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ABSTRACT 

Soil fertility attributes have different scales and forms of spatial and temporal variations 
in agricultural fields. Adequate spatiotemporal characterization of these attributes is 
fundamental to the successful development of strategies for variable rate application of 
fertilizers, enabling the classic benefits of precision agriculture (PA). Studies on Brazilian 
soil have shown that at least 1 sample ha-1 is required for the reliable mapping of key 
fertility attributes. However, this sampling density is difficult owing to the operational 
challenges of sample collection and the cost of laboratory analyses. Given this limitation, 
soil sensors have emerged as a practical and complementary technique for obtaining 
information on soil attributes, at high spatial density, without the production of chemical 
residues and at a reduced cost. Scientists worldwide have devoted their attention to the 
development and application of sensor systems for this purpose. The concept of proximal 
soil sensing (PSS) was established in 2011 and involves the application of soil sensors 
directly on the field. PSS techniques involve different disciplines, such as 
instrumentation, data science, geostatistics, and predictive modeling. The integration of 
these different disciplines has allowed successful sensor application for the spatial 
diagnosis of soil fertility attributes. The present work aimed to present a bibliographic 
review of the concepts involved and main techniques used in soil sensing to predict 
fertility attributes. We sought to present a broad view of the challenges, advances, and 
perspectives of sensor application in Brazilian tropical soils in the context of PA. 

 
 
INTRODUCTION 

Linked to the technological advances of the last 
decades and considered by some authors as one of the top 
10 revolutions in agriculture in the last 50 years (Crookston, 
2006; Mulla, 2013), precision agriculture (PA) advocates 
the adequate treatment of spatial and temporal variability of 
crops (Molin et al., 2015). The objective of PA is to promote 
the spatially optimized management of agricultural inputs, 
which increases productivity and facilitates the rational use 
of production resources. These features of PA make it a 
promising tool to overcome the global challenges of 

agriculture in the 21st century (Gebbers & Adamchuk, 
2010). These challenges include achieving food and energy 
security for more than 9 billion people in the coming 
decades (Godfray et al., 2010) and aligning agricultural 
production and environmental conservation practices 
(Foley et al., 2011). 

Since its conception in the mid-1980s, PA has been 
closely associated with the management of the spatial 
variability of soil fertility. Prior to the development of 
variable rate technologies and satellite positioning systems, 
soil scientists had already undertaken spatial sampling and 
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got intrigued by the high spatial variability of fertility in 
agricultural fields (Mulla & Khosla, 2016). After evaluating 
more than 70 agricultural fields in the state of Washington 
(USA) using intensive soil sampling, Dow et al. (1973a, b) 
concluded that fertilization recommendations based on the 
fertility average may be erroneous. These authors suggested 
the use of sampling intensification for more accurate 
fertilizer prescription. During the following decade, the 
development of variable rate systems helped to evaluate the 
localized management of soil fertility. Results of the 
pioneering works in this evaluation were positive and 
encouraging, showing increased productivity (Mulla & 
Hammond, 1988; Hammond, 1993) and improved nutrient 
use efficiency (Khosla & Alley, 1999). 

The traditional management of fertilizers and 
limestone, without considering the spatial variability, involves 
the inefficient application of these inputs with an excess or 
deficit at specific sites. In excessive applications, the nutrients 
that are not used by plants and retained by the soil are lost to 
the environment through leaching, runoff, and emissions. The 
excess compounds increase the contamination levels in the soil 
and water, representing a hidden cost for society (Hyytiäinen 
et al., 2011). Regarding input deficits, these impose negative 
influences on the development of crops and, consequently, on 
their production. Thus, adjusted and spatially accurate nutrient 
applications can reduce agronomic, economic, and 
environmental losses (Nawar et al., 2017).  

Brazil is the fourth-largest fertilizer consumer in the 
world (FAO, 2017). This has been attributed to the 
predominance of soil with an acid character and low 
fertility, as well as to the practice of PA in the country, 
which involves the management of fertilization and soil 
acidity correction based on the mapping of soil attributes at 
the field level. PA is associated with significant service 
delivery markets in the country and approximately 15.3% 
of Brazilian grain producers use this approach, with an 
estimated 9 million ha of mapped soils (Molin, 2017).  

For the successful implementation of the variable 
rate application of soil inputs, reliable procedures and 
technologies are required for the diagnosis of spatial 
variability of the different soil fertility attributes. The 
methodological procedure predominantly used today in 
Brazil involves the collection of samples in a regular grid, 
or occasionally using other arrangements, with geo-
referenced sampling points. These samples are sent to 
laboratories for analysis and, subsequently, maps are 
created using interpolation methods. However, the 
sampling density is limited by the costs of the laboratory 
tests and the operational difficulties regarding sampling 
logistics (McBratney et al., 2003; Demattê et al., 2015a). 
Previous studies on Brazilian soils have demonstrated that 
the density traditionally used today (< 0.5 samples ha-1) is 
not adequate for the reliable characterization of the spatial 
distribution of most fertility attributes (Nanni et al., 2011; 
Cherubin et al., 2015). This corroborates with different 
international studies conducted over the past few decades 
(Webster & McBratney, 1987; McBratney & Pringle, 1999; 
Viscarra Rossel et al., 2011). 

 

Despite the evolution of PA approaches and 
technologies, the diagnosis of spatial variability of soil 
fertility attributes is still a challenge worldwide (Viscarra 
Rossel & Bouma, 2016). The major challenge is how to 
increase the density of data on soil fertility attributes 
without sending more samples for laboratory analysis. Soil 
sensing is a promising solution to this problem. Recently, 
the application of different sensing techniques, to obtain 
digital data related to soil attributes, has received great 
attention from scientists involved in PA (Adamchuk et al., 
2004) and pedometry (Brevik et al., 2016). The concept of 
proximal soil sensing (PSS) was established by Viscarra 
Rossel et al. (2011) and refers to the use of sensors that are 
compatible with on-field operations that act in contact or 
close to the soil surface (around 2 m). 

Sensors with analytical methods that are compatible 
with the direct analysis of solids, that is, those that avoid the 
classic procedure of wet chemistry, allow for operations 
with minimum or no sample preparation (Krug & Rocha, 
2016). Most of these techniques have been employed for 
decades as laboratory analytical methods. The innovative 
appeal is related to recent advances in nano and 
microengineering, which have enabled the construction of 
equipment with reduced weight and size, greater robustness, 
and at affordable prices, making them more compatible with 
in situ works (Dhawale et al., 2015). Another challenge is 
to take advantage of the current knowledge regarding the 
use of each sensor and adapt it to use these sensors directly 
in the field as a tool for the management of fertility of 
tropical soils. One of the main tasks is to minimize the loss 
of data quality when different techniques for sample 
collection are used under different field conditions 
(Galuszka et al., 2015). The loss of analytical accuracy 
would be compensated for by the massive increase in 
information (Molin et al., 2015) and by the use of spatial 
and statistical filtering methods already established for 
other PA approaches (Menegatti & Molin, 2004; Leroux et 
al., 2018), which allow for the removal of coarse errors. 

Recently, new technologies to characterize spatial 
variability in soil, e.g. gamma-rays (Castrignanò et al., 2012), 
visible and near-infrared spectroscopy (vis-NIR) (Mouazen 
& Kuang, 2016), and X-ray fluorescence (XRF) (Nawar et 
al., 2019) have been gaining attention from scientists. These 
new technologies, as well as the development of statistical 
techniques, multivariate geostatistics, and artificial 
intelligence, have greatly increased the ability to collect, 
analyze, and predict spatial information related to soils 
(Brevik et al., 2016). Linking all this new information to 
decision making for localized management still has its 
challenges. Understanding the potential and limitation of 
each technology, as well as maintaining the focus on the 
central objective of developing more efficient agricultural 
production systems, should be the central guidelines for the 
development of practical approaches to using soil sensing. 
The present study aimed to present a systematic review of the 
concepts involved and techniques used in soil sensing for 
predicting fertility attributes. We sought to critically discuss 
the challenges and advances in the use of sensing techniques 
in Brazilian tropical soils and to present several application 
perspectives in the context of PA. 
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Diagnosis of spatiotemporal variability of soil fertility 

For the detailed management of soil fertility of 
agricultural fields, physical and chemical properties, such 
as the clay, sand, and organic matter (OM) content; cation 
exchange capacity (CEC); pH; and available nutrients, 
should be known at proper spatial resolution. The 
spatiotemporal variability of these attributes is dynamic, 
occurring with different amplitudes of variation and spatial  

patterns. These variations occur according to the classical 
factors of soil formation (McBratney et al., 2003) and owing 
to minor alterations caused by a combination of local factors 
such as relief and management (Viscarra Rossel & Lobsey, 
2016). Figure 1 presents images of several factors that are 
commonly associated with the spatiotemporal variability of 
soil fertility attributes, elucidating amplitudes and patterns 
of variation in soil attributes. 

 

 

FIGURE 1. Factors associated with the spatiotemporal variability of soil fertility attributes (adapted from Resende & Coelho, 
2017). (A and B) Damage to growing crops by pests, diseases, or weather promotes heterogeneous nutrient export patterns in 
fields; (C) Exposure of the subsoil in contour banks; (D) Non-uniform application of fertilizers and lime; (E) Limestone deposits; 
and (F) Abrupt natural changes in soil formation factors.  

