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ABSTRACT 

This study aims to quantify the uncertainties associated to the parameters of a Gaussian 

spatial linear model (GSLM) and the assumption of normality residuals in the modeling of 

the spatial dependence of the soybean yield as a function of soil chemical attributes. The 

spatial bootstrap methods were used to determine the point and interval estimators 

associated with the model parameters. Hypothesis tests were carried out on the 

significance of the model parameters and the quantile-quantile probability plot was 

elaborated to verify the data normality. The uncertainties associated to the parameters of 

the spatial dependence structure were quantified and the potassium content, phosphorus 

content and soil pH covariates were significant to explain the soybean yield mean. These 

covariates were used in the elaboration of a new model, which provided the elaboration of 

a contour map of soybean yield. Analysis of the quantile-quantile plot indicated that 

soybean yield data follow a normal probability distribution. 
 

 

INTRODUCTION 

Soybean is the most important legume species in 

the world (Gallon et al., 2016) and it stands out in the 

Brazilian agribusiness for its high productive potential in 

different regions (Cruz et al., 2016). Soybean is widely 

used for the elaboration of animal feed and oil and as 

Ávila & Albrecht (2010) explained, it has been 

emphasized as an alternative in the prevention of diseases 

and in human food, being able to be transformed into 

several protein foods.  

Among the studies involving soybean yield, we 

highlight the geostatistics methods used to detect the 

spatial variability in the crops (Borssoi et al., 2011; 

Kestring et al., 2015; Guedes et al., 2016). Although 

geostatistics allows the understanding of spatial variability 

of soybean yield, the samples used in the analyzes are 

generally few and sparse (Pardo-Igúzquiza & Olea, 2012), 

then there are uncertainties associated with the results 

obtained. 

The uncertainties occur because the spatial linear 

model is estimated by parametric methods, such as those 

presented by Mardia & Marshall (1984). To quantify the 

uncertainties associated with the results of a geostatistics 

analysis, an alternative to traditional inference methods is 

the use of spatial bootstrap resampling (SB) (Solow, 1985) 

and parametric spatial bootstrap (PSB) methods (Tang et 

al., 2006), adaptations of the bootstrap method (Efron, 

1979) for spatially dependent data. 

The bootstrap method is well known and has been 

used in studies involving independent samples of soybean 

yield (Dalposso et al., 2016; Gupta & Manjaya, 2016). The 

bootstrap methods for spatially dependent data have been 

highlighted in the literature, due to the importance of 

uncertainty modeling in the analyzes, as can be observed 

in the works of Kang et al. (2008), Schelin & Sjöstedt-De 

Luna (2010), Olea & Pardo-Igúzquiza (2011) and Pardo-

Igúzquiza & Olea (2012). 

The aim of this study was to use spatial bootstrap 

(SB) and parametric spatial bootstrap (PSB) methods to 

quantify the uncertainties associated with spatial 

dependence structure parameters and the assumption of 

residuals normality distributed  in spatial dependence 

modeling of soybean yield with chemical attributes of the 

soil considered as covariates. 



Gaussian spatial linear model of soybean yield using bootstrap methods 

 

 

Engenharia Agrícola, Jaboticabal, v.38, n.1, p.110-116, jan./feb. 2018 

111 

MATERIAL AND METHODS  

Study area and data 

The data set was collected in the 2012/2013 

agricultural year and comes from an area (Figure 1) of 

167.35 ha located in the western region of Paraná, Brazil, 

near the municipality of Cascavel, with central coordinates 

defined by latitude 24º57’25’’S and longitude 

53º34’29’’W, and average altitude of 714 m. According to 

the Köppen classification, the climate of the agricultural 

area is  the Cfa type (Aparecido et al., 2016) and the soil is 

classified as Oxisol (Embrapa, 2009). 

A systematic centered sampling with lattice plus 

close pairs was performed composed of 99 sample 

elements (Figure 1), georeferenced with a GEOEXPLORE 

3 GPS device with a precision of 5 m. At each sampling 

point, the soybean yield (Prod, t ha-1) and the following 

soil chemical attributes were determined: calcium (Ca, 

cmolc dm-3), magnesium (Mg, cmolc dm-3), potassium (K, 

mg dm-3), phosphorus (P, mg dm-3), manganese (Mn, mg 

dm-3) and soil pH. 

