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ABSTRACT 

Phosphorus concentration is one of the main attributes determined in laboratory analyses 
of soil samples collected in the field.  The objective is to develop a soil phosphorus test 
using a low-cost spectrophotometer and a machine learning technique. For reflectance 
measurements, a low-cost system consisting of a Sparkfun AS7625x spectrophotometer 
and an Arduino Uno is used. Ion exchange resins under standard saturated solutions and 
modified conditions are used to extract phosphorus ions from the soil samples. 
Reflectance and phosphorus concentrations determined by the reference method are used 
in the training and testing of a machine learning. A modification procedure of the ion-
exchange resin saturation solution allows the establishment of a strong correlation 
between the reflectance in 18 spectral bands and P concentration of the soil samples. The 
obtained model uses five reflectance of the modified resins at wavelengths of 410, 460, 
560, 705, and 645 nm to predict the phosphorus concentration. This model presents an 
R2t accuracy of 0.97 in the training stage with an R2v of 0.96, RMSEv of 9.05, and ratio 
of prediction to deviation) of 3.81 in the test step. 

 
 
INTRODUCTION 

Phosphorus (P) availability in tropical soils is one of 
the main factors that influence crop yield. After being 
absorbed from the soil solution by the roots, this chemical 
element participates in basic physiological processes in the 
plant, such as photosynthesis and respiration. Determining 
the soil P content is critical for prescribing the correct dose 
of phosphate fertilizer to be applied to the soil (Prezotti et 
al., 2013). 

Conventional laboratory analyses used to assess 
available P and other physical and chemical soil attributes 
are generally time consuming and expensive. The total cost 
and time spent characterizing soil fertility depends on the 
size of the crop field and adopted agricultural management 
system (Mayrink et al., 2019). In precision agriculture (PA), 
a higher number of soil samples per unit of area is essential 
compared to conventional agriculture. To reduce labor 
usage and costs, farmers generally select inadequate 

sampling densities. This decision can lead to errors in the 
generation of fertilizer prescription maps, thus reducing the 
profitability of crops (Resende & Coelho, 2017). 

Proximal sensing is a promising technique for 
assessing soil fertility in crops, especially in those that adopt 
PA (Kopačková et al., 2017). This technique is based on 
reflectance spectroscopy and uses sensors to measure the 
electromagnetic energy reflected by the surface in different 
spectra (Frei, 2019). Owing to the speed of data collection 
and lower cost, this technique stands out for enabling a 
significant increase in the sample density. In addition, 
spectroscopy enables the analysis of different soil attributes 
by using a single sensor (Rossel et al., 2006). 

Research has shown that analysis of the spectral 
signature of the soil enables the estimation of texture, water 
and organic matter content, cation exchange capacity, and 
soil chemical attributes, such as total carbon, pH, and 
concentrations of nitrate, calcium, potassium, magnesium, 
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and phosphorus (Jiang et al., 2017; Soriano-Disla et al., 
2017; Mayrink et al., 2019; Nisha & Prasad, 2020; Pätzold 
et al., 2020). However, it is necessary to use appropriate 
spectral signature analysis techniques to estimate soil 
attributes from spectroscopic data (Pinheiro et al., 2017). 
Among these techniques, machine-learning algorithms have 
great potential (Molin & Tavares 2019). 

Several spectroscopy-based proximal sensors have 
been developed and marketed for rapid determination of soil 
nutrient availability (Rossel et al., 2011; Molin & Tavares 
2019; Adamchuk &  Rossel, 2010; Guerrero et al., 2021). 
ClorofiLOG, GreenSeeker, Crop Circle, Crop Meter, and 
Crop Spec are examples of commercial spectroscopy-based 
sensors used to assess nitrogen stress in plants. The Optic 
Mapper sensor used to evaluate the texture and organic 
matter in the soil is pulled by a vehicle. The data collected 
by these sensors can be influenced by various soil and plant 
attributes, making it difficult to accurately determine a 
specific attribute (Rossel et al. 2011). 

