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ABSTRACT 

Bioenergy production relies on resources such as agricultural waste, which has prompted 
extensive research on biofuels. The heating value is a crucial parameter for evaluating energy 
sources. This study aims to analyze and propose formulations for estimating the higher heating 
value (HHV) based on proximate and ultimate chemical analysis of biomass. A database 
consisting of 142 samples was created, and 14 formulas available in the literature were initially 
tested. The datasets for each composition type were classified using the k-means algorithm, and 
the new sample spaces were validated. For proximate analysis data, specific multiple linear 
regression models were developed for two classes, one with an average 𝑅  of 0.697 and 𝑆𝐸 of 
1.05 MJ kg-1, and the other with an average 𝑅  of 0.678 and 𝑆𝐸 of 1.27 MJ kg-1. For samples 
with ultimate analysis, a general model was formulated with an average 𝑅  of 0.701 and 𝑆𝐸 of 
1.11 MJ kg-1. Sample classification for proximate analysis did not significantly affect the fit of 
models. Considering that proximate analysis is less expensive than ultimate analysis, the 
proposed method shows promise in optimizing and reducing costs for determining the HHV of 
biomass for energy production. 
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INTRODUCTION 

The world has experienced significant economic 
development in recent decades, driven by rapid 
industrialization and urbanization. Concurrently, the global 
population has increased from 5.3 billion in 1990 to 7.3 
billion in 2014, reflecting an average annual growth rate of 
1.3% (Dong et al., 2018). The scarcity of natural resources 
has become a critical concern when considering future 
perspectives, particularly from energy and environmental 
standpoints. Developing countries are projected to 
experience a 33% increase in energy demand by 2040 
(Nepal & Paija, 2019). Notably, the world's energy matrix 
heavily relies on non-renewable fossil fuel sources, which 
accounted for 90% of global primary energy consumption 
in 2017 (Chen et al., 2019). Thus, it is crucial to promote 
the utilization of alternative renewable energy sources such 
as biomass to diversify the energy matrix and ensure energy 
security. Biomass, being reproducible, accounted for 18.1% 
of global energy consumption in 2017 and is considered 
renewable (Wang et al., 2020). 

Bioenergy production is closely associated with 
various resources, with agricultural waste being a prominent 
alternative. These residues are directly linked to crop yields, 
meaning that increased agricultural production leads to a 
higher volume of waste. The biomass generated primarily 
stems from post-harvest activities in agriculture, involving 
the cutting and pruning of stems, removal of straw, bark, 
leaves, and branches. Previously, such residues were 
disposed of in fields, but today, there is a focus on 
researching their energy reuse, particularly in the biofuel 
sector (Avcıoğlu et al., 2019). 

Biofuels, as defined by the National Agency of 
Petroleum, Natural Gas, and Biofuels (ANP), are derived 
from renewable biomass, and can partially or completely 
replace fuels derived from oil and natural gas in combustion 
engines or other forms of power generation (ANP, 2020). 
Apart from being a viable alternative, biofuels offer 
environmental and economic advantages, including reduced 
carbon emissions, decreased reliance on imported oil, as 
well as job and income generation (Martins Pereira, 2018). 
The US government has supported the biofuels industry 
through various subsidy policies and programs, with the 
goal of achieving a production volume of 36 billion gallons 
by 2022. However, concerns arise regarding the 
competition between energy crops and the food industry, as 
diverting agricultural land for biofuel production may 
impact food supply (Wang et al., 2017). 

Nevertheless, the dilemma of "energy crops for 
biofuel or food productions" can be mitigated by using agro-
industrial waste. The production of energy from such waste 
aligns with the circular economy concept, providing a 
superior alternative energy source (Sonu et al. 2023). 
Various biomass systems, production techniques, 
operational practices, pre-processing methods, conversion 
technologies, and transportation systems are being 
implemented worldwide for energy production from agro-
industrial waste (Ramos et al. 2022).   

Anaerobic digestion process, coupled with chemical 
pretreatment, has been explored as a method to break down 
cellulose, hemicellulose, and lignin molecules for biogas 

production (Keerthana Devi et al., 2022). Additionally, the 
dark dry fermentation method with autoclaving as a pre-
processing step has demonstrated potential for biohydrogen 
production from agro-waste, yielding a maximum hydrogen 
content of 41% (Abubackar et al., 2019). Biodiesel 
production using solvents and the transesterification method 
has resulted in yields of 58.8-62.2 wt.% from coffee 
grounds (Caetano et al., 2012; Nair et al., 2022). 

