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ABSTRACT 

The goal of this study was to use the spatial bootstrap method to model the spatial 
dependence structure of soybean yield and soil chemical attributes in an agricultural area. 
The study involved developing confidence intervals in probability plots to determine the 
probability distributions assumed by the data; determine the empirical distributions of the 
semivariances and model parameters, allowing to obtain statistics and confidence 
intervals; and to construct maps for the variables. The quantile-quantile plots indicated 
that the data follows a normal distribution. The confidence intervals for the semivariances 
helped to model the spatial dependence structure, and the descriptive statistics of the 
bootstrap replicates of the model parameters allowed to test the consistency of the 
estimates. The soil chemical attributes (calcium, potassium, and organic matter) were at 
levels suitable for soybean cultivation. However, the pH was below the ideal range in 
most of the study area, and water stress during cultivation decreased the mean yield. 
Therefore, according to the results, a recommendation to the farmer is to correct the soil 
pH to increase the yield. 

 
 
INTRODUCTION 

One of the main goals in Geostatistics is to estimate 
parameters to understand the spatial variability and to 
predict values (Chipeta et al., 2016). Therefore, geostatistics 
methods are essential in precision agriculture by allowing 
determining spatial variations in soil attributes and crops 
(Ramzan & Wani, 2018; Sawant et al., 2018). Given that 
little geostatistical data are available, there is uncertainty 
about the obtained values and, consequently, the shape of 
the semivariogram is debatable (Olea & Pardo-Igúzquiza, 
2011). This topic has been gaining prominence because of 
the need to obtain realistic results during geostatistical 
modeling (Sari et al., 2015; Dalposso et al., 2018). 

An alternative to traditional methods is the spatial 
bootstrap method (Solow, 1985), an adaptation of the 
bootstrap method (Efron, 1979) for spatial data. Bootstrap 
has been used in soil studies to predict soil carbon levels 
(Luo et al., 2016), to obtain sample sizes to control error 
estimates in measuring soil density (Han et al., 2016), and 
to model soybean yield as a function of soil physical and 
chemical attributes (Dalposso et al., 2016). 

However, few studies to date used the bootstrap 
method to analyze spatial data. This method was also used 
to monitor arsenic pollution in Portugal (García-Soidán et 
al., 2014), to obtain robust empirical estimators of variance 
for spatial autocorrelation (Villoria & Liu, 2018), and to 
model the spatial dependence of soybean yield using soil 
chemical attributes as covariates (Dalposso et al., 2018). 

The objective of this study is to use spatial bootstrap 
in the geostatistical modeling of soybean yield and soil 
chemical attributes to test the assumption of normality using 
confidence intervals in probability plots, determine 
empirical distributions of semivariances and model 
parameters, and construct maps. 
 
MATERIAL AND METHODS 

Study area and data 

The dataset was collected in 2014/2015 crop year, 
from a farming area of 127.16 hectares sited in the Cascavel 
microregion in the western region of Paraná, Brazil 
(latitude, 24º57'25''S, longitude 53º34'29''W, and mean 
altitude, 714 m) (Figure 1). 
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FIGURE 1. Geographical information of the study area. 
 

According to the classification of Köppen, the 
climate of the region is type Cfa (Aparecido et al., 2016) 
and the soil was classified as Oxisol. Systematic sampling 
with lattice plus close pairs, composed of 78 sample 
elements georeferenced with a GEOEXPLORE 3 GPS 
receiver, was performed. At each sampling point, the 
soybean yield (SY, t ha-1) of cultivar AMS TIBAGI was 
measured, and the following soil chemical attributes were 
determined: calcium (Ca, cmolc dm-3), potassium (K, cmolc 
dm-3), organic matter (OM, g dm-3), and pH. These variables 
were chosen because they presented spatial variability in the 
area and because they help in decision-making about 
fertilization and liming activities. The variables Ca and K 
affect soil pH (Malavolta, 1980) and crop yield. The 
variable OM affects soil temperature and clay content, 
which controls the release of organic nutrients to the plants. 

