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ABSTRACT 

Spatial variability depends on the sampling configuration and characteristics associated 
with the georeferenced phenomenon, such as geometric anisotropy. This study aimed to 
determine the influence of the sampling design on parameter estimation in an anisotropic 
geostatistical model and the spatial estimation of a georeferenced variable at unsampled 
locations. Datasets were simulated with geometric anisotropy, considering five values for 

the anisotropic ratio ( ), and three sampling designs: lattice, random and lattice 
plus close pairs. The simulation results were used as a reference to select anisotropic 
models to describe the spatial dependence structure in chemical soil properties. For each 
dataset (with either simulated or chemical soil properties), the values of the georeferenced 
variables at unsampled locations were estimated by kriging, considering estimated 
isotropic and anisotropic geostatistical models. The choice of the sampling design 
influenced the spatial estimation of the georeferenced variable and the quality of the 
estimation of the geostatistical anisotropic model. The incorporation of geometric 
anisotropy in the spatial estimation of simulated data sets and soil chemical properties 
produced differences in the spatial estimation and improved the level of detail of 
subregions in thematic maps.  

 

 

INTRODUCTION 

In a spatial variability study, the spatial 

dependence structure described by the semivariance 

function is considered anisotropic when it depends on the 

distance and direction separating the locations observed 

(Maity & Sherman, 2012). For transitive models (with 

sill) that describe the semivariance function, there are 

detailed reports in the literature that describe the concept 

of anisotropy and types, the geostatistical tools that permit  

the identification of anisotropy and the description of the 

anisotropic spatial models and their parameters (Boisvert 

et al., 2009; Facas et al., 2010; Cressie, 2015).  

One of the most common forms of anisotropy is 

the geometric anisotropy. This type of anisotropy occurs 

when a transitive model of semivariance function presents 

constant values of nugget and sill in all directions but 

different ranges. When geometric anisotropy is identified, 

it must be incorporated as an intrinsic feature of the 

process that describes the spatial dependence structure to 

improve the accuracy of the spatial estimat ion of the 

values of a georeferenced variable in unsampled  

locations, which results in the generation of maps that 

more accurately describe the spatial variability of the 

variable throughout the area under study (Guedes et al., 

2008; 2013).  

In an anisotropic spatial model, the spatial 

interpolation by kriging method assigns greater weight to 

sampled values located along the direction of greater 

spatial continuity. In addition, knowledge of the 

anisotropy of the spatial dependence structure facilitates 

planning of sampling configurations for further studies of 

the spatial variability of this variable in the same area.  

Mucha & Blaszczyk (2012) used s imulated data to 

determine that the influence of geometric anisotropy on 

spatial estimation depends on several factors associated 

with the spatial dependence structure, such as the distance 

over which the samples exh ibit spatial autocorrelat ion 

(range), the degree of intensity of spatial dependence 

(relative nugget effect) and the distance between the 

sampling units. According to the studies conducted by 
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Guedes et al. (2013), for simulated datasets, it follows that 

from the anisotropic ratio of 2, the spatial estimates in 

unsampled locations differ depending on the 

incorporation or omission of geometric an isotropy. 

However, Mucha & Blaszczyk (2012) and Guedes 

et al. (2013) only considered systematic design (lattices) 

in their studies of spatial dependence. There are no studies 

that show the influence that the interaction between 

different samplings and the presence of anisotropy have 

on the estimat ion of the spatial dependence structure and 

on the estimat ion of values of the georeferenced variable 

in non-sampled locations.  

Thus, considering simulated data and real data 

(soil chemical properties) with the presence of geometric 

anisotropy, the objectives of this work are the following: 

(a) to determine the implications of changing the 

sampling design for parameter estimat ion of the 

anisotropic spatial model; (b) to determine the 

implications of changing the sampling design for the 

spatial estimation of the georeferenced variable at 

unsampled locations; and (c) to evaluate different 

sampling designs to determine for which set of 

anisotropic parameters the isotropy assumption is 

unreasonable. 

