Acessibilidade / Reportar erro

Removal of iron ions from water contaminated with acid mine drainage by geopolymer derived from rice husk ash and ceramic residue

Abstract

Acid mine drainage is a worldwide problem and is characterized by high acidity, low pH and expressive concentration of heavy metals, such as iron, Mn and many others, directly affecting water sources and rivers. In search of an alternative that could efficiently and economically improve the levels of acidity and water iron impacted by acid mine drainage, a geopolymeric adsorbent based on residual materials was developed: from the ceramic industry and rice processing (rice husk ash). In this work, it was evaluated the efficiency of the geopolymer in removing iron ions in water contaminated with acid mine drainage. Aspects of adsorbent dosage, temperature effect, initial iron concentrations, kinetics and thermodynamic parameters of the adsorption process were evaluated. The percentage of iron removed was 92.76%, at a temperature of 25 °C, for 20 min, with an adsorbent concentration of 4 g L-1, with the maximum capacity for adsorption of iron by the geopolymer being 7.18 mg.g-1. The main mechanism of adsorption occurred due to chemisorption, which follows the kinetic model of pseudo-second order. Geopolymer appears potentially useful an efficient alternative in the treatment of water contaminated with acid mine drainage.

Keywords:
acid mine drainage; adsorption of iron; waste; geopolymer

Associação Brasileira de Engenharia Sanitária e Ambiental - ABES Av. Beira Mar, 216 - 13º Andar - Castelo, 20021-060 Rio de Janeiro - RJ - Brasil - Rio de Janeiro - RJ - Brazil
E-mail: esa@abes-dn.org.br