One crucial parameter for evaluating promising 
biofuel sources is the heating value, which measures the 
amount of energy released as heat per kilogram of matter 
during the combustion process (Roviero et al., 2018). In the 
case of biomass, this parameter varies depending on its 
constituent elements. Materials with higher carbon and 
hydrogen content tend to have a higher calorific value 
(Miranda et al., 2015). 

In addition to determining the heating value, 
feasibility studies for biomass often involve analyzing the 
composition of raw materials through proximate and 
ultimate chemical analysis. Proximate chemical analysis 
assesses water content, volatile material (VM), fixed carbon 
(FC), and ash, while ultimate chemical analysis determines 
percentages of carbon, hydrogen, nitrogen, sulfur, and 
oxygen (Pari et al., 2018). Since calorimetric pumps, though 
accurate, are often costly, researchers have used empirical 
correlations based on the results of these analyses to 
estimate the heating value. Therefore, ultimate analyzers 
and muffle furnaces, commonly found in laboratories, can 
address this limitation (Yin, 2011). Thus, this study aimed 
to analyze and propose statistical formulations for 
estimating the higher heating value (HHV) in samples of 
agricultural residues. The specific objectives were as follows: 

 Conducting a comprehensive literature review to 
compile a biomass database. 

 Evaluating the effectiveness of an unsupervised 
algorithm for sample classification. 

 Comparing equations based on proximate and 
ultimate chemical analysis methods. 

 
MATERIAL AND METHODS 

The database used in this study was compiled by 
consulting the Web of Science and Google Scholar 
databases. Information was gathered from 142 samples of 
agro-industrial waste, including husks, bagasse, seeds, and 
straw, originating from various crops. For each sample, 
values corresponding to the experimental higher heating 
value and proximate and/or ultimate chemical analyses 
were obtained.  

Based on this data, the suitability of existing 
equations (Table 1) from scientific studies (Tillman, 1978; 
Jenkins & Ebeling, 1985; Jiménez & González, 1991; 
Cordero et al., 2001; Channiwala & Parikh, 2002; Friedl et 
al., 2005; Parikh et al., 2005; Sheng & Azevedo, 2005; Yin, 
2011) used for predicting the heating value was initially 
evaluated. Statistical parameters such as the determination 
coefficient (Equation 15), adjusted determination 
coefficient (Equation 16), and standard error of estimate 
(Equation 17) were employed for this evaluation. 
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TABLE 1. Equations found in the literature for prediction of heating value. 

Reference Equation of 𝐻𝐻𝑉 Nº 

R1 19,914 − 0,2324𝐴𝑠ℎ (1) 

R1 −3,0368 + 0,2218𝑉𝑀 + 0,2601𝐹𝐶 (2) 

R2 0,3536𝐹𝐶 + 0,1559𝑉𝑀 − 0,0078𝐴𝑠ℎ (3) 

R1 0,3259𝐶 + 3,4597 (4) 

R1 −1,3675 + 0,3137𝐶 + 0,7009𝐻 + 0,0318𝑂 (5) 

R3 0,00355𝐶 − 0,232𝐶 − 2,23𝐻 + 0,0512𝐶 × 𝐻 + 0,131𝑁 + 20,6 (6) 

R4 0,3491𝐶 + 1,1783𝐻 + 0,1005𝑆 + 0,1034𝑂 + 0,0151𝑁 + 0,0211𝐴𝑠ℎ (7) 

R5 0,3543𝐹𝐶 + 0,1708𝑉𝑀 (8) 

R5 35,43 − 0,1835𝑉𝑀 − 0,3543𝐴𝑠ℎ (9) 

R6 −10,8141 + 0,3133(𝑉𝑀 + 𝐹𝐶) (10) 

R7 −0,763 + 0,301𝐶 + 0,525𝐻 + 0,064𝑂 (11) 

R8 0,4373𝐶 − 1,6701 (12) 

R9 0,1905𝑉𝑀 + 0,2521𝐹𝐶 (13) 

R9 0,2949𝐶 + 0,825𝐻 (14) 

In which:  

𝐻𝐻𝑉 is the higher heating value in MJ kg-1;  

𝑉𝑀 is the amount of volatile material in %;  

𝐴𝑠ℎ is the ash content in %;  

𝐹𝐶 is the fixed carbon content in %, and  

𝐶, 𝐻, 𝑂, 𝑁 and 𝑆 are the contents of carbon, hydrogen, oxygen, nitrogen and sulfur in %, respectively. 