 
Understanding the potential spatial dependence 

ranges and patterns of the variables to be mapped is 
fundamental for the establishment of the sampling density. 
Sampling must represent a whole statistical population. 
Therefore, in agricultural fields, each “spot” and the 
transitions between them must be characterized by sampling 
points to discriminate not only the variation in soil attributes 
but also its spatial pattern (Molin et al., 2015). Soil fertility 
characterization was the objective of the first studies related 
to PA. Research by David Mulla at Washington State 
University evaluated the diagnosis of fertility attributes 
utilizing sampling grids with different spacings. The author 
suggested that the sample grids should be between 30 and 
60 m apart for an accurate representation of fertility 
attributes (reported by Veseth, 1986). Wollenhaupt et al. 
(1994) also compared the sample density for fertility 
mapping and reported that the spacing between samples 
that best represented the fertility was 32 m and maps 

produced with samples spaced at 70 m had significantly 
reduced accuracy.  

Several local studies have characterized the spatial 
dependence of physical and chemical attributes of Brazilian 
soils via geostatistical analyses to calculate the best sample 
density (Nanni et al., 2011; Montanari et al., 2012; Cherubin 
et al., 2014a, b; Cherubin et al., 2015). The geostatistical 
results vary according to the local characteristics; however, 
sample grids greater than 100 × 100 m (1 sample ha-1) are not 
efficient for characterizing the variability of most soil fertility 
attributes. An example of available P mapping using 
different sampling densities is shown in Figure 2. 
Generally, factors related to the soil class and its formation 
(e.g., texture) require a lower sampling density. However, 
for pH and available P, K, Ca, Mg, and other chemical 
attributes, a higher sample density is required to 
characterize the variability (Wetterlind et al., 2010). 
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FIGURE 2. Spatial distribution of available P using different sample densities in a 42-ha field (adapted from Cherubin et al., 2015). 
 

Schirrmann and Domsch (2011) compared the 
spatial characterization of pH and available nutrients (P, K, 
and Mg) between sampling using a grid of 50 m (4 samples 
ha-1) with that collecting samples every 25 m (16 samples 
ha-1), with the latter chosen to simulate the sampling 
achieved with the on-the-go system proposed by Adamchuk 
et al. (2006). In general, the sampling with the higher 
resolution improved the results of the semivariograms, 
allowing clear identification of spatial structures of 
available pH, P, and Mg. In addition, intensive sampling 
allowed interpolations using kriging with higher predictive 
accuracy. However, despite better results with high-
resolution sampling for most of the evaluated attributes, 
Schirrmann and Domsch (2011) did not achieve good 
spatial models for the available K. According to the authors, 
the microscale variation of available K, with a spatial 
dependence range less than 25 m, limited the 
characterization of this nutrient.  

A short spatial dependence, marked by a short-range 
semivariogram, requires high spatial density sampling to 
generate reliable spatial diagnostics. A review conducted by 
Viscarra Rossel and Lobsey (2016) showed that the spatial 
variability range of physical and chemical attributes in soils 
(0 to 20 cm of depth) fluctuated between < 10 and 100 m 
(Table 1). Furthermore, it is not unusual for agricultural 
fields to have variations in microscale nutrients, as 
reported by Schirrmann and Domsch, (2011). For a proper 
diagnosis of a specific soil attribute using grid sampling, 
researchers recommend that the minimum spacing 
between samples should be equal to or less than half of the 
spatial dependence range (Molin et al., 2015), i.e., a 
sampling density that is greater than 1 sample ha-1. 
However, this is a density that is incompatible with field 
sampling and the costs of laboratory tests (Demattê et al., 
2015a; Viscarra Rossel & Bouma, 2016). 

 
TABLE 1. Spatial and temporal variability of soil attributes (adapted from Viscarra Rossel & Lobsey, 2016). 

Soil attribute Spatial variability (amplitude) Temporal variability 

Texture Moderate–high (between 20 and 98 m) Low 

Organic carbon High (between 22 and 78 m) Moderate (between 5 and 10 years) 

CEC Moderate–high Moderate 

pH Moderate–high (between 30 and 100 m) Moderate–high (between season) 

Available P High (between < 10 and 31 m) High (within and between season) 

Available K High (between 18 and 68 m) Moderate–high (within and between season) 
 
Challenges and opportunities of using soil sensors 

Owing to the challenges associated with the 
spatiotemporal characterization of soil attributes, sensing 
technologies enable the monitoring of agricultural soils at a 
low cost, even as with a high sampling resolution and 
satisfactory accuracy. The development of (i) sensor 
systems compatible with on-line measurements and/or (ii) 
portable sensor systems well-matched with easy-to-use 
analytical procedures [e.g., the concept of a mobile 
laboratory (Pandey et al., 2017)] are two alternatives that  

can increase the quantity of soil information (Figure 3). The 
first alternative is related to the use of PSS techniques and 
it would minimize the effort related to sample collection, 
cost of traditional laboratory analyses, and use of reagents 
during the analyses. The second alternative is related to 
practical analytical methods that are executable by the user. 
However, it would only provide a partial solution, 
reducing laboratory costs and the use of reagents, but it 
still requires the execution of geo-referenced sample 
collection and analysis. 
 



Sensor systems for mapping soil fertility attributes: challenges, advances, and perspectives in Brazilian tropical soils 130 

 

 
Engenharia Agrícola, Jaboticabal, v.39, special issue, p.126-147, sep. 2019 

 

 

FIGURE 3. Alternative soil sensing approaches for increasing the quantity of soil information. (A) Sensors embedded in mobile 
platforms; (B) Sensors placed directly in the field in a stationary operation (Agrocares, Wageningen, Holland; 
https://www.agrocares.com/en); (C) Mobile laboratories for conducting simple sample preparation procedures and practical 
analysis (Agrocares, Wageningen, Holland; https://www.agrocares.com); and some sensor systems compatible with mobile 
laboratories: (D) laser-induced breakdown spectroscopy system developed by Agrorobótica company (São Carlos, SP, Brazil; 
https://agrorobotica.com.br) in partnership with Embrapa Agricultural Instrumentation (São Carlos, SP, Brazil), (E) Capillary 
electrophoresis system developed by Pessl (Weiz, Austria; https://metos.at/imetos-mobilab); and (F) Electrochemical sensor 
system developed by OhausTM (Parsippany, NJ, USA; https://br.ohaus.com). 
 

The idea of adapting different sensor systems to 
user-friendly approaches that are compatible with mobile 
laboratories comes very close to the concept of hybrid 
laboratory, recently discussed by Demattê et al. (2019). 
According to the authors, in a hybrid laboratory, some of 
the samples are analyzed by traditional methods and used to 
calibrate the predictive models, while the majority of the 
samples are analyzed using sensing technologies, applying 
the generated predictive models. Hybrid laboratories in 
mobile environments are an interesting alternative to 
increase the efficiency of laboratory tests with low 
environmental impact. This should boost Brazilian research 
in the coming years to seek the best set of sensors 
compatible with direct analysis of Brazilian tropical soils, 
as well as the best strategy for the calibration of predictive 
models at local and regional scales. 

In PA, on-field sensor applications are a classic 
sensing alternative for increasing the quantity of soil 
information and has been proposed since 1990 for the 
localized management of agricultural fields (Sudduth & 
Hummel, 1991; Hummel et al., 1996). Applications of soil 
sensors that operate proximally to the target and are 
compatible with direct field operations are called PSS 
techniques (Viscarra Rossel et al., 2011). Sensors compatible 
with PSS have been systematically described by Viscarra 
Rossel et al. (2011) regarding the way they take their 
measurements [invasive (in situ or ex situ) or non-invasive], 
source of energy (active or passive), operation (stationary or 
mobile), and the inference used in the measurement of the 

target soil property (direct or indirect). Thus, all the classic 
on-the-go sensors that acquire data in a kinematic way 
(Adamchuk et al. 2004) fit the concept of PSS. Soil sensors 
that are compatible with on-the-go acquisition can be 
embedded in agricultural equipment, thus allowing the 
acquisition of data during field operations (Steinberger et al., 
2009). Recently, companies have introduced in-market 
sensor systems that are adaptable in seeders and equipment 
for soil preparation, e.g., iScan (Veris Technologies, Salina, 
KS, USA) and SmartFirmer (Precision Planting, Tremont, IL, 
USA). This strategy permits the acquisition of soil data 
during routine operations, as well as allowing real-time 
adjustments of the plant population and depth for 
instrumented seeders. These applications, although 
promising, require local assessments of sensor performance 
and agronomic algorithms to adjust the recommendations. 

In the context of PA, there is a constant search for 
sensor systems that are compatible with on-the-go 
measurement, thus enabling real-time interventions (Molin 
et al., 2015). In this case, the data are processed at the same 
time as they are collected; that is, data are transformed into 
information using agronomic prescriptions (e.g., Kodaira & 
Shibusawa, 2013). Although these systems tend to be 
practical and easy to implement in the field, their 
development requires specific analysis protocols and 
agronomic models, forming a complex system of 
intelligence for the transformation of data into agronomic 
intervention (Weltzien, 2016). In the context of soil sensing, 
the interpretation of the relationship between sensor output 
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and soil attributes is the main challenge for the development 
of sensor systems for real-time intervention.  