 

 

FIGURE 1. Geographic location map of the study area. 

 

Geostatistical analysis 

Consider a Gaussian stochastic 

process , with , being  the two-

dimensional Euclidean space. Suppose that the data of this 

process, , are recorded in known spatial 

locations  ( , and generated by the following 

model: 

                                     (1) 

where, 

: an vector of the variable of interest;  

: an vector that represents the mean of 

the process, and 

: an vector of errors, with zero mean 

vector  and covariance matrix 

, where , 

for  . 
 

The mean vector  can be written as a linear 

model , where  is a  

vector of unknown parameters and is an 

matrix formed with  covariates at site . 

According to Mardia & Marshall (1984), the covariance 

matrix can be expressed in the parametric form 

 where  is an  identity 

matrix,  is the parameter called nugget effect, 

 is the parameter called contribution,  is 

the parameter that defines the range ( ) of the model and 

 is a  symmetric matrix. The 

elements  of the matrix , for represent 

the correlation function between the points  and , with 

 if ;  if  and  and 

 if  and , with  

is a function that depends on , which is the 

Euclidean distance between points  and . Thus,   

follows a normal n-variate distribution with mean vector 

 and covariance matrix  (De Bastiani et al., 2015). 

In order to identify the spatial dependence structure 

of soybean yield, the omnidirectional experimental 

semivariogram  was constructed using the 

Matheron estimator (Cressie, 2015) and to model the 

structure of spatial dependence were used models of the 

Matérn family (Matérn, 1986), presented in [eq. (2)]: 

   (2) 

where, 

: Bessel function of the third order type 

; 

: Gamma function, and 

: Euclidean distance between points  and . 

 

For second-order stationary Gaussian and isotropic 

processes, the semivariance function has the following 

relation:  (Uribe-Opazo et al., 

2012), for , being  and  the 

variance of  In [eq. (2)], the form parameter k controls 

the behavior close to the origin and the process analytical 

smoothing. In this study, we considered the fixed values 

 (Diggle & Ribeiro-Jr., 2007). 

The parameters estimation of the models was 

carried out using the maximum likelihood (ML) method 

and the criteria for selecting the geostatistics model for the 

covariance matrix were the cross-validation (CrV), the 

trace of the asymptotic covariance matrix of the estimated 

mean (Tr) and the maximum value of the loglikelihood 

function (LML) (De Bastiani et al., 2015). To investigate 

the significance of covariates, the likelihood ratio test 

(Rao, 1973) was used, and the kriging with external drift 

was used to obtain the predicted values (Wackernagel, 

1995). 

Bootstrap for spatial data 

In this study, the spatial bootstrap (SB) methods, 

proposed by Solow (1985) and presented in Algorithm 1 

and parametric spatial bootstrap (PSB), proposed by Tang 

et al. (2006) and presented in Algorithm 2 were used.  

Algorithm 1: Spatial Bootstrap (Solow, 1985). 
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a) Considering the spatial data set 

{ ,..., }, determine the vector of residuals 

 where  is 

the ML estimator of  and  the ML estimator of the 

covariance matrix . b) Considering the estimated 

covariance matrix , use the Cholesky decomposition 

method to obtain , that  is a lower triangular 

matrix of order n; c) Using the inverse matrix , 

determine , the vector of uncorrelated 

residuals; d) Considering the elements of the vector of 

uncorrelated residuals, carry out  resamples with 

replacement to form the vector of bootstrap residuals 

; e) The spatial bootstrap sample is 

obtained by recorrelating bootstrap residuals 

.  

Algorithm 2: Parametric Spatial Bootstrap (Tang et 

al., 2006). 

a) Considering the spatial data set 

{ ,..., }, determine the residue vector 

 being  the 

ML estimator of  and  the ML estimator of ; b) Use 

the Cholesky decomposition method to obtain , 

that  is a lower triangular matrix of order n; c) Use the 

standard normal distribution N (0.1) to create a vector of 

size , called the parametric bootstrap vector 

, that  for ; 

d) The spatial bootstrap sample is obtained by 

recorrelating bootstrap residuals .  