References: R1 - (Sheng & Azevedo, 2005); R2 - (Parikh et al., 2005); R3 - (Friedl et al., 2005); R4 - (Channiwala & Parikh, 2002); R5 - 
(Cordero et al., 2001); R6 - (Jiménez & González, 1991); R7 - (Jenkins & Ebeling, 1985); R8 - (Tillman, 1978); R9 - (Yin, 2011). 

𝑅 =
∑ 𝑦 − 𝑦 ∙ 𝑦 − 𝑦

∑ 𝑦 − 𝑦
,

∙ ∑ 𝑦 − 𝑦
,

 (15)

 

𝑅 =
𝑅 ∙ (𝑛 − 1) − 𝑝

𝑛 − 𝑝 − 1
 (16)

 

𝑆𝐸 =
∑ 𝑦 − 𝑦

𝑛 − 𝑝
 (17)

In which:  

𝑦  is the dependent variable observed for each element;  

𝑦  is the average of a dependent variable observed;  

𝑦  is the dependent variable calculated for each element;  

𝑦  is the average of a dependent variable calculated, 

𝑛 is the number of elements; and 𝑝 is the number of model parameters. 
 

To enhance the fitting of these equations to the 
biomass samples under study and determine their efficiency 
for each case, a methodology involving data segmentation 
was proposed. The k-means algorithm, implemented in      
the free software Orange Canvas v. 3.15, was employed     
for classification. 

As described by Castro & Prado (2002), the k-means 
algorithm minimizes a cost measure by minimizing the 
internal distance between patterns within a cluster. The cost 
minimization ensures the identification of a local minimum 
of the objective function, which depends on the starting 

point. This algorithm is classified as "non-convex" since the 
deviation value decreases with each iteration, and the process 
concludes when it falls below a pre-established tolerance. 

The sample set was divided into at least three classes 
to eliminate any outliers that could potentially affect the 
effectiveness of the models and tests. After obtaining the 
clusters based on the proximate and ultimate analyses 
criteria, eqs from (1) to (14) were reapplied, and the results 
were compared with those presented in Tables 2 and 3. 
Subsequently, new models were developed for each 
validated class after dividing the database. Additionally, a 
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new general formula was derived, with the adopted 
standards outlined in eqs (18) and (19), where 𝛽 , 𝛽 , 𝛽 , 
and 𝛽  represent the adjustment constants. Variables 𝑁 and 
𝑆 were not included in the proposed models, as per              
[eq. (19)], as most samples either lacked data for these 
variables or the data was considered insignificant. 

𝐻𝐻𝑉 = 𝛽 + 𝛽 × 𝑉𝑀 + 𝛽 × 𝐴𝑠ℎ + 𝛽 × 𝐹𝐶 (18)
 

𝐻𝐻𝑉 = 𝛽 + 𝛽 × 𝐶 + 𝛽 × 𝐻 + 𝛽 × 𝑂 (19)
 
The adjustment constants 𝛽 , 𝛽 , 𝛽 , and 𝛽  were 

evaluated using the Student t-test, which tests the null 
hypothesis (𝐻 ). The t-test statistic, assuming a normal 
distribution, is employed when the population variance is 
unknown. In regression, this statistic determines, at a 
significance level of α, whether the estimated parameters for 
the model are equal to zero or not. The tested hypotheses 

are 𝐻 : 𝛽 , 𝛽 , 𝛽 , 𝛽 = 0 and 𝐻 : 𝛽 , 𝛽 , 𝛽 , 𝛽 ≠ 0, with 
𝐻  representing the alternative hypothesis (Tiboni, 2010).  
 
RESULTS AND DISCUSSION 

Preliminary assessment 

The results of the adjustments to the equations 
presented in Table 1 are summarized in Tables 2 and 3. It is 
observed that the equations relying on proximate analysis 
exhibited a low level of adjustment and a high standard error 
(Table 2), with data obtained from 117 samples. On the 
other hand, the equations based on ultimate chemical 
analysis demonstrated more consistent adjustments and an 
average standard error (Table 3). Notably, the higher 
heating value of the 93 samples assessed in this analysis is 
approximately 20 MJ kg-1 in magnitude. 