The assessment of the accuracy of sensing 
techniques is undertaken by comparing the prediction given 
by sensors with that provided by traditional laboratory 
methods (Kuang et al., 2012). To build robust predictive 
models, the calibration strategy is important, in which the 
responses of the sensors will be related to the reference 
values obtained in the laboratory (Kuang & Mouazen, 
2011). Although this is the globally used approach for 
evaluating new sensing technologies, the use of laboratory 
analyses as a reference for creating calibration models has 
some drawbacks, as discussed by Viscarra Rossel and 
Bouma (2016). These disadvantages include (i) propensity 
of different sources of error during sampling, sample 
preparations, and analysis; and (ii) the fact that none of the 
different extracting solutions used for nutrient analysis 
produces a value that indeed represents the available 
content for plants because the availability of nutrients in the 
soil is dynamic and depends on multiple factors related to 
environmental conditions and soil–plant interactions. 

It is relatively common to observe discrepant results 
from different laboratories for the same soil sample 
analyzed under the same conditions. Such observations 
have been reported by studies conducted in Brazil 
(Eitelwein, 2017; Demattê et al., 2019) and overseas 
(Viscarra Rossel & Bouma, 2016). The calibration of sensor 
systems with doubtful laboratory results interferes with the 
performance evaluation. This should be considered by 
researchers, who should be aware of the methodological 
procedures and quality control of the laboratory they are 
utilizing. Sending samples to different laboratories could 
also be a strategy to verify the analysis results. 

The use of PSS associated with information at high 
spatial resolution of yield (yield maps) and in-season 
development of crops (e.g., vegetation indices obtained by 
canopy sensors or remote sensing) has enormous potential for 
improving on-farm trials methodologies (Viscarra Rossel & 
Bouma, 2016), which can improve the recommendation of 
fertilizer application rates. Such approaches would allow the 
creation of local databases, based on empirical estimations, 
and the development of fertilizer strategies specific for each 
field condition, thus avoiding the use of highly generalized 
data, such as regional fertilizer guides. 

Sensor systems for soil sensing 

PSS is defined as the use of sensors directly in the 
field, with the detectors in contact or close to the soil surface 
(around 2 m) (Viscarra Rossel et al., 2011). Although this 
concept excludes remote sensing applications and 
measurements with sensors performed in the laboratory 
using benchtop equipment, such approaches may be 
complementary to PSS because the development of many 
sensors starts with laboratory tests and most soil sensors use 
calibrations derived from laboratory measurements. 

Some soil sensing technologies addressed in this 
present study are not compatible with the PSS concept 
because their design concepts still require some sample 
preparation to ensure the sensor analytical capabilities (e.g., 
laser-induced breakdown spectroscopy; LIBS), which is a 
limitation for field applications. However, these sensing 
technologies can be promising for soil analysis in the 
context of PA because they are compatible with easy-to-use 
analytical procedures. Moreover, the development of faster 
and more efficient methods of sample preparation—a 
research area of Analytical Chemistry that has been greatly 
intensified in recent years (Krug & Rocha, 2016)—should 
allow the automation of this process in embedded 
equipment. This would enable the application of such 
technologies in the field, even as the performance 
improvement of some sensor systems that are already 
compatible with PSS. The study by Sethuramasamyraja et 
al. (2008) is a classic example of an automated procedure 
for the collection and preparation of soil samples. The 
authors adapted a commercial instrument (pH Manager, 
Veris Technologies, KS, USA; on-the-go system of 
electrochemical sensors) for the preparation of an aqueous 
solution with the soil, before using ion-selective electrodes. 

Soil sensors can be classified based on their design 
concept as follows: (i) optical/radiometric, (ii) 
electrical/electromagnetic, (iii) electrochemical, and (iv) 
mechanical (Adamchuk et al., 2004; Kuang et al., 2012). 
These allow the measurement of the soil capacity to (i) 
absorb, reflect, and/or emit electromagnetic energy; (ii) 
accumulate or conduct electrical charge; (iii) release ions; 
and (iv) resist mechanical distortions (Viscarra Rossel & 
Lobsey, 2016), respectively. Figure 4 shows some 
promising technologies for the direct analysis of soils. 

 

 

FIGURE 4. Some available technologies for the direct analysis of soils (adapted from Viscarra Rossel & Lobsey, 2016). 
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Studies have been conducted worldwide to develop 
sensors and techniques to map soil attributes (Adamchuk et 
al., 2004; Kodaira & Shibusawa, 2013; Nawar et al., 2019). 
Innovative applications have been proposed for exploring 
the local relationship between soil attributes and the output 
of different sensor systems, such as the use of vis-NIR 
spectroscopy for localized P management (Mouazen & 
Kuang, 2016), the use of apparent electrical conductivity 
(ECa) for localized limestone application (Sanches et al., 
2018), and the use of sensor systems and multivariate 
statistical techniques to synthesize the main variables of soil 
fertility in a fertility index, providing an important layer of 
information for the generation of management zones (MZ) 
(Viscarra Rossel et al., 2010; Whetton et al., 2018). These 
studies will be discussed in the following sections, which 
also analyze the working principles and recent 
developments in different sensing techniques, emphasizing 
their applications in Brazilian tropical soils. 

Electrical/electromagnetic sensors 

Electrical or electromagnetic sensors are already 
popular in PA and characterize on-the-go data acquisition 
and high spatial density. The continuous and non-invasive 
measurement of the ECa of soil was presented for the first 
time at the end of the 1970s by De Jong et al. (1979). These 
authors used an electromagnetic induction sensor EM-31 
(Geonics Ltd., Mississauga, ON, Canada) to evaluate the 
changes in soil salinity at different depths along a transect. 

Electrical and electromagnetic sensors evaluate the 
capacity of the soil to accumulate or conduct an electrical 
charge by measuring its ECa, which is traditionally 
evaluated in agricultural soils by electromagnetic induction 
(e.g., EM-38, Geonics Ltd., Mississauga, ON, Canada) or 
electrical resistivity measured by galvanic contact (e.g., 
Veris EC, Veris Technologies, KS, USA). ECa sensors that 
use electromagnetic induction usually contain a transmitter 
and a receiver, which do not come into direct contact with 
the soil. This type of ECa sensor uses a variable magnetic 
field, with relatively low frequency (kHz) to induce 
electrical currents in the soil, ensuring that its amplitude is 
linearly related to soil conductivity. The magnitude of this 
conductivity is determined by the generated magnetic field 
(Viscarra Rossel et al., 2011). In contrast, ECa sensors that 
measure the electrical resistivity must be in galvanic contact 
with the soil. These sensors usually use two pairs of 
electrodes: one to inject current and another to measure the 
resulting potential difference. The potential difference 
reflects the electrical resistivity of the soil, which is the 
inverse of the conductivity (Adamchuk et al., 2004). In both 
systems, by altering the strength of the magnetic field or the 
distance between the electrodes, it is possible to evaluate 
ECa at different depths, starting on the soil surface 
(Adamchuk & Viscarra Rossel, 2010). 

The spatial density of data obtained by both forms of 
ECa measurements is determined by the speed of operation, 
frequency of data acquisition (usually 1 Hz), and distance 
between the parallel lines that the equipment is pulled along in 
the field. Thus, considering a constant velocity of 4 ms-1, 
distances of 10, 20, and 30 m allow the acquisition of 250, 125, 
and 83 points ha-1, respectively. Although this density is higher 
than that used in soil sampling (usually < 1 sample ha-1), this 
form of data acquisition should also be considered as a 
sampling procedure. Thus, the velocity and distance between 
lines can be optimized by aligning the density of points to be 

collected with the spatial variability range of the target 
attribute. Further details on the optimization and planning of 
data acquisition with soil sensors, as well as a cost evaluation 
based on the field operation strategy, have been reviewed by 
Gruijter et al. (2010). 

The alteration of soil physical and chemical 
properties affects its ability to conduct an electrical current 
and, therefore, can influence the parameters measured by 
the ECa sensor. The interpretation of soil ECa is somewhat 
dynamic because it is influenced by a combination of 
factors. However, it is intrinsically related to soil moisture 
(Corwin & Lesch, 2005; Fortes et al., 2015). In addition, it 
can be used as an indicator of salinity, texture, moisture, 
density, and CEC (Doolittle et al., 1994; Corwin & Lesch, 
2005; Sudduth et al., 2005).  