Solid-phase extraction (SPE) is a promising low-cost 
alternative for increasing the accuracy of determining the 
concentration of a specific soil chemical attribute. Using 
SPE and ion exchange resins as pre-concentration matrices, 
Mayrink et al. (2019) obtained satisfactory results with R2 
greater than 0.90 and RPD (ratio of prediction to deviation) 
greater than 2 for prediction models of P, Ca, Mg, and K 
concentrations in soil samples. As resins are sensitive to the 
same forms of P assimilated by plants (inorganic), the 
concentration of inorganic P has a high correlation with the 
amount of the nutrient extracted by the plant (Gonçalves et 
al., 2012; Oliveira et al., 2015). In addition to being 
commercial and consolidated products for this application, 
ion-exchange resins eliminate the interference of other 
physical attributes of the soil and concentrate the chemical 
elements that are diluted in the soil. Although Mayrink et al. 
(2019) demonstrated the potential of using SPE to 
determine soil chemical attributes, this determination 
depended on a spectrophotometer, a high-cost laboratory 
equipment, to measure the reflectance of the samples at 
different wavelengths. 

To increase sensitivity and selectivity, chromophore 
reagents can be used to modify the ion-exchange resins used 
in SPE. These reagents provide a greater molar absorptivity 
of the resin in specific electromagnetic spectra (Silva et al., 
2016). Resin modifications can occur by substitution 
mechanisms inside the matrix between the ions of interest 
and the reagent used, as well as by the formation of 
complexes (ternary complexes) between the matrix, 
interfering ions, and reagents. The use of these reagents can 
facilitate the determination of the concentration of chemical 
attributes of the soil using the reflectance of soil samples 
from a low-cost spectrophotometer. Therefore, the objective 
of the present work is to develop a method for predicting P 
concentration in soil samples using a low-cost 
spectrophotometer sensor using standard and modified ion 
exchange resins with chromophore reagents and a machine 
learning algorithm. 
 
MATERIAL AND METHODS 

The development of a method for predicting P 
concentration in soil samples comprised of: i) preparing soil 
samples; ii) extracting P from the soil samples using a 
standard ion exchange resin test method and a modified 

method by addition of a chromophore reagent during 
extraction by the ion exchange resin; ii) measuring the 
reflectance of the samples of standard and modified resins 
after extraction using a low-cost spectrophotometer sensor; 
iii) determining the P concentration of samples using the 
reference method in soil laboratory analysis; and iv) training 
and testing a machine learning algorithm to predict P 
concentrations using the resin reflectance, measured using a 
low-cost spectrophotometer, and the soil P values obtained 
by the reference method of laboratory soil analysis.  

Soil sample preparation 

To develop and test the P concentration prediction 
method, 200 samples from different soil types in the state of 
Minas Gerais, Brazil were used. The samples were provided 
by the Soil Fertility Routine Laboratory of the Federal 
University of Vicosa, (Vicosa, MG, Brazil). Using the 
attributes pH, cation exchange capacity (CTC), organic 
matter (OM), and remaining phosphorus (P-rem), 
determined in the laboratory using the respective reference 
methods (Silva et al., 2009) The samples were divided into 
four classes of soil buffering capacity: very low (VL), low 
(L), medium (M), and high (H). 

The soil samples were air-dried, macerated, sieved 
through 2 mm holes, and homogenized. Each soil sample 
was divided into three fractions. Two fractions were used in 
the P extraction procedure with standard and modified ion-
exchange resins for further reflectance measurements using 
a low-cost spectrophotometer sensor. The third fraction was 
used to determine P concentration using the reference 
method for laboratory soil analysis. 

Phosphorus extraction from soil samples with standard 
and modified ion exchange resin 

For soil sample P ion extraction, PUROLITE A400 
anionic resin (Purolite Corporation, Philadelphia, USA) was 
used under two saturation conditions. In the first condition 
(referred to as standard resin), the resin was prepared 
according to the methodology proposed by Van Raij & 
Quaggio (2001). In the second condition (referred to as 
modified resin), the resins were prepared by modifying the 
saturation step using a chromophore reagent. 

The resin preparation process consists of two basic 
steps: pre-conditioning and preparation for use. The 
preconditioning step promoted the expansion of the active 
sites of the resins. In this step, the resins were first passed 
through a sieve with a mesh opening of 0.5 mm. They were 
then mixed in a saturated electrolyte solution (with 
approximately 5 g of KH2PO4, 4 g of CaCl2.2H2O, and 2 g 
of MgSO4.7H2O) and left in contact for one week with 
occasional stirring. After the contact period, the resins were 
washed with deionized water in a batch system. 