Geostatistical analysis 

To model the spatial dependence structure of a 
regionalized variable, we considered a second-order 
stochastic process 𝒁 = {𝑍(𝒔), 𝒔 ∈ 𝑺} in which 𝒔 = (𝑥, 𝑦)்  
is the vector that represents a certain site in the study area 
𝑺 ⊂ 𝕽ଶ, and 𝕽ଶ is the two-dimensional Euclidean space. It 
is assumed that the data of this isotropic process 𝒁 =
(𝑍(𝒔ଵ), … , 𝑍(𝒔௡))் are recorded in known sites (𝒔ଵ, … , 𝒔௡) 
and were generated by the model 𝒁 = 𝜇𝟏 + 𝜺, where 𝜇 
represents an unknown parameter to be estimated, 𝟏 is a 
vector of 𝑛 × 1, and 𝜺 = (𝜀(𝒔ଵ), … , 𝜀(𝒔௡))் represents a 
vector of random errors 𝑛 × 1, with an n-variate normal 
distribution, with 𝐸(𝜺) = 𝟎 and covariance matrix 
𝑉𝑎𝑟(𝜺) = 𝚺. In the parametric form (Uribe-Opazo et al., 
2012; De Bastiani et al., 2015), the covariance matrix 𝚺 can 
be defined as 𝚺 = 𝜑ଵ𝑰௡ + 𝜑ଶ𝑹(𝜑ଷ), where 𝑰௡ is an identity 
matrix 𝑛 × 𝑛, 𝜑ଵ ≥ 0 is the nugget effect, 𝜑ଶ ≥ 0 is the sill, 
𝜑ଷ ≥ 0 is the parameter that defines the range (a) of the 
model, and 𝑹(𝜑ଷ) = ൣ(𝑟௜௝)൧ is a definite positive 
symmetrical matrix 𝑛 × 𝑛. The elements 𝑟௜௝ , 𝑖, 𝑗 =

1, … , 𝑛, represent the association between the points 𝒔௜ and 
𝒔௝, where 𝑟௜௝ = 1 if 𝑖 = 𝑗 and ℎ௜௝ = 0, 𝑟௜௝ = 0 if 𝑖 ≠ 𝑗 and 

𝜑ଶ = 0, and 𝑟௜௝ = 𝜑ଶ
ିଵ𝐶൫ℎ௜௝൯ if 𝑖 ≠ 𝑗 and 𝜑ଶ

ିଵ ≠ 0; 

𝐶൫ℎ௜௝൯ = 𝐶൫𝑍(𝒔௜), 𝑍(𝒔௝)൯ is the theoretical covariance 
function, and ℎ௜௝ = ฮ𝒔௜ − 𝒔௝ฮ is the Euclidean distance 
between 𝒔௜ and 𝒔௝. 

Omnidirectional experimental semivariograms were 
constructed using the Matheron estimator to identify the 
spatial dependence structure of the study variables, and 
Matérn family models with form parameters 𝑘 =
{0.5; 1; 1.5; 2} and 𝑘 → ∞ were used to model spatial 
dependence structures. When 𝑘 = 0.5 represents the 
exponential model, and 𝑘 → ∞ represents the Gaussian 
model (Jin & Kelly, 2017). The model parameters were 
estimated using the maximum likelihood (ML) method. The 
best fits were chosen by cross-validation (Faraco et al., 
2008), and the predictions were performed using ordinary 
kriging. 

Spatial bootstrap 

The spatial bootstrap method (Solow, 1985) is 
presented in Algorithm 1. 