Most studies have reported satisfactory relationships 
between ECa and soil texture and moisture in Brazilian soils 
(Machado et al., 2006; Molin & Rabello, 2011; Molin & 
Faulin, 2013). Molin and Rabello (2011), using the 
commercial equipment Veris EC, observed a coefficient of 
determination (R²) higher than 0.74 for the clay content. The 
authors also reported that the soil ECa is a function of the 
interaction between texture and water content and, because 
of the oscillations of water content in soils, different ECa 
values can be obtained if it fluctuates. This same 
phenomenon can also occur with the oscillation of any other 
parameters that relate indirectly to ECa (e.g., density) 
(Adamchuk & Viscarra Rossel, 2010). In these cases, weak 
correlations between ECa and texture can be observed, as 
found by Molin et al. (2005). The sensor sensitivity for the 
evaluation of soil texture is related to the soil moisture 
present. Higher contents of water allow for better 
correlations with texture and, on the other hand, evaluations 
with dry soil should be avoided owing to the low sensitivity 
of this sensor to textural variations (Molin & Faulin, 2013). 
Therefore, the best conditions for texture mapping using 
ECa occur when the soil moisture is slightly below the field 
capacity. Excessive water content should also be avoided 
because the results will no longer reflect textural 
parameters, with the electrical conductivity of the soil 
solution predominating. 

In some cases, the literature has shown satisfactory 
relationships between ECa and soil attributes such as CEC 
and available nutrients (Officer et al., 2004). In Brazilian 
soils, Molin and Castro (2008) obtained good predictions 
(R² > 0.70) of available K and Ca, CEC, base saturation (V 
%), OM, and clay. When observed, these relationships can 
be explored for a more assertive mapping of such attributes. 
Sanches et al. (2018) used ECa information in a 50-ha field 
to perform targeted soil sampling (one sample every 2.5 ha 
or 0.4 sample ha-1) and afterward interpolated soil fertility 
attributes using kriging with external drift (KDE). In the 
same area, the authors performed a dense sampling with 4 
samples ha-1 to compare with the previous approach. After 
interpolation, the performance of both mapping strategies 
was evaluated using 50 new sampling points. The authors 
obtained better mapping for almost all soil attributes using 
ECa-targeted soil sampling combined with KDE 
interpolation, concluding that this approach was promising 
to increase the accuracy of soil fertility maps using a 
reduced number of collected samples. 

Another important feature of soil ECa is its temporal 
stability (Molin & Faulin, 2013; Serrano et al., 2017), which 
is also influenced by its relationship with soil texture. The 
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spatial patterns of ECa generally remain constant over time, 
regardless of its magnitude. Thus, multiple ECa 
measurements on the same field might allow inferences on 
other soil properties affecting ECa beyond texture, such as 
moisture (Brevik et al., 2006; Hossain et al., 2010), salinity 
(Zare et al., 2015), and density (Hoefer et al., 2010).  

The spatial patterns of ECa in agricultural fields are 
commonly used as an important layer of information for 
defining MZ (Molin & Castro, 2008; Nawar et al., 2017). 
MZ are areas of the field that present combinations of yield-
limiting factors that are relatively homogeneous and that are 
stable over time (Vrindts et al., 2005). Thus, the association 
of ECa spatial information—as well as the output of other 
sensor systems, such as active canopy sensors, remote 
sensing data, and other soil sensing techniques—with high 
resolution and multitemporal yield data allow more robust 
estimates of MZ for the consideration of factors that vary 
year-to-year, such as weather conditions, pests, and diseases 
(Brock et al., 2005). In Brazil, Sanches et al. (2019) 
demonstrated the application of ECa for the classification of 
production environments for sugarcane cultivation. The 
concept of the production environment is based on soil–
climate interactions to define areas of similar productive 
potential (Prado, 2005). It is a well-disseminated technique 
and is used by sugarcane growers in the South-Central 
region of Brazil. This concept approximates to the idea of 
MZ, but in lower spatial resolution. Different practices of 
sugarcane crop management (e.g., choice of varieties, 
fertilization, planting time, and harvest) are determined 
based on the production environment (Sanches et al., 2019). 

ECa equipment generally allows for data collection 
at multiple soil depths, enabling applications for the spatial 
estimation of soil attributes at different depths and the 3D 
modeling of these attributes (Monteiro et al., 2010). The in-
depth measurement of ECa allows for the monitoring of 
horizons with a textural gradient (Sudduth et al., 2001). 
However, one disadvantage of 3D modeling using on-the-
go measurement of ECa is the collinearity of data from 
different depths, as the deeper sensing (e.g., from 0 to 90 
cm) includes information about the shallowest sensing (e.g., 
from 0 to 30 cm) (Sudduth et al., 2013). 

For vertical ECa data acquisition without 
collinearity, ECa sensors have been placed in cone 
penetrometers (Pan et al., 2014). The configuration of the 
sensor electrodes is equatorial (dipole–dipole type) (Pan et 
al., 2014), which allows for point measurements of ECa, 
i.e., without collinearity between data from different depths. 
Sudduth et al. (2013) measured ECa vertically using dipole–
dipole electrodes coupled to a penetrometer and obtained 
accurate predictions of the topsoil depth (R² > 0.9), as well 
as a more realistic characterization of soil profiles. 
Combining this information with on-the-go mapping of ECa 
improved the 3D model of this parameter; however, the 
vertical measurement hindered the densification of the data. 

Although its interpretation is dynamic, systems that 
measure the soil ECa are excellent tools for the spatial 
variability characterization of agricultural soils. The 
acquisition of ECa data is still predominantly performed in 
an exclusive operation; however, the incorporation of these 
sensors into farming equipment (e.g., iScan, Veris 
Technologies, KS, USA) is a trend that should increase the 
availability of these data for agricultural managers. For 
contact ECa sensors, the challenge is less complex than that 
of induction sensors, which require the physical removal of 

metals. Recently, an induction sensor system that claims to 
overcome this limitation has emerged in the market 
(Topsoil Mapper, Geoprospectors, Austria). Such solutions 
can reduce operational limitations, especially those 
associated with the lack of soil moisture availability at times 
when there are no crops in the field. Despite being a 
relatively well-known technique among PA users, there are 
few studies in Brazilian soils focusing on practical 
approaches using ECa for localized soil management. 

vis-NIR-MIR spectroscopy 

Diffuse reflectance spectroscopy (DRS) is a soil 
sensing technique characterized by its practicality, low 
operating cost, non-destructive nature, multi-
informational spectra, and compatibility with little or no 
sample preparation (Stenberg et al., 2010). Another 
important feature of DRS is the possibility of registering 
spectral data on points or images using different platforms, 
e.g., using sensors directly on the field, using benchtop 
sensors in the laboratory with sampled material, or using 
remote sensing platforms with multi or hyperspectral 
cameras. DRS involves remote, proximal (on-field), or 
laboratory measurements and is a promising technique for 
digital soil mapping (McBratney et al., 2003) and PA 
(Adamchuk et al., 2004). 

DRS has been used in Soil Science since the 
beginning of 1950 (Brooks, 1952). However, only in the last 
three decades has it gained importance with the development 
of more practical applications, which is mainly associated 
with the establishment of chemometrics and multivariate 
statistical techniques in Analytical Chemistry. (Viscarra 
Rossel et al., 2011). Several scientific studies have 
successfully estimated soil physical and chemical properties 
using DRS in the spectral regions of the visible (vis; 400–700 
nm), near-infrared (NIR; 700–2500 nm), and medium 
infrared (MIR; 2500–25000 nm) ranges (Ben-Dor & Banin, 
1995; Viscarra Rossel et al., 2006). Moreover, DRS has been 
successfully applied directly in the field using sensors 
embedded in mobile platforms (Shibusawa et al., 1999; 
Mouazen et al., 2007; Christy, 2008) and portable sensors 
(Dhawale et al., 2015). 

Diffuse reflectance is the percentage of the incident 
radiation that is diffusely reflected by the soil at different 
wavelengths. The reflectance response of the soil, after its 
interaction with the different incident wavelengths, 
constitutes its spectral behavior, which is represented by a 
spectrum. The spectra produced are the result of interactions 
between atoms and molecules of the soil and the incident 
radiation, which penetrates the first 10–50 µm of the sample 
surface (Demattê et al., 2016b). Vis-NIR spectra provide 
information inherent to the soil and are related primarily to 
its mineral constituents, organic compounds, and water 
content (Ben-Dor, 2002). In the spectrum, this information 
is represented by its intensity, shape, and absorption 
(spectral features) at specific wavelengths of 
electromagnetic radiation (Demattê, 2002).  

Absorptions in the visible region occur due to the 
excitation of valence electrons present in some atoms and 
functional groups (Clark & Roush, 1984). In soil organic 
molecules, these absorptions are restricted to certain 
functional groups (chromophores), which generate a 
rectilineal and concave shape across all spectra of the 
visible region. In inorganic species, such as iron oxides 
(e.g., hematite and goethite), absorption occurs due to 
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charge transfer, usually between 500 and 650 nm 
wavelengths. In infrared, especially MIR, the wavelengths 
that present energy that is equivalent to the natural vibration 
frequencies of some molecules are absorbed and increase 
the intensity of these vibrations (Pavia et al., 2010). In the 
NIR, absorption occurs due to non-fundamental vibrations, 
which are overtones and combination tones of the 
fundamental vibrations. Non-fundamental vibrations are 
considered secondary vibrations, which have a lower 
intensity and are propagations of fundamental vibrations 
(Demattê et al., 2016b). Important absorption features in the 
soil spectra occur between 840 and 940 nm, related to the 
presence of Fe oxides (e.g., hematite and goethite); between 
1400 and 1900 nm due to the presence of water and 
hydroxyl molecules; between 2205 and 2225 nm related to 
the presence of kainite; and at 2265 nm in of the presence 
of gibbsite (Demattê, 2002). Other important information in 
the vis-NIR spectra is related to the scattering of energy 
throughout the spectra, which under stable conditions of 
acquisition geometry, sample roughness and source 
intensity is related to soil granulometry (Ben-Dor, 2002). 