 

MATERIAL AND METHODS  

Sampling designs with 100 sample points arranged 

in a regular area with a maximum limit of x and y 

coordinates equal to 100 were considered. Three sampling 

configurations were simulated: lattice 10 x 10, random 

and lattice 9 × 9 with the addition of 19 nearby points 

(lattice plus close pairs). The latter sampling design, the 

simulation study and its sample size were chosen because 

of the type of design used in the agricultural experiment 

for the study of spatial variability of soil properties 

performed in this study.  

Datasets for each of these designs representing 

embodiments of multivariate stochastic processes were 

simulated for each of these configurations, assuming 

Gaussian stationary variables , 

with a linear space model expressed by 

 ( ni ,,1 ), in which  )( is  

is the deterministic term of the model, represented by a 

constant average ; )( iZ s  corresponds to the observed 

values of the variable under study at the i
th

 known 

location, denoted by the vector  with 

( ni ,,1 );  is the stochastic error with 

, and the change in space between points 

separated by Euclidean distance , such that 

 is determined by a covariance function 

, with ( nji ,,1,  ) 

(Kempen et al., 2012; De Bastiani et al., 2015).  

Through the covariance function, we find the 

covariance matrix , with particu lar 

parametric form g iven by  where 

 is a  symmetric matrix with  

diagonal elements  for ni ,,1 . Thus, the 

covariance function is the function associated with 

semivariance by  for many 

isotropic and stationary Gaussian processes, where 

. Moreover, this covariance matrix has the 

following parameters:  is a function of the range 

( 0a ),  is the nugget effect ( ) and 

 is the sill ( , with ) (Uribe-

Opazo et al., 2012). 

However, in this study, we have assumed that the 

simulated georeferenced variable is stationary and 

exhibits a stochastic process with geometric anisotropy. 

Then, the covariance function is the function associated 

with the semivariance by the [eq. (1)], in which  

expresses the Euclidean distance between pairs of points 

in n sampled locations, considering a linear 

transformation at those locations (Soares, 2014).  

   (1) 

The semivariance function [eq. (1)] can be 

rewritten as a function of the Euclidian d istance between 

two points  and , as shown 

in [eq. (2)].  

   (2) 

where,  

 

 
 is the highest spatial continuity angle in  

radians ( ) defined in the azimuth 

system; 

, 

and  

 is the anisotropic ratio, where 

 is the spatial dependency distance (range) in 

the direction of higher spatial continuity ( ) and 

 is the spatial dependency distance (range) 

in the direction of lower spatial continuity 

( ), assuming that the directions of higher 

and lower spatial continuity are orthogonal. 

  

The simulated data have an anisotropic 

semivariance function [eq. (1)] with an exponential model 

with parameter vector 

,  and 

 
 is equal to 0°, following the system of azimuth 

direction. For each sampling design, five datasets were 

simulated, in  which  took on each of the values of 

. Thus, to combine the sample values of 

the setting and anisotropic ratio, 1000 sets of data were 

simulated. 

 In each set of simulated data and in each of 

sampling designs, we estimated the parameter vector by 

the maximum likelihood method, considering the 

following situations: (1) anisotropic model with the 
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parameter vector , 

with  fixed; and (2) isotropic model with the 

parameter vector . 

 Considering the anisotropic model, to estimate 

asymptotic standard errors of , we used the inverse of 

the expected information matrix (Uribe-Opazo et al., 

2012). The expected informat ion matrix to an anisotropic 

process is given by [eq. (3)], where  and 

, with 

 for 

. 

                                       (3) 

 

Then, the first derivatives of  with respect to 

 and  are given, respectively, by the 

following: , , 

 and , 

with  and 

, for . 

 The first derivatives of  with respect to  

and  for the exponencial and Gaussian 

covariance functions are given, respectively, by [eq. (4)] 

and [eq. (5)]: 

 and  (4)      

 

                                          and  

 

                                               (5) 

 

for , and . 

 

The first derivatives of  with respect to  and 

 for the Matérn family covariance function 

(Matérn, 1986) are given, respectively, by [eq. (6)] and 

[eq. (7)]: 

                      (6)    

 

                    (7) 

 

for , where  is the gamma function, 

 ; 

 is the 

modified Bessel function of the third type of order , 

with  fixed; and . 