Algorithm 1. Spatial bootstrap. 

a) Considering the spatial dataset {z(𝐬ଵ),..., z(𝐬௡)}, 
determine the vector of the residuals 𝛆ො(𝐬) = 𝐙(𝐬) − μො𝟏, 
where μො  is the estimator of μ, and 𝚺෡ is the ML estimator of 
the covariance matrix 𝚺; b) Considering 𝚺෡, use the Cholesky 
decomposition method to obtain 𝚺෡ = 𝐋መ 𝐋መ  ୘; c) Using the 
inverse matrix 𝐋መ ିଵ, determine 𝛆ොୢୣୡ = 𝐋መ ିଵ𝛆ො, which is the 
vector of uncorrelated residuals; d) Considering the 
elements of vector 𝛆ොୢୣୡ, perform 𝑛 resampling with 
substitution to form the bootstrap vector 𝛆ୗ୆

∗ =
(εଵ

∗ , … , ε௡
∗ )୘; e) The obtained spatial bootstrap sample is 

represented by 𝐙∗ = μො𝟏 + 𝐋መ 𝛆ୗ୆
∗ . 

Quantification of uncertainties in the geostatistical 
analysis 

The estimators of 𝜇 and 𝚺 of each regionalized 
variable and Algorithm 1 were used to determine B = 1000 
bootstrap samples from the dataset (Efron & Tibshirani, 
1986). For each sample, an experimental semivariogram 
was constructed and a model was fitted, allowing obtaining 
the empirical distribution of the semivariances, model 
parameters and, therefore, determine 68% confidence 
intervals (Olea & Pardo-Igúzquiza, 2011) using the 
percentile bootstrap method (Efron, 2014). This confidence 
level was chosen to eliminate replicates obtained from 
poorly fitted models, which happens because some 
bootstrap samples have atypical spatial structures and the 
fits are automatic. To assess the normality assumption, the 
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uncorrelated residuals εොୢୣୡ௜
 and 𝑖 = 1, … , 𝑛, were ordered, 

and the graphical position points 𝑝 − 𝑣𝑎𝑙𝑢𝑒௜ = (𝑖 − 0.5)/𝑛 
and 𝑖 = 1, … , 𝑛 were calculated. Considering 𝑄௫(𝑝) as the 
quantile of order 𝑝 − 𝑣𝑎𝑙𝑢𝑒 (0 < 𝑝 < 1) of the 
observations, εොୢୣୡ௜

= 𝑄௫(𝑝 − 𝑣𝑎𝑙𝑢𝑒௜), 𝑖 = 1, … , 𝑛.. After 
determining the experimental quantiles, the theoretical 
quantiles 𝑄௧(𝑝 − 𝑣𝑎𝑙𝑢𝑒௜) = 𝐹ିଵ(𝑝 − 𝑣𝑎𝑙𝑢𝑒௜), 𝑡 = 1, … , 𝑛 
and 𝑖 = 1, … , 𝑛 were calculated, where 𝐹ିଵ represents the 
inverse cumulative distribution function of the standardized 
normal distribution. The ordered pairs (𝑄௧(𝑝 −
𝑣𝑎𝑙𝑢𝑒௜), 𝑄௫(𝑝 − 𝑣𝑎𝑙𝑢𝑒௜)) were arranged in a Cartesian 
plane, and the residuals were normally distributed if the 
points formed a line. Since sample data are usually not 
perfectly consistent with a normal distribution, ordered 
pairs tend to deviate from the reference line. To visualize 
this variation, a parametric bootstrap method (Algorithm 2) 
can be used to establish a confidence interval in the QQ plot 
(Zieffler et al., 2011). 

Algorithm 2. A 95% confidence interval for the QQ 
plot using parametric bootstrap. 

a) Construct a dataset with 𝑛 elements (sample size) 
obtained from resampling with the substitution of a 
standardized normal distribution and organize them in 

ascending order 𝛆𝐁𝐎𝐎𝐓
(𝟏)

= ൫εଵ
(ଵ)

, … , ε௡
(ଵ)

൯
୘

; b) Repeat the 

previous process B = 1000 times, forming the sets 𝛆𝐁𝐎𝐎𝐓
(𝐁)

=

൫εଵ
(୆)

, … , ε௡
(୆)

൯
୘
; c) Organize the elements of the vector 

𝛆𝒊
(୆)

= (ε௜
(ଵ)

, … , ε௜
(ଵ଴଴଴)

) for 𝑖 = 1, … , 𝑛 in ascending order, 
and determine the lower limits (𝐿𝐿௜) and higher limits (H𝐿௜) 

using the percentile method (Efron, 2014); and d) Construct 
straight lines by connecting the points (𝑄௧(𝑝 −
𝑣𝑎𝑙𝑢𝑒௜), 𝐿𝐿௜) and (𝑄௧(𝑝 − 𝑣𝑎𝑙𝑢𝑒௜),  𝐻𝐿௜). 