Worldwide, many attempts have been made to predict 
the physical and chemical attributes of soil using vis-NIR 
spectra. In general, calibrations of organic and total C, total 
N, and clay content are more likely to succeed because clay 
minerals and OM are the spectrally active soil constituents, 
with well-known spectral features in the vis-NIR region 
(Ben-Dor, 2002). Available nutrients and other soil attributes 
(e.g., CEC, pH, and V %) do not present absorption features 
in this spectral region and, hence, their correlations with vis-
NIR spectra are generally weak (Stenberg et al., 2010). 
However, there may be exceptions, as observed by Demattê 
et al. (2017) for available Mg and K in Brazilian tropical soils 
and by Mouazen and Kuang (2016) for available P in soils of 
temperate regions. These occasionally successful calibrations 
can be attributed to the covariance of soil attributes with some 
spectrally active constituents (Kuang et al., 2012). This 
behavior has generally been observed at the local level. In 
agricultural soils, this explanation is reasonable because 
nutrients are depleted with plant production, which is related 
to productivity. Depending on the degree to which the 
productivity is regulated by the clay and soil OM, the 
available nutrients will be associated with these variables 
and, consequently, with the vis-NIR spectrum (Stenberg et 
al., 2010). Detailed reviews of the fluctuations in the 
performance of vis-NIR sensors for the prediction of soil 
attributes have been shown in Stenberg et al. (2010) and 
Kuang et al. (2012). 

In Brazilian tropical soils, most studies involve the 
application of vis-NIR sensors in a controlled environment 
(e.g., Demattê et al., 2002, 2003, 2004, 2015a) and 
embedded in remote sensing platforms (e.g., Nanni & 
Demattê, 2006; Demattê et al., 2016a) for the digital survey 
of soils. Considering fertility attributes, predictive models 
with good results have been more frequent for soil texture, 
which have been obtained in a controlled environment 
(Demattê et al., 2015a; Lacerda et al., 2016; Cezar et al., 
2019) and using orbital images (Demattê et al., 2016a). 
Laboratory analyses have also reported good prediction 
models for OM (Demattê et al., 2004; Cezar et al., 2019), 
CEC (Nanni & Demattê, 2006), and available nutrients 
(Demattê et al., 2017). A promising approach using a vis-
NIR sensor to characterize fertility classes in a Brazilian 
field of sugarcane production (185 ha) was presented by 

Viscarra Rossel et al. (2010). The authors explored the 
multi-informational character of the vis-NIR spectra, 
associating it with the spatial information of the relief, using 
cluster analysis to define a fertility index for different zones. 
This approach allowed the grouping of three zones with 
contrasting fertility levels that should be managed using 
distinct fertilization strategies. Generating fertility indices 
is a strategy that allows for the grouping of key variables 
associated with soil fertility and is an interesting alternative 
to using soil sensor information in PA approaches (Iznaga 
et al., 2014; Askari et al., 2015). In addition, this approach 
is compatible with on-the-go surveys (Whetton et al., 2018), 
allowing spectral characterization of the field with more 
detailed spatial resolution. 

Owing to the satisfactory performance of vis-NIR 
sensors in the laboratory, efforts have been made to develop 
equipment for field operations to perform on-the-go 
readings (Shibusawa et al., 1999; Christy, 2008). One of the 
main challenges of field applications using 
spectroanalytical techniques is to minimize the external 
effects (e.g., moisture, roughness, granulometry, and so on) 
that compromise part of the analytical performance of the 
sensors (Krug & Rocha, 2017). DRS techniques in the 
laboratory require some sample preparation, such as drying 
and grinding, which ensures a better condition of the sample 
for spectral analysis (e.g., homogeneity, reduction of the 
effects promoted by roughness and moisture). The sample 
preparation procedure predominantly used for data 
acquisition with vis-NIR sensors involves soil drying and 
sieving (< 2 mm) (Ben-Dor et al., 2015). Although direct 
sensing in the field does not require sample preparation, 
alternative methods can be adopted to minimize external 
effects, such as external parameter orthogonalization 
(Roger et al., 2003) and direct standardization (Wang et al., 
1995). Some studies using vis-NIR spectroscopy directly in 
the field have achieved insensitive predictions of external 
effects using such methods (Wijewardane et al., 2016; 
Roudier et al., 2017). In Brazilian soils, Franceschini et al. 
(2013) was the pioneer in using on-the-go vis-NIR 
acquisitions. After using different methods to control for 
the external effects, the authors obtained prediction 
models with semi-quantitative potentials. They also 
highlighted the need to ensure stable geometry conditions 
between the sensor and soil during on-the-go surveys to 
obtain better performance. 

Globally, few studies have reported the use of on-
the-go vis-NIR techniques for fertility diagnosis and to 
delineate variable rate applications of fertilizers (e.g., 
Maleki et al., 2008; Mouazen & Kuang, 2016). 
Groundbreaking research was presented by Mouazen and 
Kuang (2016), who presented an approach for the localized 
management of P in a 21-ha field in the United Kingdom, 
where they used a vis-NIR on-the-go spectrometer to build 
prescription maps of available P. In this study, the 
measurement of P was performed over 3 years (2011, 2012, 
and 2013) following harvesting. After localized 
management, which was guided by the P prescription maps, 
an improvement in the spatial distribution of P was 
observed, reducing its coefficients of variation from 26% to 
25% and, subsequently, to 16% in 2011, 2012, and 2013, 
respectively. Despite the challenges of low-quality spectral 
data and inconsistent results for different areas, Mouazen 
and Kuang (2016) demonstrated the potential of the 
technique for a more assertive spatial diagnosis of fertility 
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attributes in agricultural fields, achieving the benefits of 
localized management. Approaches utilizing multisensor 
systems and data fusion will open possibilities for new 
applications and improve the performance of current DRS 
techniques. Future studies in Brazilian tropical soils should 
be encouraged. 

DRS sensors operating in the MIR region have 
similar characteristics to NIR sensors in relation to their 
design concept. However, traditionally, they present some 
particularities regarding their practicality of use and have 
greater difficulties in field application (Reeves III, 2010). 
MIR absorption features occur due to fundamental 
vibrations and, therefore, present higher intensity than those 
of NIR (Demattê et al., 2016b). MIR spectra have a greater 
number of features related to soil minerals and organic 
compounds compared to vis-NIR spectra, thus their 
calibrations are generally more robust (Viscarra Rossel et 
al., 2011). However, the sample preparation used 
traditionally for MIR analysis is more labor intensive   
than that for vis-NIR analysis because it involves the 
milling of material until a particle size between 80 and 100 
µm (Janik et al., 1998).  

Until recently, MIR sensors have not been applied 
directly in the field due to their high cost and fragility, as 
the risk in damaging the sensors does not compensate for 
the slight gain in performance compared to vis-NIR 
equipment (Viscarra Rossel et al., 2006). However, recent 
technological advances have allowed the development of 
portable prototypes, thus enabling field tests to be 
undertaken. Although MIR spectra are more sensitive to soil 
moisture and require sample preparation for particle size 
reduction (Reeves III, 2010), field tests using a MIR 
prototype have been promising (Dhawale et al., 2015; Ji et 
al., 2016). Thus, precedents have been set for this technique 
to be further exploited as a PSS technique. Dhawale et al. 
(2015) used a MIR sensor on soils simulating field 
conditions (with different moistures and particle sizes). 
They obtained predictions that were reasonable for soil 
texture and MO, even with the occurrence of distortion in 
the spectra due to moisture. Ji et al. (2016) used a portable 
MIR sensor in the soil of two agricultural fields. Although 
the results varied for different areas, good prediction models 
(R² > 0.8) were observed for MO, available Ca, CEC, and 
soil density. Only a few studies have been conducted in 
Brazilian tropical soils using MIR sensors to predict fertility 
attributes and no study has evaluated MIR sensors directly 
in the field. In the laboratory, evaluations by Demattê et al. 
(2015b) showed promising results for textural attributes 
(sand and clay), organic carbon, CEC, V % and acidity 
indicator attributes (Al3+ and H+ + Al3+). Additionally, in 
Brazilian soils, Madari et al. (2006) observed excellent 
results (R² > 0.90) for textural attributes and organic carbon. 

Electrochemical sensors 

The most common electrochemical sensors used for 
soil sensing are ion-selective electrodes (ISE) and the ion-
sensitive field-effect transistor (ISFET) (Gebbers & 
Adamchuk, 2010). Both sensor systems respond selectively 
to a given ion (e.g., H+, K+, PO4

3-, and NO3
-), following a 

logarithmic relationship between ion activity and the 
electrical potential, as described by the Nernst equation 
(Schirrmann et al., 2011). Electrochemical sensors require 
an ion recognition element (e.g., ion-selective membrane), 
which is integrated with a reference electrode that allows 

the measurement of the electrical potential difference 
between the soil and the standard solution, given in 
millivolts (mV) (Kim et al., 2009). 