 
TABLE 2. Comparative analysis of heating value forecast equations using proximate biomass analysis for the entire proposed database. 

Equation 𝑹𝟐 𝑹𝟐 𝑺𝑬 (MJ kg-1) 

(1) 0.319 0.314 1.853 

(2) 0.117 0.102 2.757 

(3) 0.120 0.097 3.262 

(8) 0.121 0.106 3.319 

(9) 0.134 0.119 3.263 

(10) 0.099 0.083 3.455 

(13) 0.127 0.111 2.641 
 
TABLE 3. Comparative analysis of heating value forecast equations using ultimate biomass analysis for the entire proposed database. 

Equation 𝑹𝟐 𝑹𝟐 𝑺𝑬 (MJ kg-1) 

(4) 0.428 0.421 1.621 

(5) 0.675 0.664 1.208 

(6) 0.201 0.155 2.758 

(7) 0.643 0.623 1.689 

(11) 0.610 0.597 1.406 

(12) 0.428 0.421 1.907 

(14) 0.698 0.695 1.142 
 
Database grouping and class evaluation 

Figures 1, 2, and 3 display the database clustering 
focusing on proximate biomass analysis information. The 
figures reveal that class C2 comprises six outliers, which 
were subsequently excluded from further procedures. By  

examining Figure 1, the division of classes C1 (58 samples) 
and C3 (53 samples) was primarily determined by the strong 
volatile material (VM) content. Biomasses with VM < 78% 
are classified as part of class C1, whereas those with VM ≥ 
78% belong to class C3.
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FIGURE 1. Clusters following the criteria of proximate analysis (𝑉𝑀 × 𝐻𝐻𝑉).  
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FIGURE 2. Clusters following the criteria of proximate analysis (𝐴𝑠ℎ × 𝐻𝐻𝑉).  
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FIGURE 3. Clusters following the criteria of proximate analysis (𝐹𝐶 × 𝐻𝐻𝑉).  
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Figures 4, 5, and 6 illustrate the clustering outcomes 
based on ultimate chemical analysis data. Classes C1 and 
C3, consisting of 4 and 2 samples, respectively, were 
deemed as outliers and therefore excluded. However, 
classes C2 (42 samples) and C4 (45 samples)                       
were identified as valid and were categorized based on the  

oxygen content variable. Biomasses with a carbon (𝐶) 
content of 42% or greater are assigned to class C2, while 
those with a 𝐶 content below 42% are allocated to class C4. 
This threshold is clearly demonstrated in Figure 6, 
confirming the consistency of the division. 
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FIGURE 4. Clusters following the criteria of ultimate chemical analysis (𝐶 × 𝐻𝐻𝑉).  
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FIGURE 5. Clusters following the criteria of ultimate chemical analysis (𝐻 × 𝐻𝐻𝑉).  
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FIGURE 6. Clusters following the criteria of ultimate chemical analysis (𝑂 × 𝐻𝐻𝑉).  

 
By applying each class to the models described by eqs (1) to (14), the results shown in Tables 4, 5, 6, and 7 were obtained. 

It is evident that for the formulas based on proximate analysis, the separation into distinct groups significantly contributed to the 
improvement of the linear relationship between the estimated higher heating value and the experimental value.  
 
TABLE 4. Comparative analysis of heating value forecast equations based on proximate biomass analysis for class C1 of the 
proposed database. 

Equation 𝑹𝟐 𝑹𝟐 𝑺𝑬 (MJ kg-1) 

(1) 0.636 0.630 1.201 

(2) 0.538 0.522 1.328 

(3) 0.565 0.541 1.423 

(8) 0.563 0.547 1.747 

(9) 0.691 0.680 1.759 

(10) 0.507 0.489 1.502 

(13) 0.554 0.538 1.410 

TABLE 5. Comparative analysis of heating value forecast equations based on proximate biomass analysis for class C3 of the 
proposed database. 