Computational resources 

The analyses were developed using R software. 
Geostatistical modeling was performed using the geoR 
package (Ribeiro Junior & Diggle, 2001). The spatial 
bootstrap algorithm and the QQ plots routines were 
developed by the authors. 

 
RESULTS AND DISCUSSION 

The cross-validation method indicated that the 
Gaussian model (Minf) with a range of approximately 296 m 
is the best fit for the spatial dependence structure of soybean 
yield (Table 1). This model indicated that the mean soybean 
yield in the area was 2.37 t ha-1. This value is considered 
low because it was lower than the state mean (3.29 t ha-1) 
and national mean (3.00 t ha-1) in the same crop year 
(Conab, 2017). 

The spatial dependence structures of Ca and pH 
were fitted according to an exponential model (M0.5) and 
presented the lowest values when compared with the other 
attributes (Table 1). The highest values were obtained for K 
and OM using the structures fitted with the Matérn model 
with form parameter k = 2.0 (M2.0) (Table 1). 

It should be noted that some parameters presented 
a high standard deviation (Table 1), demonstrating 
instability. Therefore, it is necessary to investigate data 
distribution, the fitted models, and the empirical distribution 
of their respective parameters. 

 
TABLE 1. Estimated parameters of the models of soybean yield and soil chemical attributes. 

Variables Model 
Estimated Parameters 

𝜇̂ 𝜑ොଵ 𝜑ොଶ 𝜑ොଷ 𝑎ො 
SY Minf 2.37 0.056 0.02 171.29 296.46 

  (0.04) (0.03) (0.03) (336.70)  
Ca M0.5 5.30 0.35 1.38 62.91 188.46 

  (0.19) (1.65) (1.69) (53.35)  
K M2.0 0.31 0.02 +0.00 106.07 569.41 
  (0.02) (+0.00) (+0.00) (119.27)  

OM M2.0 51.37 28.65 13.21 156.27 838.91 
  (1.82) (7.05) (8.57) (64.72)  

pH M0.5 4.82 0.12 0.04 58.35 174.80 
  (0.05) (0.19) (0.19) (58.35)  

SY: soybean yield (t ha-1); Ca: calcium (cmolc dm-3); K: potassium (cmolc dm-3); OM: organic matter (g dm-3); pH: soil pH; Mk: Matérn model 
with form parameter k = {0.5, 2.0}; Minf: Gaussian model; 𝜇̂: estimation of the model mean; 𝜑ොଵ: estimated value of the nugget effect; 𝜑ොଶ:
estimated value of the sill;  𝜑ොଷ: estimated value of the parameter that defines the range; 𝑎ො: estimated range (m). The values in parentheses 
indicate the standard deviation of each estimated parameter. 
 

The analysis of the QQ plots (Figure 2) indicates that the points are inside the confidence intervals, evidencing that the 
data follow a normal distribution. 
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FIGURE 2. Quantile-quantile (q-q) plots and 95% confidence intervals for the variables: (a) soybean yield (SY, t ha-1), (b) 
calcium (Ca, cmolc dm-3), (c) potassium (K, cmolc dm-3), (d) organic matter (OM, g dm-3), and (e) soil pH. In each plot, the 
straight line that passes through the ordered pairs formed with quantiles of order 0.25 and 0.75 is highlighted. 
 