As the name suggests, the preparation for the use 
step consists of saturating the resins with a solution 
containing standard ions, leaving them ready for use. In this 
step, using a batch system, a volume of resin sufficient for 
use in the experiment was mixed with 5 volumes of a 1 mol 
L-1 NaHCO3 solution at pH 8.5, left in contact for 1 h, with 
occasional stirring. Subsequently, the resins were 
transferred to an elution column, through which 20 volumes 
of 1 mol L-1 NaHCO3 solution were passed. Finally, 20 
volumes of water were slowly passed through to remove the 
excess ions. 
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In the second condition, the modification involved 
replacing sodium bicarbonate solution (NaHCO3) with a 
solution of chromophore reagents. The solution was 
prepared using ammonium molybdate, bismuth 
subcarbonate, sulfuric acid, and ascorbic acid (vitamin C). 
The proportion of each reagent used was defined according 
to the chemical analysis methods manual for soil fertility 
assessment (Silva et al., 1998). The ion-exchange resin was 
mixed with the modified saturation solution (prepared 2 h 
in advance) in the proportion of one volume of resin to five 
volumes of solution (Fig. 1a). The excess saturated solution 
contained in the resin was removed using deionized water. 
Saturated resins under standard and modified conditions 

were placed in individual permeable polyester bags. In each 
bag, 2.5 cm³ of resin was inserted (Fig. 1b). 

For each of the 200 soil samples, the P ion extraction 
process consisted of adding each permeable polyester bag 
filled with 2.5 cm3 of saturated resin into a container with 
2.5 cm3 of soil sample in suspension with 25 mL of 
deionized water. The container was stirred in a circular-
horizontal motion at a stirring speed of 220 rpm for 16 h at 
room temperature (25 °C). After the extraction process, 
each resin bag was removed from contact with the soil 
solution. The bag was opened and the resins were dried by 
centrifugation, and placed in cylindrical containers to form 
tablets with a diameter of 2.5 cm (Fig. 1c).

 

 
(a) 

 
(b) 

 
(c) 

FIGURE 1. Procedure for saturation of the ion exchange resin and phosphorus extraction: (a) Saturation of the resin with standard 
or modified solutions, (b) Insertion of the saturated resin in permeable polyester bags, and (c) Formation of cylindrical tablets 
with the resin after extraction of the phosphorus ions from soil samples. 
 
Measuring the reflectance using a low-cost 
spectrophotometer sensor 

To measure the reflectance of the resin tablets, a 
SparkFun AS7265x spectrophotometer (SparkFun 
Electronics, USA) was used. AS7265x, a low-cost, open-
hardware sensor, measures the reflectance in the 410–940 
nm electromagnetic spectrum in 18 spectral bands. The 
three capture elements AS72651, AS72652, and AS72653 
of the sensor sensitize to the ultraviolet, visible, and infrared 
spectra and measured reflectance in the bands 410, 435, 
460, 485, 510, 535, 560, 585, 610, 645, 680, 705, 730, 760, 
810, 860, 900, and 940 nm. The sensor contains three 
individual light-emitting diode (LED) elements that emit 
white (color temperature of 5700 K), ultraviolet (405 nm), 
and infrared (875 nm) light. A computer program, written 
in C++ language and executed using the Arduino Uno 
microcontroller board (Arduino, Italy), was developed and 
used to activate the LEDs, capture the reflectance 
measurements on the three capture elements, and save them 
in a file for further analysis. A white barium sulfate 
(BaSO4) plate was used as the reference standard for 
AS7265x sensor calibration. This plate was assumed to 
have unity reflectance (1.0) in the 18 spectral bands. 

Determining the phosphorus content in the soil sample 
using the reference method 

The reference method for determining the P 
concentration in 200 soil samples was proposed by Van Raij 
& Quaggio (2001). In this method, P from a soil sample is 
extracted using ion exchange resins. To facilitate the 
understanding of the text, the concentration of P determined 
using the reference method is referred to as Presin. The 

Presin was determined by measuring the absorbance of the 
supernatant liquid in an acrylic cuvette with an optical path 
of 0.5 mm. This was done using a bench spectrophotometer 
(Azzota, SM100 UV-VIS), measuring the absorbance at a 
wavelength of 725 nm, corresponding to the visible 
spectral region. 

Machine learning algorithm to predict soil P using the 
reflectance of standard and modified resins 

For each of the two conditions, standard and 
modified resins, a dataset containing the reflectance of the 
200 tablets in the 18 bands and the respective Presin values 
was generated. First, the Pearson correlations between the 
reflectances, and between the reflectance and Presin value 
were determined. To predict the P concentration of the soil 
samples using reflectance (in the text, the predicted P 
concentration is denoted as 𝑃෠), machine learning models 
based on multiple linear regression were developed and 
evaluated.   