 

Considering the estimated geostatistical models, 

the values of the georeferenced variables at unsampled 

locations were estimated in the presence and absence of 

geometric anisotropy by the ordinary Kriging method. 

The sets of estimated values of the georeferenced 

variables at unsampled locations (considering the 

anisotropic and isotropic models) were compared for the 

similarity measures: overall accuracy ( ) Kappa 

concordance index ( ) and Tau concordance index ( ), 

which aim to compare the themat ic maps generated by the 

two interpolations, with the same rating from the error 

matrix, considering 10 intervals of values or classes (De 

Bastiani & Uribe-Opazo, 2012).Thus, using bootstrap 

resampling, confidence intervals were constructed for the 

mean similarity measures using the normal approximat ion 

(Efron & Tibshirani, 1993), considering the initial sample 

to perform the bootstrap resampling with 1000 values of 

each measure similarity obtained in the 1000 simulations 

(Fang & Wang, 2012; Rossoni et al. 2014).  

In each set of simulated data and in each sampling 

design, tests of isotropy from Guan et al. (2004) (GSC) 

and Maity & Sherman (2012) (MS) were applied. For 

both tests, the null hypothesis that the georeferenced 

variable is isotropic was elaborated by considering a set 

of linear contrasts. Maity & Sherman (2012) elaborated 

that the null hypothesis  is equivalent to  

and the alternative hypothesis to . 

However, Guan et al. (2004) defined the null hypothesis 

as  and the alternative hypothesis as 

, for  , where  is a 

set of chosen spatial lags, and  is a matrix of contrasts, 

whose dimension depends on the definition of . These 

tests propose to compare the values of covariance (Guan 

et al., 2004) and semivariance (Maity & Sherman, 2012) 

for pairs of lags described by . 

The tests can be used when the sampling region is 

any convex subset in . The MS test was 

developed for sampling locations that are irregularly  

spaced. The covariance function is calculated by the 

kernel estimator, and the grid-based block bootstrap is 

used to calculate the test s tatistic. The GSC test was 

developed for gridded and non-gridded sampling 

locations. The semivariance is calculated by Matheron’s 

estimator, and the test statistic is evaluated using a 

subsampling technique. 

For each simulation, these tests were constructed 

based on the set of lags 

. The 

choice of  was made by considering short lags and the 

direction of the weakest and strongest spatial correlat ion 

in each set of simulated data. In the MS test, the block 

length was equal to 10 and 200 resamples for each set of 

simulated data. In the GSC test, to preserve enough pairs 
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of sampling locations in each subblock, a block length of 

2 was chosen. 

The geostatistical analysis, identification of 

anisotropy and the analysis of the influence of the 

incorporation of anisotropy on the spatial estimation were 

also performed on a set of real data from a commercial 

area of grain production in Cascavel, Paraná, located at 

approximately 24.95º of South latitude and 53.37º of 

West longitude and at an average height of 650 m above 

sea level. The dominant soil type is the Rhodic Hapludox, 

which has a clay-like texture. The data refer to the crop 

year 2010/2011 and an area of 167.35 ha of experiments 

conducted by researchers from the Spatial Statistics 

Laboratory of the State University of West Paraná - 

Brazil. 

The sampling configuration used in this study was 

a lattice p lus close pairs, with 102 sampling points. All 

samples were georeferenced and localized with the aid of 

a signal receiving apparatus with a global positioning 

system (GPS) Geoexplore 3 set up for the Universal 

Transverse Mercator (UTM) coordinate system.  

The area was planted with soybeans, and the data 

used in this study were related to soil chemical properties 

that exhibited geometric anisotropy in the geostatistical 

analysis: carbon (C - ) and potential acidity (H + 

Al
+3

 - ). The data sets were obtained by 

performing routine chemical analysis in the soil analysis 

laboratory of Cooperativa Central de Pesquisa Agrícola 

Ltda. (COODETEC) of representative samples of each 

plot of approximately 50 grams, which were obtained by 

mixing four rep licates of the parcel. H + Al
+3

 were 

obtained by the Shoemaker, Mac Lean and Pratt (SMP) 

buffer method. 