Electrochemical sensors can work in direct contact 
with a moist soil sample or inside a previously prepared 
solution (Sinfield et al., 2010). The measurements are 
relatively rapid and require a period to obtain signal 
stabilization, usually between 5 and 15 s (Adamchuk et al., 
2005). Adamchuk et al. (1999) showed the applicability of 
electrochemical sensors directly on soil samples under field 
moisture conditions without preparing a soil solution, which 
has traditionally been used in laboratory analysis. The 
authors observed that humidity influenced the sensor 
reading, i.e., as the water content in the soil increased,        
the mV response decreased. However, among the     
common moisture ranges in mechanized field operations 
(15–25 g g-1), this effect can be ignored because there is no 
significant difference in sensor response.  

The good performance of electrochemical sensors 
applied directly on moist soil led to the creation of an 
automated soil collection system for on-the-go 
measurements (Adamchuk et al., 1999, 2005), which is now 
a commercial product (pH Manager, Veris Technologies, 
Salina, USA). As it moves through the field, this system 
collects soil samples automatically at depths of 
approximately 10 cm, using a rod driven by a hydraulic 
system. The collected samples are placed in direct contact 
with two ISE and, after signal stabilization, the pH value is 
recorded and associated with the positioning information 
collected by a global navigation satellite system receiver. 
After reading, the sampling rod returns to the soil for the 
collection of a new sample, with the tips of the electrodes 
being cleaned by two water jet nozzles. The system allows 
for the approximate collection of one sample every 15 s. 
Similar to other on-the-go sensor systems, the spatial 
density of the analyzed samples depends on the speed of the 
operation and the distance between lines, which should be 
established based on the spatial variability range of the pH 
in the area to be mapped. At an average speed of 4 ms-1, 
with 20 m between the lines, a survey of approximately 
eight samples ha-1 can be obtained. 

Using the on-the-go ISE system in German soils, 
Schirrmann et al. (2011) observed correlations ranging from 
0.63 to 0.84 between the pH measured in the laboratory and 
the pH measured by electrochemical sensors. In the same 
study, the authors observed clear spatial relationships 
between the pH maps prescribed with the sensor system and 
those obtained using the traditional grid sampling method. 
The authors suggested that, although the ISE system 
directly measures the pH of the soil, specific calibrations for 
each field should be performed to reduce systematic errors. 
Schirrmann et al. (2011) emphasized that the only 
operational deficiency of the equipment occurs in fields that 
contain a lot of residual straw and weed roots, which can 
obstruct the sampler orifice. Similar accuracy results were 
obtained by Adamchuk et al. (2007) using the same sensor 
system in North American soils. Adamchuk et al. (2005) 
replaced the electrodes of the on-the-go system and studied 
the potential use of ISE for the measurement of pH, 
available K, nitrate, and Na. The authors evaluated the 
accuracy of the readings of eight electrodes in the field. R² 
values between the field and reference readings (laboratory) 
were around 0.93 and 0.96 for soil pH, 0.61 and 0.62 for 
available K, 0.41 and 0.51 for nitrate, and 0.11 for Na. 
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Sethuramasamyraja et al. (2008) used the same 
equipment with some adaptations and evaluated the 
accuracy of pH, available K, and nitrate measurements. The 
equipment was modified to collect samples and prepare 
them in an aqueous solution before reading by the ISE pairs. 
The R² values between the field and laboratory data were 
0.85 and 0.89 for soil pH, 0.50 and 0.54 for available K, and 
0.14 and 0.32 for nitrate. Despite the reasonable results for 
available K and nitrate, the automated sample preparation 
before the ISE readings allowed a significant increase in its 
performance. This system represents an example of the 
automation of the sample preparation process, embedded in 
agricultural machinery, which is an engineering alternative 
for improving the performance of soil sensing techniques.  

In Brazilian soils, electrochemical sensors for pH 
prediction were evaluated by Silva and Molin (2018) and 
Eitelwein et al. (2016), who both used the pH Manager 
equipment. These authors applied different methodologies 
to compare the ISE performance and the results found by 
both were divergent and ranged from good (R² > 0.8) to 
weak (R² < 0.1) predictions. However, when evaluated 
under controlled conditions (for example, when evaluating 
exactly the same portion of soil by ISE sensors and 
laboratory tests), the ISE showed good pH determinations. 
Further studies should be conducted in Brazilian tropical 
soils for the evaluation of different electrochemical sensors, 
as well as their synergy with other sensor systems.  

Gamma-ray spectroscopy 

The use of gamma-ray spectroscopy as a soil 
sensing technique in the context of PA is relatively recent 
(Viscarra Rossel et al., 2007). The spectral region of 
gamma radiation comprises very short wavelengths (high 
frequency). Passive gamma-ray spectrometers generally 
measure the intensity of radiation emitted between 
energies from 0 to 3 MeV (Adamchuk & Viscarra Rossel, 
2010). Gamma-rays are emitted by the soil owing to the 
natural occurrence of radioisotopes, which naturally 
disintegrate and produce gamma radiation. The main 
radioisotopes present in the soils are K, U (uranium), and 
Th (thorium). Each radioisotope emits a characteristic 
gamma radiation energy, which can be used for qualitative 
assessments. Under controlled attenuation conditions and 
with properly calibrated equipment, the emission intensity 
can be used to infer the concentrations of the isotopes 
(Wilford et al., 1997).  

The spatial distribution and content of radioisotopes 
may be associated with traditional soil formation factors 
(e.g., parent material, pedogenetic processes, and so on), as 
well as anthropic actions (e.g., application and management 
of fertilizers) (Wetterlind et al., 2012). Thus, information on 
soil mineralogy, weathering, and chemical properties can be 
obtained by this form of sensing (Nawar et al., 2017). Soil 
isotope mapping can be accomplished by embedding 
gamma-ray sensors in agricultural equipment; commercial 
sensors for on-the-go mapping are already available (e.g., 
SoilOptix, Ontario, Canada). Approximately 95% of the 
gamma radiation measured in field surveys is emitted from 
the first 0.5 m of soil depth (Gregory & Horwood, 1961). 
Different forms of attenuation, which can occur during the 
path taken from the radiation source (radioisotope) until the 
sensor detector, may interfere with the gamma-ray intensity 
measurements. In general, attenuations during field surveys 
occur due to variations in soil density and moisture, 

variations in ground cover (e.g., straw and vegetation), and 
atmospheric variations (e.g., temperature, pressure, and so 
on) (Taylor et al., 2002). According to Erdi-Krausz et al. 
(2003), attenuation can generate significant errors in field 
surveys. The authors also proposed that (i) increases in soil 
moisture by 10% may decrease the intensity of gamma-rays 
in the same proportion, (ii) 2 cm of plant cover can attenuate 
up to 35% of the gamma radiation, and (iii) different air 
density variations (generated by temperature and pressure 
variations) attenuate gamma-rays in the same proportion. 
Detailed information about the fundamental principles of 
gamma-ray spectroscopy, as well as a thorough discussion 
on the best practices for field surveys have been reviewed 
by Erdi-Krausz et al. (2003). 

In the context of PA, some studies have indicated 
gamma-ray sensing as an alternative for predicting soil 
fertility attributes, such as clay content, CEC, pH, and 
available K (Viscarra Rossel et al., 2007; Castrignanò et al. 
2012; Huang et al., 2014; Rodrigues et al., 2015). Viscarra 
Rossel et al. (2007) evaluated the spatial variability of 
radioisotopes in agricultural soils by performing on-the-go 
measurements with a portable gamma-ray spectrometer 
mounted on the front of a vehicle. The authors reported 
predictions with R² higher than 0.70 for clay content, pH, 
and Fe contents. Castrignanò et al. (2012) explored gamma-
ray spectrum information by dividing it in different ways: 
(i) gamma-ray counts emitted by K; (ii) gamma-ray counts 
emitted by Th; (iii) gamma-ray counts emitted by U; and 
(iv) total gamma-ray counts. The authors observed 
satisfactory correlations between available K and gamma-
ray counts emitted by K, concluding that data obtained by 
this sensor have the potential to be used to improve K 
mappings accuracy.  

Gamma-ray sensing has not yet been applied for the 
spatial evaluation of Brazilian tropical soils. However, 
Castilhos et al. (2015), using gamma-ray measurement in 
the laboratory on soil samples collected along a 
toposequence, classified variations in chemical properties 
among the different samples and made inferences about 
pedogenetic processes of the local landscape. Technological 
advances have compatibilized the use of passive gamma-ray 
sensors directly in the field, as well as successful 
applications of this technology for the characterization of 
agricultural soils from different regions (e.g., Castrignanò 
et al. 2012). Therefore, applications of this technology in 
Brazilian tropical soils should be encouraged. 