 As Tang et al. (2006) explained, the BSP method 

does not uncorrelated the residuals vector  as in the BS 

method. Instead, the residuals are generated independent 

from a standard normal distribution. The theoretical basis 

of the BSP method can be seen in the study of Sjöstedt-De 

Luna & Young (2003). 

Quantification of uncertainties in geostatistics analysis 

The Algorithms 1 and 2 were used to determine B = 

1000 bootstrap samples from the soybean yield dataset. 

For each sample, a model was adjusted, which allowed to 

construct the empirical distribution of the parameters of 

the model and, consequently, to determine point and 

interval estimators of the parameters using the percentile 

bootstrap method (Efron, 1982).  

To verify the assumption of normality, the 

uncorrelated residuals  obtained by the spatial 

bootstrap method (Algorithm 1) were ordered and plotted 

versus the theoretical quantis of the standard normal 

distribution, resulting in a quantile-quantile plot (q-q plot). 

Computational resources 

 The calculations performed in this study were 

developed in the R software (R Core Team, 2017). The 

criteria used to choose the best model, the likelihood ratio 

test, the bootstrap methods and the multivariate plots q-q 

plots were implemented by the authors. 

 

RESULTS AND DISCUSSION  

According to Conab (2016), the average soybean 

yield in the study area (Table 1) was lower than the 

average of the State of Paraná (3.38 t ha-1) and higher than 

the national average (2.94 t ha-1).  

 

TABLE 1. Descriptive analysis of soybean yield and covariates. 

Statistics Yield Ca Mg K P Mn pH 

Minimum 2.15 2.30 0.85 0.09 5.80 37.00 390 

Q1 2.95 5.49 1.99 0.22 13.40 62.00 4.70 

Median 3.23 6.37 2.53 0.31 17.40 71.00 5.00 

Average 3.25 6.51 2.64 0.33 18.20 74.50 5.00 

Q3 3.53 7.48 3.10 0.40 21.40 84.00 5.25 

Maximum  4.51 13.10 5.75 1.11 52.40 140.00 7.10 

SD 0.47 1.64 0.90 0.15 7.56 19.36 0.45 

CV (%) 14.30 25.20 34.30 47.10 41.50 25.98 9.06 

Yield: Soybean yield (t ha-1), Ca: calcium (cmolc dm-3), Mg: magnesium (cmolc dm-3), K: potassium (mg dm-3), P: phosphorus (mg dm-3), 

Mn: manganese (mg dm-3), pH: soil pH, Q1: first quartile, Q3: third quartile, SD: standard deviation, CV: coefficient of variation. 

 

The calcium (Ca) contents varied from 2.30 cmolc-

dm-3 to 13.10 cmolc-dm-3 and the magnesium (Mg) 

contents ranged from 0.85 cmolc dm-3 to 5.75 cmolc dm-3 

(Table 1), and they were classified as high (Tomé Jr., 

1997). Analyzing the classification of the coefficient of 

variation (CV) (Table 1) proposed by Pimentel Gomes 

(1985), the high dispersion of potassium (K) and 

phosphorus (P) contents and homogeneity of pH data are 

highlighted. 

In Table 2, in all models of spatial dependence 

fitted for covariance matrix ( ), the estimated values of 

the nugget effect parameter ( ) were equal to zero, the 

estimated values of the contribution parameter ( ) were 

similar and the estimated values of the range parameter 

indicated a radius of spatial dependence ranging 

from 109 to 112 m. According to the criteria CrV, LML 

and Tr (Table 2), the best fit for the covariance matrix (Σ) 

was provided by the Matérn model with parameter  k = 

4.5. 
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TABLE 2. Criteria for selecting the soybean yield model elaborated with covariates considering the covariance function 

Matérn with different form parameters. 