Simulated datasets and geostatistical analyses were 

prepared in the software R (R Development Core Team, 

2016) using the geoR package (Ribeiro Jr. & Diggle, 

2016). Tests of isotropy were conducted using the sm 

package (Bowman & Azzalin i, 2015).  

 

RES ULTS AND DISCUSS ION 

Analysis of simulated data 

For the simulated data and considering the 

anisotropic model for the semivariance function, the 

nugget  and anisotropic ratio  parameters 

had a greater influence on the change in the sampling 

design. We obtained the worst results in terms of quality 

of the estimat ion of these parameters for the lattice 

design: the estimated values were more distant from the 

nominal values of the parameters and  (Fig. 1-a 

and 1-b) and the estimated values of the standard errors of 

 and  were highest (Fig. 1-c and 1-d) compared with 

the random design and lattice plus close pairs. 

By contrast, improved estimates of the  

parameter were obtained by random design: the estimated 

values of  were closest to its nominal value (Fig. 1-a) 

and the lowest estimated values of the standard errors of 

 (Fig. 1-c).  

 The estimation of the  influences the 

determination of the weights assigned to the samples in  

the spatial estimat ion of a georeferenced variable at 

unsampled locations, performed by Krig ing (Soares, 

2014). Thus, the results for the estimation of the 

parameter  demonstrated that the use of random design 

in the study of a georeferenced variable with geometric 

anisotropy permits a more efficient description of the 

spatial variability, as expressed by the map.  
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(a) (b) 

  (c)   (d) 

FIGURE 1. Boxplots for: estimated values of (a) nugget effect ( ) and (b) an isotropic ratio ( ); and estimated values of 

the standard error (SE) of (c) nugget effect ( ) and (d) anisotropic ratio ( ) for an isotropic geostatistical model.  

 

Figure 2 p resents boxplot graphs of the similarity 

measures that compare the spatial estimation performed 

using the anisotropic and isotropic exponential models, 

both with estimated parameters. The dashed lines in these 

graphs correspond to ranges of values for these accuracy 

measures in which the spatial estimates were of similar 

intensity. For overall accuracy, the minimum level of  

similarity required is  = 0.85 (De Bastiani & Uribe-

Opazo, 2012); and the concordance indices of Kappa ( ) 

and Tau ( ), as defined by Krippendorff (1980), were 

classified as low, medium and high similarity between the 

values estimated by the two anisotropic models at 

,  and , 

respectively. 
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(a)  (b) 

(c) 

FIGURE 2. Boxplots for estimated values of the (a) overall accuracy (OA) and concordance index of (b) Kappa and (c) Tau 

regarding the comparison of spatial estimates using the anisotropic and isotropic geostatistical models both with estimated 

parameters for all simulations. L.: lattice.  

 

These graphs illustrate that, for all studied sampling 

designs, the similarity measures decreased as the 

anisotropic ratio increased. For random sampling and an 

anisotropic ratio factor of 2, 94% of the simulat ions did 
not exhibit high similarity (Krippendorff, 1980; De 

Bastiani & Uribe-Opazo, 2012), indicating a relevant 

difference in the spatial estimat ion based on the 

incorporation or omission of the geometric anisotropy, 

from the anisotropic ratio of 2. For systematic sampling  

and lattice plus close pairs, this relevant difference 

occurred in more than 90% of the simulat ions for 

anisotropic ratio values ( ) equal to 3. 

However, all graphs (Fig. 2) demonstrated that, 

particularly for systematic sampling, there is high 

variability of these similarity measures and many small 

values (outliers) in approximately 10% of the simulat ions. 

For the random and lattice plus close pairs, outliers were 

observed in approximately 3.5% of the simulat ions.  

These outliers occurred in simulat ions that 
produced an overestimat ion of the anisotropic ratio, in  

agreement with results obtained for the systematic 

sampling by Guedes et al. (2013). However, these authors 

emphasize that this overestimat ion of the anisotropic ratio  

occurred only for small sample sizes.  