To create, train, and test the models, a computer 
program was developed in Python 3.9, using the statsmodels 
package, version 0.12.2, (Seabold & Perktold, 2010). The 
scikit-learn package, version 0.24.1, (Pedregosa et al., 
2011) was used to divide the dataset into training and testing 
data and to obtain metrics for evaluating the accuracy of the 
models. Using the k-fold procedure, the dataset was divided 
into 10 parts to use 90% for training and 10% for testing. 
An iterative process was implemented to combine all 10 
possible combinations of data pieces for training and 
testing. The metrics used to evaluate the accuracy of the 
models were the coefficient of determination of the training 
step (R2t), coefficient of determination of the testing step 
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(R2v), square root of the squared error for the testing step 
(RMSEv, Equation 1), and the ratio of prediction to 
deviation in the testing step (RPD, Equation. 2). 

RMSE௩  =  ඨ
∑ ൫Presin௜  –  P෡௜൯

ଶ௡೛

୧ୀଵ

𝑛௣

 (1)

Where:  

RMSEv is the root mean square error of the model in 
the testing step; 

Presini is the sample P concentration of the test set 
measured using the reference method; 

P෡௜ is the P concentration of a sample of the test set 
estimated using the machine learning model, and  

np is the number of samples in the test set. 
 

RPD =  
SD

RMSE௩

 (2)

Where:  

RPD is the ratio of prediction to deviation in the 
testing step, and  

SD is the standard deviation of the Presini values. 
 
Two strategies for obtaining machine-learning 

models were evaluated. In the first strategy, the models were 
created using an iterative process that tested models with 
one to twelve independent variables (reflectance in each 
spectral band) to calculate 𝑃෠. Initially, models with only one 

variable were tested. The variable that resulted in the 
highest coefficient of determination for the training stage 
was selected as a part of the model. At each iteration, a new 
variable was added to the model by selecting the variable 
that maximized the coefficient of determination of the 
training stage. The criterion for selecting the number of 
variables used in the model stabilized the metrics used to 
assess accuracy. Once the variables that resulted in the best 
model performance were defined, a new model was 
generated to determine 𝑃෠ using 80% of the data for training 
and 20% for testing. 

In the second strategy, the model was obtained using 
n reflectances that presented the highest Pearson correlation 
with the Presin, where n denotes the number of variables 
used in the first strategy. The model was trained and 
validated using 80% of the data for training and 20% for 
determining 𝑃෠ using 80% data for training and 20% for 
testing. All procedures for creating, testing, and validating 
the models for the two strategies were performed for the 
dataset obtained using standard and modified resins. 

 
RESULTS AND DISCUSSION 

When comparing the reflectance of the resin tablets 
in the 18 spectral bands under the two saturation conditions 
(standard, Fig. 2a, and modified, Fig. 2b), similar behavior 
was identified at certain wavelengths. This similar behavior 
occurred in the 810, 860, 900, and 940 nm bands, which 
correspond to the near-infrared region. This similarity is 
partly due to the physical and chemical constituents of the 
resin used, such as the polystyrene matrix and quaternary 
ammonium functional groups.

 

  

FIGURE 2. Reflectance spectra of resin tablets after P extraction: a) Saturated using standard solution proposed by Van Raij & 
Quaggio (2001); and b) Saturated using modified solution (chromophore reagent). Each line represents the reflectance of a tablet 
in the 18 spectral bands. 

 
The differences in the behavior shown in Fig. 2 are 

mainly due to the solutions used to saturate the resin. For 
the saturated resins, a sodium bicarbonate solution was used 
according to the standard methodology. For the modified 
methodology, a solution of chromophore reagents 
(ammonium molybdate, bismuth subcarbonate, sulfuric 
acid, and ascorbic acid) is used for saturation. When present 
in the resin matrix, ammonium molybdate reacts with the P 
ions extracted from the soil, forming a phosphomolybdic 
complex. In acidic media, this complex promotes blue 
coloration in the resins (Bortolon & Gianello, 2010; 
Mumbach et al., 2018) proportional to the concentration of 
P ions. Thus, the bluish color acquired by the modified 
resins after the extraction of P from the soil was responsible 
for the change in reflectance in the spectral bands at 485, 

510, and 730 nm. The last band is strongly correlated with 
the presence of the phosphomolybdic complex (Nagul et 
al., 2015). 