k     CrV LML Tr 

0.5 0.0000 0.1783 37.2544 111.6041 0.2616456 -54.56541 1.298518 

1.5 0.0000 0.1783 23.7864 112.8393 0.2589309 -54.07624 1.285411 

2.5 0.0000 0.1785 18.8569 111.6076 0.2576171 -53.89274 1.277847 

4.5 0.0000 0.1787 14.2486 109.8489 0.2563692 -53.73963 1.270118 

k: form parameter of the Matérn model; CrV: cross validation; : estimator of the nugget effect; : estimator of contribution; : 

estimator of the parameter that defines the range; practical range; LML: maximum value of the logarithm of the likelihood function; Tr: 

trace of covariance matrix. The values in bold indicate the best fit for the covariance matrix according to the used criterion. 

 

According to the fitted Gaussian linear spatial 

model (GSLM), the value associated with the potassium 

content (K) (Table 3) was the highest and presented a 

positive sign, indicating that it was the covariate that 

contributed the most to an increase in the average of the 

soybean yield (t ha-1). This result corroborates with the 

study of Dos Passos et al. (2015), considering that this 

nutrient is the second most absorbed by the soybean plant, 

being essential for the growth and development of the 

plants (Li et al., 2015). The estimates of the parameters 

associated to the covariates of phosphorus (P) and 

manganese (Mn) contents indicated that these covariates 

contributed little to the estimated soybean yield (Table 3). 

The fact that the nugget effect is null indicates that, 

at small distances, spatial dependence is also small (Vieira 

& Gonzalez, 2003), meaning that the distances considered 

among the samples were adequate. 

 

TABLE 3. Estimated parameters for the linear spatial model by the maximum likelihood method considering the covariance 

function Matérn with form parameter k  = 4.5. 

          

4.54 0.06 0.06 0.85 -0.01 0.00 -0.44 0.00 0.18 14.25 

(6.8e-1) (5e-2) (6e-2) (3e-1) (1e-3) (1e-3) (1.8e-1) (8e-2) (9e-2) (9.8e-1) 

: intercept;  parameter estimator associated with to variable i = {Ca, Mg, K, P, Mn, PH}, Ca: calcium content(cmolc dm-3), Mg: 

magnesium (cmolc dm-3), K: potassium (mg dm-3), P: phosphorus (mg dm-3), Mn: manganese (mg dm-3), pH: soil pH; : estimator of the 

nugget effect; :estimator of contribution ; : estimator of the parameter that defines the range. The values in parentheses correspond to 

the standard deviation of each estimated parameter. 

 

To evaluate the reliability of the parameter 

estimates, the descriptive statistics of the bootstrap 

replicates obtained by the BS and BSP methods were 

calculated and the Efron percentile confidence intervals 

were determined (Table 4).  

From the B = 1000 models adjusted by the BS 

method, two models (0.2%) were excluded. By the BSP 

method, only one model (0.1%) was excluded. These 

exclusions were carried out due to, in these settings; the 

radius of spatial dependence was greater than the 

maximum distance between samples (1766 m) in the 

monitored area. As pointed out by Dalposso et al. (2009), 

the models that present this behavior should be discarded, 

considering information that goes beyond the area under 

study. 

For both bootstrap methods, the confidence 

intervals for the parameters associated with calcium (CA), 

magnesium (Mg) and manganese (Mn) contents were zero, 

indicating that these covariates may not be significant 

(Table 4). 

Although the zero value is contained in the 

confidence intervals of the bootstrap replicates of the 

contribution ( ) (Table 4), there is evidence to assume 

that the contribution is not null, since in addition to the 

value obtained in the original sample, 0.18, 94% of the 

bootstrap replicates obtained by the SB method and 95.1% 

of the bootstrap replicates obtained by the PSB method 

presented contribution different than zero. Despite the 

bootstrap methods used to generate replicates of the 

soybean yield data set, some models provided high range 

parameters, emphasizing the positive asymmetry (Table 

4). 
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TABLE 4. Descriptive statistics and Efron percentile 95% confidence intervals of the bootstrap distribution of the model 

parameters of the spatial dependence structure of soybean yield considering the covariates Ca, Mg, K, P, Mn and pH.  