These conclusions are also supported by the 

confidence intervals constructed for the average of 

similarity measures using the bootstrap method and 95% 

confidence level (Dalposso et al., 2016). These confidence 

intervals are shown in Table 1 for all simulations grouped 

according to the anisotropic ratio, the sampling  

configuration and type of comparison performed. These 

confidence intervals indicated that, for random sampling  

from the anisotropic ratio of 2, the confidence intervals for 

the mean accuracy measurements did not contain the 

minimum amounts required to be classified as high 

similarity for spatial estimates from the geostatistical 
models incorporating or omitting geometric anisotropy. 

However, for the lattice plus close pairs and 

systematic sampling, the confidence intervals for the mean 

accuracy measurements did not contain the minimum 

amounts required to be classified as high similarity for 

anisotropic ratio ( ) value of 3. These results provide 

evidence that there are differences in the classifications of 

generated thematic maps when considering the 

incorporation of anisotropy or not for the lattice plus close 

pairs and systematic sampling. 

These differences can be exp lained by the fact that 

when the thematic maps are elaborated considering the 

presence of geometric anisotropy, these maps present 

subregions with greater continuity in the direct ion in which  

the anisotropy was identified (Guedes et al., 2008; 2013).  

Table 1 also showed that the similarity measures 

decrease significantly as the anisotropic ratio increases at 

5% significance, considering all studied sampling designs. 

Similar results were described by Rossoni et al. (2014), 

who considered the mean square error of the spatial 

estimation of a georeferenced variable for unsampled  

locations as a measure of the impact of the incorporation 

of geometric anisotropy in spatial estimation in  

simulations generated for random sampling. 
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TABLE 1. Confidence intervals for the average Overall Accuracy and Kappa and Tau concordance indexes obtained by the 

bootstrap method, comparing the spatial estimation using anisotropic and isotropic models, grouped according to the 

anisotropic ratio and the sampling design. 

Design 

Anisotropic ratio (  

           1
(a)  

2 3 

 Overall Accuracy ( ) 

Random [0.947, 0.956] [0.774, 0.787] [0.671, 0.682] 

Lattice  [0.894, 0.904] [0.834, 0.845] [0.765, 0.778] 

L. Plus Close Pairs  [0.964, 0.970] [0.828, 0.836] [0.747, 0.757] 

Kappa Index ( ) 

Random [0.935, 0.945] [0.725, 0.740] [0.601, 0.615] 

Lattice  [0.946, 0.959] [0.795, 0.810] [0.712, 0.729] 

L. Plus Close Pairs  [0.954, 0.963] [0.789, 0.801] [0.692, 0.705] 

Tau Index ( ) 

Random [0.941, 0.951] [0.749, 0.763] [0.634, 0.647] 

Lattice  [0.954, 0.964] [0.815, 0.828] [0.739, 0.753] 

L. Plus Close Pairs  [0.959, 0.967] [0.808, 0.819] [0.719, 0.730] 

L.: lattice; (a) Isotropic case.  

 

Comparing the sampling configurations for the 

confidence intervals of these similarity measures, mainly  

from the anisotropic ratio ( ) equal to 2, the similarity  

measures of the studied sampling configurations differed  

significantly at 5% probability. The random sampling had 

the lowest values of these measures, whereas the 

systematic sampling had the greatest values. 

Table 2 shows the percentage of rejections of the 

nonparametric tests of isotropy at the 5% nominal level 

from 100 simulations. The method from Maity & Sherman  

(2012) considering the random sampling and lattice plus 

close pairs was applied. The method from Guan et al. 

(2004) considering the systematic sampling was also 

applied. For all sampling designs, an inflated type I error 

(case isotropic with factor anisotropy equal to 1) was 

observed. 

The power of tests using random and systematic 

sampling is relatively larger than the lattice plus close 

pairs. In addit ion, for all configurations examined, the 

empirical power increased as the anisotropic ratio 

increased. However, accord ing to Guan et al. (2004) and  

Maity & Sherman (2012), empirical powers tend be low 

when the sample size is small and/or the anisotropy is 

weak. 