Given that the actual values of semivariances are 
unknown, 68% bootstrap confidence intervals of the 
experimental semivariances (Figure 3) were used for a more 
detailed investigation of the fit of the theoretical models. 
The analysis of the semivariograms of SY, Ca, and OM 
(Figures 3a, b, and d, respectively), indicates that, although  

there were variations in accuracy, evidenced by the different 

amplitudes of the confidence intervals, the theoretical 

models are correctly fitted, with an increase in the initial 

distances, and the intervals are concentrated in the bootstrap 

confidence intervals. 
 

 
FIGURE 3. The 68% boostrap confidence intervals for the experimental semivariances (𝛾ො): (a) soybean yield (SY, t ha-1), (b) calcium 
(Ca, cmolc dm-3), (c) potassium (K, cmolc dm-3), (d) organic matter (OM, g dm-3), and (e) soil pH. The fitted models are shown in red. 



Geostatistical modeling of soybean yield and soil chemical attributes using spatial bootstrap 354 

 

 
Engenharia Agrícola, Jaboticabal, v.39, n.3, p.350-357, may/jun. 2019 

 

It is important to note that the bootstrap confidence 
intervals for K and pH (Figures 3c and e, respectively) 
seemed to be constant. In this respect, the uncertainty 
associated with the parameters of the spatial models of these 
variables should be quantified because, in this situation, 
several models can be fitted, including models with an 
almost pure nugget effect and models with a range close to 
the minimum distance between points. 

The estimated values of the parameters of the model 
for SY (Table 2) indicate that the standard deviations of the 
nugget effect and sill were similar to the respective values 
obtained by the asymptotic theory (Table 1). The parameter 
that defines the range remained high, although its standard 
deviation decreased from 336.70 (value obtained by 
asymptotic theory) to 101.6 (value obtained by bootstrap). 
This result can be explained by the characteristic of the 
empirical distribution of bootstrap replicates of the range 
parameter, which presented a positive asymmetry of 2.08, 
indicating the low frequency of high values. 

Descriptive statistics of the geostatistical model for 
calcium (Table 2) indicated that 50% of the bootstrap 
replicates had no nugget effect. However, the value 
obtained from the original sample (0.35) is more coherent 
because the calcium levels for distances shorter than the 
minimum distance between samples (49.07 m) are 

unknown. The descriptive statistics of the estimated sill 
(𝜑ොଶ) of the geostatistical model of calcium (Table 2) 
indicated that the standard deviation of the bootstrap 
replicates (0.60) was lower than the asymptotic standard 
deviation (1.69) (Table 1). This result demonstrates that the 
asymptotic standard deviation may be overestimated, i.e., 
the dispersion of the sill is less than 1.69. 

The analysis of the statistics of the bootstrap 
replicates of the range parameter of the geostatistical model 
of calcium (Table 2) indicates that the empirical distribution 
formed by the bootstrap replicates has a positive 
asymmetry. This result is evidenced by the lower frequency 
of high values. However, the value obtained from the 
original sample (62.91) is not considered atypical because 
it is close to the mean and median and is within the 
confidence interval. 

Therefore, the nugget effect of the geostatistical 
model of potassium (Table 2) is a non-zero value because, 
in addition to the value obtained from the original sample 
(0.02) being non-zero, 75% of the bootstrap replicates of 
this parameter are also non-zero values. 

The range parameter of the geostatistical model of 
potassium is considered high, because it was higher than the 
third quartile of the distribution of the bootstrap replicates 
and was located outside the confidence interval. 

 
TABLE 2. Statistics and 68% bootstrap confidence intervals for the parameters of the fitted models. 