X-ray fluorescence (XRF) spectroscopy 

In recent years, there has been an increased interest 
in elemental analysis sensors, such as XRF and LIBS. These 
techniques are multi-elemental, allowing the measurement 
of the total content of a wide range of elements present in 
soil samples, such as Si, Fe, Al, K, P, and Ca. The 
techniques are compatible with the direct analysis of solids, 
and can obtain satisfactory analytical performances in soil 
samples with little or no preprocessing, and without 
generating chemical residues (Gredilla et al., 2016). Recent 
technological advances in optical and electronic 
components have allowed the development and 
miniaturization of these sensor systems, making both 
techniques more attractive for on-field analysis.  

The XRF technique is based on the fluorescence 
induction of a sample utilizing its excitation with an 
incident X-ray source, followed by the measurement of 
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specific photons that are emitted after this process 
(Kalnicky & Singhvi, 2001). These photons also present 
energy in the X-ray region of the electromagnetic spectrum 
and this emitted energy is characteristic of each atom and, 
consequently, allows qualitative and quantitative analyses 
of most elements present in the samples (Jenkins, 1995). 
Heavy elements, that is, with higher atomic numbers (e.g., 
Fe, Co, and Ni) are more accurately measured than elements 
of low atomic number (e.g., Si, Al, and P) such that higher 
limits of detection (LOD) are observed for light elements. 
For example, P presents LOD of approximately 5000 mg 
kg-1, whereas heavier elements, such as U, present a lower 
LOD of ~ 5 mg kg-1 (Weindorf & Chakraborty, 2016). In 
addition, elements with atomic numbers < 12 cannot be 
detected by this technique (Jenkins, 1995). The XRF spectra 
acquisition time is a parameter that must be configured on 
these sensors. Generally, it is recommended that the 
readings last for approximately 30–90 s, with the longer the 
acquisition time, the greater the accuracy of the data 
(Weindorf & Chakraborty, 2016). 

Regarding sample preparation, procedures such as 
drying and comminution (reduction of particle size) allow 
the removal of moisture and promote homogenization of the 
sample, thus guaranteeing a gain in precision for XRF 
measurements (Krug & Rocha, 2016). However, 
simplification or omission of sample preparation may still 
produce promising results. O’Rourke et al. (2016) used dry 
samples with a particle size < 2 mm (preparation procedure 
similar to that adopted in laboratory measurements with vis-
NIR sensor) and obtained an R² higher than 0.70 for the total 
content of K, Cr, Cu, Mn, and Zn. Weindorf et al. (2012) 
used a portable XRF equipment to evaluate the chemical 
components in soil trenches, without any sample 
preparation. The authors reported that the technique 
allowed the observation of subtle chemical differences 
between the different horizons of a soil profile. Moreover, 
they obtained good prediction models (R² > 0.90) for 
organic C. An advantage of the field application of XRF 
when compared to DRS vis/NIR/MIR techniques is the 
lower influence of soil moisture on its spectra (Horta et al., 
2015). Ge et al. (2005) presented a simple method for 
correcting the effect of moisture, stating that its application 
is necessary only in samples with a gravimetric moisture 
content above 20%. 

Although XRF equipment measures the total content 
of soil elements, these sensors have been suggested as an 
auxiliary technique for the evaluation of fertility attributes 
(O’Rourke et al. 2016; Nawar et al., 2019). In soils of 
temperate regions, good results have been reported for pH 
prediction (Sharma et al. 2014), CEC (Sharma et al. 2015), 
V % (Rawal et al., 2019), soil texture (Zhu et al. 2011), and 
the total content of different elements (O’Rourke et al. 
2016). In Brazilian tropical soils, satisfactory performances 
have been obtained for available K and Ca predictions 
(Tavares et al., 2019), organic C and MO (Morona et al., 
2017), and textural attributes (Silva et al., 2018).  

A comprehensive overview of the fundamentals and 
applications of the XRF technique using portable equipment 
for soil analysis, as well as discussions on quality control 
protocols, spectral interferences, equipment, and safety 
procedures, are shown in the United States Environmental 
Protection Agency’s 6200 method (USEPA, 2007). 
 

Laser-induced breakdown spectroscopy (LIBS) 

LIBS, as well as XRF, is a spectroanalytical 
technique for elemental analysis. This technique uses a laser 
as an energy source to vaporize part of the surface of the 
material to be analyzed, causing a microsampling by 
ablation and subsequent excitation of atoms and ions. This 
excitation generates a microplasma that has its emission 
spectrum detected by a spectrometer, which is usually 
sensitive in the range between 200 and 900 nm (Harmon et 
al., 2013). The LIBS technique allows direct analysis of 
solids and is advantageous for its practicality, multi-
elemental character, and micro-destructive technique (Yu et 
al., 2016). Moreover, it can be considered a 
complementary technique to XRF because it allows the 
quantification of elements with atomic numbers < 12. The 
spectra acquisition by this technique is extremely fast, 
with the collection of 1–20 spectra per second (depending 
on laser frequency) (Krug & Rocha, 2016).  

For efficient quantitative applications of the LIBS 
technique, it is necessary to ensure that the laser promotes a 
congruent ablation in the analyzed samples, as well as an 
adequate plasma formation for the expulsion of the 
elements that compose the material (Senesi et al., 2009). 
This interaction between the laser and the sample, which 
involves ablation, vaporization, atomization, and excitation 
processes of the species in the plasma, must be reproducible 
(Gomes et al. 2011). Variations in the amount of the 
ablationated matter make it difficult to model the elements 
and replicate the generated models. Thus, the sample 
preparation before the application of the LIBS technique is 
of paramount importance and is one of the main challenges 
for applying the LIBS technique to soil samples under field 
conditions (Jantzi et al., 2016, 30). Thus, although 
technological advances have allowed the development of 
portable LIBS sensors (already marketed by some 
companies; e.g., Sciaps, Inc., Woburn, MA, USA), the 
application of such equipment for quantitative assessments 
in soil samples, directly in the field, still have challenges to 
be overcome. 

In benchtop analysis, pellet preparation has been 
recommended for the evaluation of soil samples. Pellets are 
prepared by applying a high pressure (~784.53 MPa or 8 t 
cm-2) on dried and comminuted (with particle size usually < 
150 µm) soil samples. The comminution of the material is 
usually performed with a cryogenic grinding mill or ball 
mill. Sandy soils, with high silicate presence, do not form 
pellets only by pressing the comminuted material and 
require the addition of a binder material (e.g., cellulose, 
paraffin, and so on). When necessary, the binder material 
should not contain the elements of interest in the analysis, 
i.e., it must be inert. The pellet preparation, besides 
promoting material homogeneity, allows standardization of 
the density, porosity, and roughness of the sample surface 
(Krug & Rocha, 2016). The smaller the particle size to be 
pressurized, the more resistant and cohesive will be the 
pellet, and therefore will present more uniform craters 
after laser ablation and better measurement accuracy 
(Carvalho et al., 2015). 

In recent years, there has been growing interest in 
applying the LIBS technique for determining the fertility 
attributes of soil samples (Nicolodelli et al., 2019). Diaz et 
al. (2012) evaluated the application of LIBS in agricultural 
soils to determine the total content of some elements and 
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obtained promising results (R² > 0.90) for the prediction 
of Mg, Ca, Na, P, and Fe. Recent studies have discussed 
the use of LIBS for the quantitative analysis of C (Senesi 
& Senesi, 2016) and Ca (Rühlmann et al., 2018) total 
content. In Brazilian soils, different studies have shown 
the potential of this technique to predict clay, sand, and silt 
content (Villas-Boas et al., 2016); C (Nicolodelli et al., 
2014) and pH values (Ferreira et al., 2015). In the latter 
study, the pH was predicted using the intensity of 32 
different emission lines of Al, Ca, H, and O, in association 
with multivariate statistical techniques. Knadel et al. 
(2017) compared the performance between a LIBS sensor 
and a vis-NIR sensor to predict organic carbon and textural 
attributes of agricultural soils. The authors obtained good 
results with both techniques; however, the determinations 
performed with LIBS generally allowed for lower 
prediction errors. The authors emphasized that the sample 
preparation performed for the LIBS analyses (pellet 
preparation) is a key disadvantage of this technique 
compared to vis-NIR spectroscopy. 

Some studies have suggested methodologies to 
reduce the physical effect of the matrix (Marangoni et al., 
2016) and for correcting spectral interferences (Nicolodelli 
et al., 2014) to improve the performance of LIBS in soil 
analysis. Nicolodelli et al. (2019) reviewed advances over 
the last decade in the LIBS technique for soil analysis. They 
concluded that even though significant advances have been 
achieved in the detection limit of several elements, the 
reduction of matrix effects, the optimization of the signal-
to-noise ratio, and the application of modern chemometric 
methods, other aspects, such as utilizing the LIBS 
application directly in the field remain challenging and 
unexplored. The authors also commented that the great 
progress achieved in LIBS instrumentation, as well as the 
advances for its application in other areas (e.g., 
environmental and geological science), should encourage 
the agro-scientific community to develop more studies on 
LIBS sensors. This would accelerate the development of 
new approaches that can overcome the many disadvantages 
and limitations associated with the LIBS technique in the 
agricultural sector. 