 

The real data grid was also used in our simulations. 

The results not presented in this article showed that for the 

irregular area, a higher inflat ing of type I error (cas e 

isotropic), compared with the rectangular area, was 

observed. 

 

TABLE 2. Percentage of rejections at 5% nominal level of 

the nonparametric tests of isotropy. 

Anisotropic ratio 
MS test GSC test 

Random L. Plus Close Pairs Lattice 

1
(a) 

36.70 42.20 33.50 
2 49.90 56.00 75.00 

3 60.10 72.40 93.60 
4 68.00 80.00 98.60 

5 74.20 84.60 99.30 

L: lattice; (a) Isotropic cas;. MS: method from Maity & Sherman 

(2012); GSC: method from Guan et al. (2004).  

 

ANALYS IS OF SOIL CHEMICAL PROPERTIES  

Fig. 3-(a) and Fig. 3-(b) illustrate the values of 

variables C and H + Al
+3

 for the sampled points in the 

study area, using quartile classificat ion. Groups of points 

with the same classificat ion extended in the direction of 

90° (azimuth system), indicating the presence of 

geometric anisotropy in that direction. 
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(a)   

(b)   (c)    

(d)   (e)   (f) 

FIGURE 3. Spatial representation of the locations sampled in the study area, classified into equal-amplitude ranges for the 

variables (a) H+Al
+3

 and (b) C and thematic maps for (c) H + Al
+3

 considering the isotropic model, (d) C considering the 

isotropic model, (e) H + Al
+3

 considering the anisotropic model, and (f) C considering the anisotropic model. Min: min imum, 

Q1: first quartile, Q3: third quart ile , Max: ma ximum. 

  

Table 3 shows the results of univariate 

geostatistical analysis with the estimated spatial 

parameters for the variables C and H + Al
+3

 for isotropic 

model and geometric anisotropic model. According to the 

cross-validation criteria (Monego et al., 2015) (Table 4), 

the exponential model was the best fit for C and H + Al
+3

 

by the maximum likelihood method, and the best estimates 

for the measure cross-validation were obtained for the 

anisotropic models. 

Higher spatial continuity directions were 

established using the conventional directions adopted by 

Guedes et al. (2013) considering the azimuth system. In  

most models, there is a moderate (Cambardella et al., 

1994; 25% < RNE  75%) spatial dependence, where          

RNE = 100 /( + ). Only the isotropic model  

estimated for the variable C exh ibited a strong spatial 

dependence (Cambardella et al., 1994; RNE  25%). The 

anisotropic ratio is near 2, and the estimated values of the 

range and its standard error were higher in the isotropic 

model. Moreover, applying the MS nonparametric test 

(Table 3), the null hypothesis of isotropy evidently can be 

rejected (p-value < 0.05).  
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TABLE 3. Adjusted spatial models and estimated values of parameters by ML. The standard deviations of the estimates are in parentheses. 

Variable  Model          

H+Al
+3

 

Iso Expo. 
6.784 

(0.260) 

1.619 

(0.632) 

0.700 

(0.645) 

2.319 

 

512.97 

(171.46) 
69.81   

Ani Expo. 
6.783 

(0.290) 

1.639 

(0.475) 

0.655 

(0.495) 
2.294 

462.53 

(156.77) 
71.45 90º 

2.22
*  

(2.31) 

C 

Iso Expo. 
27.284 

(0.882) 

3.487 

(1.937) 

7.239 

(2.867) 
10.726 

684.79 

(134.23) 
32.51   

Ani Expo. 
27.026 

(0.729) 

1.890 

(1.963) 

7.721 

(2.673) 
9.611 

355.33 

(61.64) 
19.66 90º 

2.09
*  

(0.89) 

: mean; : range; : nugget effect; ( ): sill; =100 /( ); (%) : relative nugget effect; : higher spatial continuity angle; 

: Ani ratio; Iso: isotropic; Ani: anisotropic, and Expo.: exponential model; * significant at the 5 percent level, by MS nonparametric test 

fort isotropy. 