Method Parameter Min Q1 Median Average Q3 Max SD As LL UL 

SB 

 2.50 4.03 4.54 4.53 4.99 7.16 0.71 0.15 3.15 5.94 

 -0.12 0.02 0.05 0.05 0.09 0.27 0.06 0.31 -0.04 0.17 

 -0.16 0.02 0.07 0.06 0.11 0.28 0.07 -0.11 -0.07 0.20 

 -0.05 0.64 0.84 0.84 1.05 1.83 0.30 0.01 0.25 1.43 

 -0.04 -0.02 -0.01 -0.01 -0.01 0.01 0.01 -0.04 -0.03 -0.00 

 -0.00 0.00 0.00 0.00 0.01 0.01 0.00 -0.02 -0.00 0.01 

 -1.14 -0.56 -0.43 -0.43 -0.31 0.15 0.19 -0.15 -0.80 -0.09 

 0.00 0.00 0.00 0.05 0.10 0.24 0.06 0.90 0.00 0.18 

 0.00 0.05 0.14 0.12 0.17 0.30 0.07 -0.47 0.00 0.21 

 0.00 13.00 16.40 22.30 21.40 283.00 24.80 4.52 11.40 26.20 

PSB 

 2.25 4.13 4.55 4.53 4.98 6.37 0.68 -0.09 3.12 5.86 

 -0.14 0.02 0.06 0.06 0.10 0.23 0.06 -0.18 -0.05 0.17 

 -0.18 0.02 0.06 0.06 0.10 0.26 0.06 0.01 -0.06 0.19 

 -0.08 0.66 0.86 0.86 1.06 2.06 0.31 -0.00 0.23 1.49 

 -0.04 -0.02 -0.01 -0.01 -0.01 0.01 0.01 0.04 -0.03 -0.00 

 -0.00 0.00 0.00 0.00 0.01 0.01 0.00 -0.04 -0.00 0.01 

 -0.97 -0.56 -0.44 -0.44 -0.33 0.13 0.18 0.09 -0.79 -0.07 

 0.00 0.00 0.00 0.05 0.10 0.22 0.06 0.94 0.00 0.18 

 0.00 0.06 0.14 0.12 0.17 0.28 0.07 -0.50 0.00 0.22 

 0.00 13.20 16.70 23.10 21.70 232.20 24.90 3.99 11.70 27.70 

SB: spatial bootstrap, PSB: parametric spatial bootstrap, : model intercept, : parameter estimate associated with to variable i = {Ca, Mg, 

K, P, Mn, PH}, Ca: calcium content(cmolc dm-3), Mg: magnesium (cmolc dm-3), K: potassium (mg dm-3), P: phosphorus (mg dm-3), Mn: 

manganese (mg dm-3), pH: soil pH; :nugget effect, : contribution, : range parameter, Min: minimum, Q1: first quartile, Q3: third 

quartile, Max: maximum, SD: standard deviation, As: asymmetry coefficient, LL: lower limit of the confidence interval, UL: upper limit of 

the confidence interval. 

 

When comparing the standard deviations of the 

model parameters (Table 3), with the respective standard 

deviations obtained by the bootstrap (Table 4), except for 

the standard deviation of the range parameter ( ), the 

others presented similar values. In the analysis of 

significance of the GSLM parameters (Table 5) the 

hypotheses ,  and 

 are not rejected at 5% significance, 

demonstrating that spatial bootstrap methods are an 

alternative to test the individual effect of covariates. 

Due to the parameters associated with calcium (Ca, 

cmolc dm-3), magnesium (Mg, cmolc dm-3) and manganese 

(Mn, mg dm-3) contents were not significant (Table 5), a 

new spatial linear model considering potassium (K, mg 

dm-3), phosphorus (P, mg dm-3) and soil pH was adjusted, 

which presented significant parameters. 

  

TABLE 5. Likelihood ratio test (LR) value and p-value for 

hypotheses ,  in 

the linear spatial model. 

Null hypothesis LR p-value 

 1.18 0.2033 

 0.86 0.2782 

 7.68 0.0030 * 

 4.40 0.0211 * 

 2.76 0.0604 

 5.66 0.0098 * 

LR: likelihood ratio test, p-value: descriptive level of the test at 

5% significance. 