Multisensor systems and data fusion 

Soils offer numerous scales of spatial and temporal 
variation that can be monitored using different sensor 
systems. Although studies using individual approaches of 
soil sensors have demonstrated the potential of different 
applications, no single sensor can completely characterize 
the complexity of the soil (Nawar et al., 2017). Each sensor 
presents an exclusive perspective on the possibilities of 
predicting physical and chemical attributes along the soil 
profile, which is a function of its design concept and 
operation type. Multisensor systems and data fusion 
techniques allow integrated information to be collected at 
different scales (both vertically and horizontally) and can be 
related to distinct soil properties, to deal with this challenge 
(Grunwald et al., 2015). 

Data fusion is a multidisciplinary field based on 
different areas, including information technology, signal 
processing, statistical assessment and assumption, and 
artificial intelligence (Khaleghi et al., 2013). These 
approaches allow the integration of different forms of soil 
sensing, for example, multisensor systems acting on a 
benchtop, joint operation of different sensor systems 

directly in the field, integration between proximal and 
remote sensing techniques. Recently, the number of 
published studies on data fusion for the prediction of soil 
attributes has increased (Nawar et al., 2017). Increments in 
relation to individual sensor performances have been 
reported (e.g., O'Rourke et al., 2016), as well as the 
generation of new indices that allow subsidized localized 
management strategies (e.g., Benedetto et al., 2013; 
Mouazen et al., 2014). The ideal combination of sensors for 
predicting key fertility attributes, as well as robust and 
comprehensive strategies for data integration are still 
unknown. Studies in these areas should continue within the 
soil sensing community. 

An example of information complementarity 
between different sensors is observed for elemental analysis 
techniques (e.g., LIBS and XRF) and DRS vis-NIR. The 
analysis of elements that are present in the soil performed 
using elemental analysis sensors enables the 
characterization of their inorganic constituents, while vis-
NIR spectroscopy determines the mineralogical and organic 
components. The synergy between these techniques and the 
integrated use of these sensors has been attempted by recent 
studies (Horta et al., 2015; Wang et al., 2015; O’Rourke et 
al., 2016), which have shown better performance for 
predicting fertility attributes using joint predictions than 
individual ones. 

The on-the-go use of multisensor platforms directly 
in the field has been attempted by some research groups 
(e.g., Lund et al., 2005; Castrignanò et al., 2012; Piikki et 
al., 2015). Lund et al. (2005), and subsequently Jonjak et al. 
(2010), reported the use of ECa and ISE sensors (sensitive 
to H+, for pH estimation) embedded in a mobile platform. 
This system, which is now a commercial product (pH 
Manager, Veris Technologies, Salina, USA), was 
developed for the prescription of lime applications at 
variable rates, as ECa helps to characterize the demands of 
lime for soils with similar acidity but different texture 
characteristics. Using this same platform, Schirrmann et al. 
(2012) adapted a vis-NIR spectrometer in its structure for 
on-the-go acquisition of spectral data simultaneously with 
ECa and pH data. When evaluating different agricultural 
fields, the authors reported that the different sensors showed 
a considerable difference in their ability to predict the key 
fertility attributes. Even without presenting satisfactory 
predictions for all attributes of interest, the authors 
concluded that the combined use of sensors allowed better 
adaptation to the field-to-field sensors performance 
variations. Moreover, data integration allowed the 
prediction of a wider range of attributes compared to the 
individual use of each sensor. 

In Brazil, the pioneering work of Eitelwein (2017) 
evaluated the performance of a multisensor platform similar 
to that used by Schirrmann et al. (2012). The results 
obtained showed the possibility of joint and on-the-go 
operation of these sensors, thus allowing the verification of 
the spatial variability of some soil attributes. Despite this, 
some operational challenges must be overcome to improve 
the quality of data obtained using the different sensors. 
These challenges are (i) the use of weights in the structure 
in dry and compacted soils to avoid the depth oscillation of 
the ECa disks and spectrometer stem; (ii) soil adhesion in 
the spectrometer window under conditions of high humidity 
and clay content; and (iii) clogging the orifice of the pH 
sampler due to the presence of cultural residues in the soil. 
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The author also reported that the spectral acquisitions while 
moving was the greatest challenge of the equipment, where 
the dynamics of the operation, heterogeneity of the micro-
relief, and soil moisture affected the data quality. 

Castrignanò et al. (2012), working in a 80-ha 
agricultural field in Corrigin (Australia), integrated gamma-
ray data, ECa, and relief information, together with 
geostatistical analyses to delineate areas of similar soil 
characteristics. The authors reported a successful case of 
using an integrated sensor in which the use of gamma-rays 
complemented the information from the ECa sensor. Some 
interesting aspects were observed in this research: (i) the 
potential use of gamma-rays to evaluate available K; (ii) 
similar spatial distribution between ECa and gamma-ray 
emission by Th, U, and the total gamma-ray counts, 
suggesting that they were influenced by the same soil 
property; and (iii) complementarity between ECa data and 
gamma-ray emission by K. 

To characterize different soil attributes at depth, 
different sensor systems have been proposed to be 
integrated into penetrometers. Yurui et al. (2008) reported 
the development of a multisensor equipment to measure 
soil physical properties, including moisture, mechanical 
resistance, and ECa. More recently, vis-NIR sensors    
have also been added, allowing an in-depth                 
spectral characterization of the soil (Ackerson et al., 2017; 
Cho et al., 2017). 

 
FINAL CONSIDERATIONS 

The localized management of agricultural inputs, 
based on the mapping of the most diverse variables present 
in the field, provides agronomic and environmental benefits 
to agricultural production systems. Although it is currently 
the main PA approach in Brazil, the localized management 
of soil fertility is influenced by the spatial diagnosis of key 
soil attributes. The physical and chemical attributes related 
to soil fertility present different scales of spatial and 
temporal variations and their spatial distribution is usually 
characterized by short-range semivariograms. For reliable 
mapping of most of these attributes, a high density of spatial 
data (> 1 sample ha-1) is required. Increasing the density of 
soil sampling points means additional costs associated with 
laboratory analysis and more effort for sample collection in 
the field. Alternatively, different sensor systems have been 
proposed to fill this information gap, allowing more 
practical, cheaper, and more sustainable approaches. 

Technological advances in a wide range of sensors 
have allowed them to become smaller, more accurate, more 
efficient, and less expensive, which are better suited for 
direct field application. On-field application of this 
equipment, in a proximal way, that is, in contact or close to 
the soil surface, has led to the development of the PSS 
concept. Some sensors are compatible with PSS, allowing 
data acquisition in soils with minimum or no sample 
preparation; however, other technologies still need some 
sample preparation to maintain an acceptable analytical 
performance. In the present study, sensor systems 
compatible with the PSS concept were reviewed, as well as 
some technologies that require relatively simple sample 
preparations and that are compatible with user-friendly 
approaches. We also discussed the challenges of the 
spatiotemporal diagnosis of soil fertility attributes and the 
new perspective that soil sensing brings.  

The effective use of soil sensors, aiming at more 
efficient management of fertility involves overcoming 
several multidisciplinary challenges. These challenges 
include: (i) understanding the design concept, potentialities, 
and limitations of different sensor systems; (ii) minimizing 
the loss of data quality when using PSS techniques; (iii) 
associating approaches of multivariate geostatistical with 
sensing techniques; (iv) adapting data fusion techniques 
with multisensor systems; and (v) developing general 
protocols to deal with field-by-field performance variations 
to facilitate recommendations of variable rate fertilization 
using sensors.  

One of the main limitations of sensor-based soil 
management is that sensor data are usually related to more 
than one soil property. This leads to complex decision 
making and hinders the establishment of generalized 
protocols. However, at the local level, several scientific 
studies have overcome such difficulties, presenting 
successful applications of sensor systems for the localized 
management of soil fertility. There is an enormous demand 
for fertilizers and limestone in Brazilian tropical soils, as 
well as a global appeal for food security and a sustainable 
production environment. Hence, the development of 
effective techniques to use for soil sensing for 
environmental and yield benefits should be a necessity and 
local research should be encouraged. 

Finally, we propose some topics that still have 
limited information in Brazilian tropical soils for future 
research: (i) develop practical applications for PSS 
techniques to associate the sensor systems output to the crop 
demands of fertilizers and limestone, allowing variable rate 
applications; (ii) explore the integration of PSS techniques 
with multivariate geostatistics approaches for targeted soil 
sampling to increase the accuracy of fertility attribute 
mapping; (iii) explore sensing techniques that have to date 
been little used in Brazilian soils (e.g., passive gamma-ray 
sensors), as well as synergism between different sensor 
systems already compatible with PSS; (iv) realize medium- 
and long-term assessments of environmental and economic 
gains arising from the use of PSS techniques for soil fertility 
management; (v) compare different sets of multisensor 
systems, as well as data fusion techniques for hybrid 
laboratories instrumentation; and (vi) use the different 
sensing techniques already available (e.g., PSS, optical 
canopy sensors, yield monitors) and seek innovative 
strategies for the local calibration of fertilizer prescription 
to overcome the limitations related to general 
recommendations of fertilizer applications. 
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