 

The results of the comparison of spatial estimates 

obtained by the isotropic and anisotropic models (Table 4) 

revealed that the anisotropic model resulted in lower 

values of the average Krig ing variance for both C and H + 

Al
+3

. According to Yamamoto (2000), the kriging variance 

is used as a quality indicator of spatial estimation. This  

result indicates that the anisotropic model produced the 

best efficiency and spatial estimation.  

In addition, the values of the similarity measures 

indicate a relevant difference in the spatial estimates of the 

maps generated by the isotropic and anisotropic models 

(Kripendorff, 1980; De Bastiani & Uribe-Opazo, 2012). 

The results for the similarity measures in this work are 

similar to conclusions presented by Guedes et al. (2013) 

considering simulated and real data from a systematic 

sampling. 

The differences in the spatial estimat ion of the 

variables under study upon the incorporation of geometric 

anisotropy in the spatial dependence structure can also be 

displayed in thematic maps (Fig. 3-(c) to 3-(f)). In  

thematic maps constructed from the anisotropic models 

(Fig. 3-d and 3-f), a greater spatial continuity of 

subregions was observed in the higher spatial continuity 

directions compared to the thematic maps generated by 

isotropic models (Fig. 3-c and 3-e). Similar results were 

described by Guedes et al. (2013), who estimated chemical 

soil properties for unsampled locations, considering 

stratified systematic unaligned sampling.  

 

TABLE 4. Adjusted spatial models with their respective measurements obtained by cross -validation and associated measures 

the spatial estimation and the similarity in the comparison between anisotropic and isotropic models , its spatial estimation. 

Variable  Model ME SME SME SSME AE 2     

H+Al
+3

 
Iso -4  -2  1.47 1.01 121.8 2.09 

0.653 0.587 0.614 
Ani -2  1  1.46 1.01 120.5 2.03 

C 
Iso -3  -5  2.66 1.00 219.9 6.35 

0.651 0.596 0.613 
Ani -3  -7  2.56 1.04 210.7 5.26 

: Overall accuracy; Concordance index of Kappa ( ) and Tau ( ); 2 : average kriging variance; ME: mean error; SME: standard 

deviation of the mean error; SME: mean standardized error; SSME: standard deviation of the standardized error; AE: absolute error; Iso: 

isotropic; Ani: anisotropic.  

 

CONCLUS IONS  

The analyses of the simulat ions demonstrated that 

the systematic sampling exh ibited the worst performance 

in relation to the quality of estimat ion of the geostatistical 

anisotropic model compared with the random sampling  

and lattice plus close pairs. This lower performance 

generally resulted in overestimated values of the nugget 

and anisotropic ratio, the highest estimated values of the 

nugget, range and anisotropic ratio, and the highest 

estimated values of the standard errors of the nugget, range 

and anisotropic ratio. 

Moreover, the results of the simulations 

demonstrated that the random sampling and lattice p lus 

close pairs are more appropriate for the incorporation of 

geometric anisotropy with respect to spatial estimat ion for 

georeferenced variables at unsampled locations. The 

similarity measures and the nonparametric tests 

demonstrated that random sampling, lattice p lus close pairs 

and lattice sampling have a relevant influence on the 

incorporation of geometric an isotropy in most simulations 

from an isotropic ratio values of 2.  

Most of the similarity measures differed  

significantly for the different sampling designs. These 

confidence intervals did not overlap at 95% confidence 

when the anisotropic ratio was changed. 

The similarity measures for the chemical attributes 

of soil sampled in an irregular area with a lattice plus close 

pairs sampling design indicated a relevant difference in the 

spatial estimat ion depending on the incorporation or 

omission of geometric anisotropy in the geostatistical 

model. Moreover, the smallest values of the average 

kriging variance and improved detail of the subregions in 

the thematic maps were observed in the spatial estimation  

that incorporated geometric anisotropy. These results 

demonstrate that the incorporation of geometric anisotropy 
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produces more reliable estimates that best indicate the 

spatial continuity of the studied attributes. 
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