 

According to the CrV, LML and Tr criteria, the best 

fit for the GSLM was provided by the Matérn model with 

parameter of k form = 4.5 (Table 6).  

 

TABLE 6. Parameters estimated by ML for the linear 

spatial model considering the covariance function Matérn 

with form parameter k  = 4.5 and the covariates K, P and 

pH. 

       
3.99 0.84 -0.01 -0.16 0.00 0.19 13.14 

(4.9e-1) (3e-1) (1e-3) (1e-1) (1.1e-1) (1.2e-1) (9.3e-1) 

ML: maximum likelihood; : intercept;  parameter 

estimator associated with the variable i = {K, P, PH}, K: 

potassium (mg dm-3), P: phosphorus (mg dm-3), pH: soil pH; : 

estimator of the nugget effect; :estimator of the 

contribution; : estimator of the parameter that defines the 

range. The values in parentheses correspond to the standard 

deviation of each estimated parameter. 

 

Comparing the complete model (Table 3) with the 

model elaborated with the covariates identified as 

significant (Table 6), the value associated with potassium 

content (K) remained high and positive. The value near 

zero of the parameter associated with the phosphorus 

content indicates that its influence on the average yield is 

minimal. 

In relation to soil pH, the estimated value of the 

parameter presented a loss of intensity, going from -0.44 to 

-0.16. The negative signal of this parameter evidences an 

inverse relation with the yield, which was already 

expected, since, in general, the increase of soil pH 
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decreases the availability of the micronutrients (Sousa et 

al., 2007), which, consequently, can result in yield losses.  

Observing the productivity contour map (Figure 2) 

elaborated with the parameters of the fitted spatial linear 

model (Table 6), the majority of the area (84%) presented 

yield values varying from 3.175 t ha-1 to 3.592 t ha-1.  

 

 

FIGURE 2. Map of soybean yield generated using kriging 

with external drift. 

 

Another characteristic observed in the soybean 

yield map (Figure 2) is the presence of circular regions 

centered on the sample points. These regions represent the 

phenomenon known as bull eyes effect that, as explained 

by Menezes et al. (2016), it occurs when the model has a 

spatial dependence radius less than the distance between 

neighboring sample points. Analyzing the distances 

between the pairs of sample points in the monitored area 

(Figure 1), only 33 pairs of points (0.68%) had a distance 

less than the spatial dependence radius (121 m). Thus, for 

presenting a behavior similar to a pure nugget effect, as 

highlighted by Margalho et al. (2014), the map was 

expected to show constant values.  

Analyzing the q-q plot chart (Figure 3), traced 

points are on or near the straight line that passes through 

the ordered pairs 

(  and 

(  that 

 and  represent, respectively, the quantiles 

of  order 0.25 and 0.75. As Fowlkes (1987) explained, this 

fact indicates that the theoretical quantis are in agreement 

with the quantis observed; therefore, it is coherent to 

assume that the data of soybean yield follow a normal 

distribution. 

 

 

FIGURE 3. Quantile-quantile plot of soybean yield (t ha-1). 

In particular, the straight line that passes through ordered 

pairs formed with quantiles of order 0.25 and 0.75. 

CONCLUSIONS 

The SB and PSB methods allowed to quantify the 

uncertainties associated to the spatial dependence structure 

and to evaluate the individual significance of the 

parameters associated to the average of the spatial linear 

model, allowing the determination of a model with a 

smaller number of parameters.  

The fact that the linear spatial model formed with 

the potassium (K, mg dm-3), phosphorus (P, mg dm-3) and 

soil pH covariates had a spatial dependence radius close to 

the minimum distance between points, provided a map 

characterized by circular regions and a high amount of 

near-average values. 

The use of the uncorrected residuals in the q-q plot 

elaboration allowed verifying the normality assumption of 

the soybean yield data, a presupposition that, in many 

cases, is simply assumed without verification. This finding 

is extremely important in the analysis since a violation of 

the normality assumption can invalidate statistical 

hypothesis tests. 
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