Correlation analysis among the reflectance values 

The use of chromophore reagent solution altered 
Pearson's correlations among the reflectances at 18 
wavelengths. It also affected the correlation between the 
reflectance at each wavelength and Presin value (obtained 
using soil laboratory analysis for determination of soil P 
value). In the correlation matrix for the reflectance 
measured in the standard resin, there was a negligible 
correlation (in the range of 0–0.3) between the reflectance 
and Presin values (Fig. 3a). For the correlations between 
reflectances, it was observed that the behavior of strong 
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correlations (in the range of 0.7–0.9) for reflectances in 
closer spectra and weaker or negligible correlations for 
reflectances in spectra that were more different from each 
other. In the correlation matrix for the reflectance measured 

using the modified resin, there was a strong correlation 
(greater than 0.9) between the reflectance and Presin values 
(Fig. 3a). Strong or very strong correlations were observed 
among the reflectances in the 18 spectra.

    

 

(a) 
 

 

(b) 

FIGURE 3. Pearson's correlation matrix between the reflectance in different wavelengths with Presin values (identified in the 
plot as P_resina) for (a) Saturated resin for standard solution and (b) Saturated resin for modified solution.  
 
Model for predicting soil P using resin reflectance  

For the first model generation strategy, the soil P 
prediction model using reflectances from modified resin 
tablets obtained from a solution of chromophore reagents 
(Fig. 4) showed superior accuracy compared to the model 
generated with reflectances from standard resin tablets (Fig. 
5). The model developed using standard resin reflectance  

did not allow the prediction of phosphorus concentration in 
soil samples because of the negligible correlation observed 
between Presin values and reflectance. Based on the 
correlation matrix analysis (Fig. 3a and b), it can be stated 
that the use of the chromophore reagent solution was 
responsible for establishing the correlation between Presin 
and the reflectance of the resins.
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(a) 

  
(b) 

  
(c) (d) 

  
(e) 

  
(f) 

FIGURE 4. Metrics of the phosphorus prediction model using modified resin reflectance (a) R2 of the model adjusted for the 
training and testing steps; (b) Square root of the mean square error of the model in the testing step; (c) Ratio prediction to 
deviation for the testing step; (d) Variables that produced the best fit of the machine learning model as a function of the number 
of variables in the model, in red is the highlighted number of ideal variables to predict the phosphorus concentration; (e) P 
concentration predicted by the model, in the training step, with the optimal number of variables compared to the P concentration 
obtained using the reference method; (f) P concentration predicted by the model, in the testing step, with the optimal number of 
variables compared to the P concentration obtained using the reference method. 
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(a) 

  
(b) 

  
(c) 

 
(d) 

  
(e) 

  
(f) 

FIGURE 5. Metrics of the phosphorus prediction model using reflectance of the standard resins (a) R2 of the model adjusted for 
the training and testing steps; (b) Square root of the mean square error of the model for the testing step; (c) Ratio prediction to 
deviation for the testing step; (d) Variables that produced the best fit of the machine learning model as a function of the number 
of variables in the model, in red is the highlighted ideal number of variables to predict the phosphorus concentration (e) P 
concentration predicted by the model, in the training step, with an optimal number of variables compared to the P concentration 
obtained using the reference method; (f) P concentration predicted by the model, in the testing step, with an optimal number of 
variables compared with P concentration obtained using the reference method 

 
For the modified resin reflectance, an increase in the 

model accuracy was observed by increasing the number of 
model variables to five (Fig. 4). Models developed using 
more than five variables, that is, reflectance at five 
wavelengths, did not exhibit an increase in accuracy.        
The prediction of the P concentration can be obtained using  

resins saturated with a modified solution and reflectances in 
the bands 410 nm (in the violet band), 460 nm (in the blue 
band), 560 nm (in the green band), 705 nm (in the near-
infrared band), and 645 nm (in the red band). The model 
used for testing (Fig. 5f) is given by [eq. (3)]. 