   Variables 𝝋 𝝋ෝ  Min Q1 Median Mean Q3 Max SD CA LL UL 

 𝜑ଵ 0.06 0.00 0.02 0.04 0.04 0.06 0.10 0.03 -0.26 0.00 0.06 

SY 𝜑ଶ 0.02 0.00 0.02 0.03 0.04 0.06 0.11 0.03 0.51 0.01 0.07 

 𝜑ଷ 171.00 0.00 52.80 106.04 122.55 166.87 758.95 101.58 2.08 35.05 192.45 

 𝜑ଵ 0.35 0.00 0.00 0.00 0.40 0.82 2.13 0.54 1.05 0.00 1.09 

Ca 𝜑ଶ 1.38 0.00 0.88 1.46 1.30 1.74 2.71 0.60 -0.62 0.58 1.86 

 𝜑ଷ 62.91 0.00 42.54 59.86 72.18 85.37 491.10 56.06 3.03 34.22 100.19 

 𝜑ଵ 0.02  0.00 0.00 0.01 0.01 0.02 0.03 0.01 -0.45 0.00 0.02 

K 𝜑ଶ +0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.01 0.74 0.00 0.02 

 𝜑ଷ 106.07 0.00 14.59 33.79 52.49 73.74 307.40 55.16 1.65 3.25 97.78 

 𝜑ଵ 28.65 0.00 17.05 24.42 21.91 28.89 46.79 10.27 -0.80 11.15 31.02 

OM 𝜑ଶ 13.21 0.00 8.63 14.58 16.66 23.62 53.50 10.47 0.68 6.39 28.15 

 𝜑ଷ 156.27 0.00 46.56 92.76 101.78 141.48 315.28 67.35 0.76 33.28 169.97 

 𝜑ଵ 0.12 0.00 0.00 0.07 0.07 0.14 0.24 0.07 0.27 0.00 0.16 

pH 𝜑ଶ 0.04 0.00 0.01 0.08 0.09 0.15 0.26 0.07 0.25 0.01 0.17 

 𝜑ଷ 58.35 0.00 3.87 30.00 44.28 57.53 573.04 57.06 3.61 3.40 75.17 

SY: soybean yield (t ha-1); Ca: calcium (cmolc dm-3); K: potassium (cmolc dm-3); OM: organic matter (g dm-3); pH: soil pH; 𝜑: parameter; 
𝜑ଵ: nugget effect; 𝜑ଶ: sill; 𝜑ଷ: parameter that defines the range; 𝜑ොଵ: estimated value of the nugget effect; 𝜑ොଶ: estimated value of the sill; 𝜑ොଷ: 
estimated value of the parameter that defines the range; 𝑎ො: estimated range (m); Min: minimum; Q1:  first quartile; Q3: third quartile; Max: 
maximum; SD: standard deviation; CA: coefficient of asymmetry; LL: lower limit of the confidence interval: UL: upper limit of the confidence 
interval. 
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The results of descriptive statistics of the estimated 
values of OM (Table 2) did not invalidate the values 
obtained from the original sample, indicating that the model 
was well fitted. In relation to descriptive statistics of the pH, 
it should be noted that the parameters obtained from the 
original sample are consistent, demonstrating the nullity of 
the nugget effect in 75% of the bootstrap replicates, as well 
the positive asymmetry of the empirical distribution of the 
range parameter (Table 2). 

Maps of SY and soil attributes (Ca, K, OM, and pH) 
were constructed after selecting the geostatistical model and 

estimating its parameters (Figure 4). The SY map shows 
that the area is heterogeneous (Figure 4a). The southwestern 
and northern regions of the area stand out because they had 
the highest yield whereas the central region, which extends 
to the southeast and part of the northwest region of the area, 
had the lowest yield. The difference in the mean yield 
between the class with the lowest yield (2.20 – 2.28 t ha-1) 
and highest yield (2.53 – 2.61 t ha-1) in an agricultural area 
of 127.16 ha was 14.7%, demonstrating the importance of 
monitoring the whole area by the farmer using precision 
agriculture to increase yield. 

 

 

FIGURE 4. Maps: (a) soybean yield (SY, t ha-1); (b) calcium (Ca, cmolc dm-3); (c) potassium (K, cmolc dm-3); (d) organic matter 
(OM, g dm-3); and (e) soil pH. 
 

