence. In a sequential work, the authors defined
equivalence rules combining rainfall and relative humidity
to estimate wetness duration from 12 to 72 h (Moschini et
al., 2003). Hooker et al., (2002) used the number of rainy
days (>3mm), ranging from seven to ten days after the

Severity
class

Description FHB severity GIB4% 1

0 Non epidemic 0.0 - 7 0.0 4.5

1 Light epidemics 2 7.1 13.4 4.51- 8.9

2 Moderate epidemics 13.41 - 19.8 8.91 13.3

3 Severe epidemics >19.8 >13.3

-

-

-
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heading date, which is around peak flowering, as one of
three predictor factors in a model to estimate DON levels in
harvested grains. A risk model used hours of rainfall by the
time of flowering as one of the variables to predict likelihood
of an FHB epidemic (De Wolf et al., 2003b). However,
although it seems to reflect infection periods for Passo
Fundo, the rule may need to be adjusted for locations with a
different climate pattern (lower mean relative humidity but
more hours of dew) and it would also be instructive to further
use a wetness-based model or on-site measurement, for
locations where hourly weather data is available. Another
function could be used to consider an interaction factor for
temperature and wetness duration. Only daily records of
rainfall and relative humidity were available for the location
of the dataset used for model validation.

Although GIBSIM well explained FHB severity for
the location in this study, its potential use in other locations
with different cropping and environmental conditions
deserves further investigation. The model assumes inoculum
as a non-limiting factor. In southern Brazil, most wheat is
cropped under a no-till system, and airborne inoculum seems
to be always present when the environment is highly suitable
for infections (rainfall and RH>80%), which corresponds
well with peaks of spore detection (Reis, 1990; Panisson et
al., 2002; Del Ponte et al., 2005). Other locations may be
more dependent on exogenous inoculum sources, and
infections may be absent or low if inoculum is not present
or at very low levels. However, inoculum factors may use

FIG. 3 - Regression between accumulated infection index
(GIB4%) generated by the GIBSIM model and some Fusarium
head blight parameters of wheat (Triticum aestivum) (A) SEV:
disease severity (B) Disease incidence. N=20 cases recorded in
experimental plots conducted in a location in Passo Fundo,
southern Brazil over five years (1998-2001; 2003) and different
planting dates.

coefficients for specific conditions considering the
availability of inoculum on the soil surface and/or previous
crop. Wheat following wheat or other cereals, but especially
following corn (Zea mays L.), resulted in higher disease
severity (Dill-Macky & Jones, 2000) and accumulation of
DON in mature kernels (Schaafsma et al., 2001). Other
empirically-derived FHB models  use different parameters
to account for previous crops which influences the risk for
epidemics or DON levels (De Wolf et al., 2003b; Schaafsma
& Hoooker, 2003).

The heading and flowering models were empirically
constructed with data observed in spring-wheat varieties
cultivated under particular soil and weather conditions. A
previous work reported that winter wheat varieties grown
in central New York, USA, showed a more synchronous
heading, resulting in a shorter period and, consequently, a
shorter flowering time (Del Ponte et al., 2004a). In this
case, a shift in the function for simulating heading progress
would be necessary, as well as an adjustment to account for
the effect of temperature on heading rate which is fixed in
the present model.

A better characterization of post-flowering infections
should be investigated further although the empirical
coefficients to adjust host susceptibility after peak flowering
contributed to increase the coefficient of determination. It
was empirically assumed that at least 25% of head tissue
remains susceptible for seven days after flowering ends,
decreasing to 10% from seven to 14 days after flowering.
For most cases, infection during flowering explained most
of the variation in the dataset. This may be due to the fact
that the model considering  the effect of asynchronous
heading, temperature and solar radiation effect in the
presence of anthers simulated a not so short window of
flowering. The  simulated number of days with at least 1%
of anthers present ranged from 15 to 19 days and five to
eight days with >50% of anthers present (peak flowering).
This is consistent with previous studies that reported the
flowering time as the most susceptible stage, and with
empirically-derived models that use variables such as
weather information from a short period (seven to ten days)
around peak-flowering. Those models were 70-80% accurate
in predicting epidemic occurrence or actual DON levels
(Hooker et al., 2002; De Wolf et al., 2003a).

The simulation model proposed produced satisfactory
results in explaining disease severity for very distinct weather
conditions for one location. Hence, it is still necessary to
verify its performance for other locations in southern Brazil.
Process-based models may have some advantages over
empirically-derived models, especially for complex
pathosystems, in terms of adjustment of model components
and because there is no need to construct a new model each
time. This approach also has been used in another dynamic
simulation model for FHB that produces daily infection risks
for disease development and mycotoxin accumulation in
infected tissues. Validation with a large field dataset showed
that the risks produced by the model explained variations
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in the dataset producing satisfactory results (Rossi et al.,
2003).

As it is, we foresee different applications for this
model. The first would be in practical disease management.
Fungicide spraying at the right time by making use of on-
site predictions could effectively and economically prevent
disease outbreaks. The use of a seven-day weather forecast
would warn of outbreaks in advance. Alternatively, if a risk
level of concern is anticipated, application of fungicides soon
after infection, weather conditions permitting, would help
in improving fungicide efficacy with a curative effect. In
North America, an FHB epidemic is defined as over 10% of
severity in order to guide fungicide applications (De Wolf
et al., 2003a). Recent preliminary studies in Brazil have
indicated that only one infected spikelet per head in a group
of heads with the same disease intensity evaluated at dough
stages, which is equivalent to 7% severity, resulted in
significant reductions in kernel weight per head, one
thousand seed weight and kernel infection (Casa et al.,
2003). This situation (100% incidence and 7% severity),
however, is a rare occurrence in nature and more studies
are needed. In this case, it is highly desirable to further
validate the model with data from other locations in order
to adjust parameters of the linear equation to better predict
severity classes by regressing the infection index to actual
observations. Parameters could be sensitive to the class of
cultivar resistance, since there are clear differences in final
severity for different cultivars which certainly deserves
further investigation.

A second use for the model is in pre-harvest risk
assessment once coupled to GIS systems and weather
databases. Policy makers could base decisions on where to
procuce crops based on an analysis of maps showing areas
more likely to have a higher contamination with Fusarium
spp. and mycotoxins. In countries with DON regulation,
farmers may save money by avoiding transportation of high
DON-contaminated wheat to millers. Another use of the
model could be in climate change studies once the model is
coupled to crop models by using the simulated flowering
date. Historical weather scenarios would generate useful
information for decision makers at different levels.
Fernandes et al. (2004) coupled a preliminary version of
the model to a wheat model (Cropsim) to study effects of
climate change in FHB in wheat growing areas of Argentina,
Uruguay and Brazil.

Lastly, students, extension agents and farmers may
use this model as an educational tool for the understanding
of FHB epidemics given the interactive nature and graphical
capabilities of the disease simulator. Future work will keep
focusing on the improvement of the model by the adjustment
of its components with local experimentation and validation
for other locations and more intensive use of computational
resources to implement a true, web-based forecast system
by using a seven-day weather forecast. Finally, once further
validation proves useful, the system may be incorporated
into practical production systems.
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