𝑃෠ = 391,70 𝑅410 − 118,51 𝑅460 − 88,87 𝑅560 + 518,21 𝑅705 − 380,50 𝑅645 (3)

Where:  
𝑃෠ is the predicted phosphorus concentration, in mg dm-3, and  

R410, R460, R560, R705, and R645 are the reflectances of saturated resins in the modified solution at wavelengths of 
410, 460, 560, 705, and 645 nm, respectively. 
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A comparison of the values of the ratio of prediction 
to deviation in the testing step (RPD, Fig. 5c) with the 
recommended values of this metric proposed by Williams 
(2014) was made. According to the metric, an RPD value 
above 3.5 for soil analysis, as obtained in models with two 
or more variables, is considered to have a good fit. This 
RPD value is similar to that obtained by Kweon & Maxton 
(2013) for soil organic matter determination based on 
reflectance at wavelengths of 660 and 940 nm. In contrast, 
the RPD values for the model generated with the reflectance 
of the standard resins (Fig. 5c), in which the RPD value was 

less than one for all fitted models, is considered a poor fit, and 
the recommendation is not to use this model in predictions. 

In the second strategy for machine learning model 
generation, P prediction models were obtained using five 
reflectances from the standard and modified resins, which 
showed the highest correlation with the Presin values. The 
models generated using the first strategy performed slightly 
better than those generated using the second strategy (Table 
1). That is, combining variables in an iterative process to 
maximize the accuracy of the prediction allows models with 
a higher performance to be obtained.

 
TABLE 1. Comparison of performance metrics for the models generated in the two strategies, for standard and modified resin. 
R2t: coefficient of determination in the testing step. R2v: coefficient of determination in the testing step. RMSEv: root mean 
square error of the model in the testing step. RPD: ratio of prediction to deviation in the testing step. 

Parameters 
Strategy 1 Strategy 2 

Standard Resina  Modified Resin Standard Resin Modified Resin 

Selected wavelength (nm) 860; 485; 680; 610; 810 410; 460; 560; 705; 645 860; 680; 705; 760; 900 410; 435; 485; 510; 705 

R2
t 0.11 0.97 0.10 0.85 

R2
v 0.01 0.96 -0.54 0.83 

RMSEv 41.10 9.05 40.02 9.75 

RPD 0.81 3.81 0.87 3.44 

 
One of the drawbacks of machine learning based on 

multiple linear regression was that 𝑃෠ negative values were 
found under certain conditions (Figs. 5e and 5f). However, 
it was possible to verify that for the modified resins, when 
the model predicted a negative value 𝑃෠ , this value was 
closer to zero and occurred when the Presin value (obtained 
using the soil laboratory analysis method) was closer to 
zero. As these situations occurred when the Presin value in 
the samples was low, negative values could be replaced by 
zero. It is important to note that according to Embrapa 
(2015), the concentration of adequate P is higher than 20, 
15 and 8 mg dm-3, for soils of sandy, medium, and clayey 
texture classes, respectively. Phosphorus concentrations 
below 4 mg dm-3 are considered low for all soil textural 
classes and, therefore, should receive a higher phosphorus 
dosage. An alternative would be to use other machine 
learning models; however, the simplicity of the linear 
models and good fit obtained were the reasons for not trying 
other alternative machine learning algorithms. 

Although the soil samples were classified according 
to their buffer capacity class, the model for calculating 
𝑃෠ developed was generalized to all four soil buffer capacity 
classes. As future work, novel studies with a greater number 
of soil samples are suggested, making it possible to develop, 
test, and validate specific models for each soil buffer 
capacity class. In the proposed P concentration estimation 
procedure, the time required for the extraction of P ions 
using resins was 16 h. This time was selected because it was 
the extraction time adopted in the reference method for P 
determination. However, for the proposed procedure to be 
fast, further research is needed to evaluate the influence of 
extraction time on the accuracy of the P prediction models. 
 
 

CONCLUSIONS 

A low-cost and open-design embedded system for 
proximal spectroscopy was developed using an 
ATMEGA328P microcontroller and a SparkFun AS7265x 
spectrophotometer sensor. Using machine learning models, 
the reflectances measured with the embedded system 
allowed soil phosphorus tests to be performed. The 
procedure of modifying the saturation solution of the ion 
exchange resin, replacing the standard solution with a 
chromophore solution, allowed the establishment of a 
strong correlation between the reflectance in 18 spectral 
bands and the phosphorus concentration of the soil samples. 
The machine learning model, based on multiple linear 
regression, showed greater accuracy (R2t = 0.97, R2v = 0.96, 
RMSEv = 9.05, RPD = 3.81) using five reflectances of the 
modified resins (410, 460, 560, 705, and 645 nm). In 
addition, the interactive process strategy was obtained by 
selecting variables that maximize the accuracy of the model. 
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