The map of calcium (Figure 4b) shows that most of 
the monitored area presents values higher than 3.1 cmolc 
dm-3, which are considered high (Junio et al., 2013). 
Therefore, it is of note that the soil does not present 
insufficient levels of calcium, which could be harmful 
because yield could be lower (White & Broadley, 2003). In 
this respect, there was no spatial relationship between the 
yield map and the calcium map. 

Although the map of potassium (Figure 4c) shows 
that the lowest values are concentrated in the western 
region, there is no evidence of a decrease in SY because the 
potassium levels were classified as high and very high 
(Borkert et al., 1997), which guarantees high yields. The 
OM values (Figure 4d) can be classified as high because 
they are higher than the means (25 – 40 g dm-3) usually 
found in soils in southern Brazil (Spera et al., 2008), 
evidencing that the study area is suitable for grain 
production. 

The pH in most of the monitored area (Figure 4e) 
was between 4 and 5, indicating the presence of 
exchangeable aluminum, which can inhibit root growth and 
decrease the availability of other nutrients (Sobral et al., 
2015). The higher availability of nutrients to soybean crop, 
which limits the toxic effect of some nutrients, occurs at a 

soil pH of 5.4 – 5.9 (Sfredo, 2008). Therefore, the pH of 
most of the studied area is lower than the above 
recommendation, which may be related to the low mean 
yield (2.37 t ha-1) in this crop year (Figure 4e). 

In the pH map (Figure 4e), circular areas centered on 
sample points (bull eyes effect) occur when the model has a 
spatial dependence radius smaller than the distance between 
sample points (Menezes et al., 2016). The analysis of the 
distances between the pairs of sample points in the study 
area (Figure 1) demonstrated that, of the 3003 existing pairs, 
only 168 presented a distance smaller than the radius of 
spatial dependence (174.8 m). This characteristic justifies 
the weak spatial dependence, and consequently, the fact that 
most of the monitored area is classified as having pH values 
close to the mean value of 4.8.  

Several factors may have contributed to the pH being 
lower than the ideal range, including soil chemical attributes 
and the amount of rainfall in the region. It is important to 
highlight that the sown AMS TIBAGI soybean cultivar has 
a super-early cycle within the maturation group 5.0. 
Therefore, the climatic conditions strongly affect yield. This 
cultivar requires regular rainfall, especially during the 
period of flowering, pod formation, and grain filling. The 
crop was sown on October 14, 2014, and the data of the 
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meteorological station of SIMEPAR in Cascavel indicated 
that there was a period of 14 days of low rainfall (total of 14 
mm from October 17 to November 3, 2014). In addition, 
pod formation, grain filling, and water stress (rainfall of 
only 21.4 mm from November 23 to December 18, 2015) 
occurred during the flowering period. These periods of 
water stress strongly undermined yield. 

 
CONCLUSIONS 

The spatial bootstrap method allows quantifying the 
uncertainties associated with the spatial dependence model 
of SY and soil chemical attributes in the monitored 
agricultural area. The elaboration of the confidence 
intervals in the quantile-quantile plot allowed testing the 
normality assumption of the data. 

 Therefore, the use of confidence intervals for 
semivariances helps model the spatial dependence structure 
of the data. With respect to the uncertainty associated with 
spatial model parameters, it is important to note that the 
descriptive statistics of the bootstrap replicates of the 
nugget effect are fundamental to assess the consistency of 
the estimated values, because there is no information on 
distances smaller than the minimum distance. 

The maps enabled determining the spatial variability 
of SY and soil chemical attributes in non-sampled areas, 
which is fundamental for activities related to precision 
agriculture, including the local application of neutralizing 
agents. 

The chemical attributes (Ca, K, and MO) were at 
levels suitable for soybean cultivation. However, the pH 
was below the ideal range (5.4 – 5.9) in most of the study 
area, which may have been caused by other chemical 
attributes and water stress. These factors contributed to the 
low mean yield (2.372 t ha-1) in this crop year, and pH 
correction is recommended to increase crop yield in the next 
crop year. 
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