Equation 𝑹𝟐 𝑹𝟐 𝑺𝑬 (MJ kg-1) 

(1) 0.396 0.384 1.632 

(2) 0.321 0.293 1.687 

(3) 0.541 0.513 1.721 

(8) 0.533 0.514 1.399 

(9) 0.594 0.578 1.282 

(10) 0.186 0.154 1.968 

(13) 0.404 0.380 1.688 

The majority of the tested models showed a 
significant improvement in the average determination 
coefficient (𝑅 ) for both interest classes C1 and C3, with an 
approximate five-fold increase. Additionally, the standard 
error (SE) was reduced by half, indicating enhanced 
accuracy of the formulas. Among the equations evaluated, 

[eq. (1)] proposed by Sheng & Azevedo (2005) 
demonstrated superior performance for class C1, as it 
yielded a satisfactory average determination coefficient 
(𝑅 ) combined with a smaller SE. On the other hand,         
[eq. (9)] suggested by Cordero et al. (2001) was found to be 
the best model for class C3.
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TABLE 6. Analysis of the heating value forecast equations based on ultimate chemical analysis of biomasses for class C2 of the 
proposed database. 

Equation 𝑹𝟐 𝑹𝟐 𝑺𝑬 (MJ kg-1) 

(4) 0.505 0.493 0.970 

(5) 0.565 0.530 1.016 

(6) 0.536 0.471 0.987 

(7) 0.576 0.517 1.088 

(11) 0.544 0.508 1.278 

(12) 0.505 0.493 0.991 

(14) 0.571 0.560 0.927 
 
TABLE 7. Comparative analysis of heating value forecast equations based on ultimate chemical analysis of biomasses for class 
C4 of the proposed database. 

Equation 𝑹𝟐 𝑹𝟐 𝑺𝑬 (MJ kg-1) 

(4) 0.699 0.692 1.343 

(5) 0.716 0.695 1.317 

(6) 0.724 0.688 1.356 

(7) 0.711 0.673 1.690 

(11) 0.704 0.683 1.409 

(12) 0.699 0.692 1.325 

(14) 0.720 0.713 1.299 
 
For ultimate chemical analysis-based models, class 

divisions did not yield satisfactory results except for class 
C4 (Table 7), where average 𝑅  and SE of the evaluated 
equations improved notably. However, the fluctuations in 
the class C2 results, depending on the equation, rendered the 
grouping impractical. As a result, for developing the model 
correlating higher heating value (HHV) with 𝐶, 𝐻, and 𝑂 
contents, the complete database (93 samples) was used. 

Models proposed to predict higher heating value 

Based on the proximate analysis of biomass samples 
in classes C1 and C3, the models presented in Tables 8       
and 9 were developed. Statistical tests at a significance   
level of 5% were conducted to evaluate the parameters of the  

models. The null hypothesis was accepted for the following 
parameters: (i) 𝛽  in the model shown in Table 8; and (ii) 
𝛽  and 𝛽  in the equation discussed in Table 9.  

By excluding the variable 𝐹𝐶 from [eq. (18)] for 
samples with 𝑉𝑀 < 78%, a new model was derived, 
resulting in a 𝑅  of 0.697 and 𝑆𝐸 of 1.05 MJ kg-1, as shown 
in [eq. (20)]. However, for samples with VM ≥ 78%, 
removing both the variables FC and VM from [eq. (18)] led 
to a decrease in 𝑅  to 0.384 and an increase in 𝑆𝐸 to 1.54 
MJ kg-1, preventing a general change. In this case, only the 
variable FC, which had a discrepant p-value beyond the 5% 
limit, was omitted, resulting in [eq. (21)] with  a 𝑅  of 0.578 
and 𝑆𝐸 of 1.27 MJ kg-1.

 
TABLE 8. Parameters of the model presented in [eq. (18)] for 𝑉𝑀 < 78%. 

Parameters Estimate t-test statistic p-value 

𝜷𝟎 30.951 5.0866 4.7137×10-6 

𝜷𝟏 -0.13594 -2.1342 0.037386 

𝜷𝟐 -0.3504 -5.1358 3.9554×10-6 

𝜷𝟑 -0.018214 -0.30759 0.75958 

Number of observations: 58 Number of degrees of freedom: 54 

𝑺𝑬: 1.06 MJ kg-1 𝑅 : 0.692 
 
TABLE 9. Parameters of the model presented in [eq. (18)] for 𝑉𝑀 ≥ 78%. 

Parameters Estimate t-test statistic p-value 

𝜷𝟎 30.278 2.4943 0.016042 

𝜷𝟏 -0.13202 -1.1055 0.27434 

𝜷𝟐 -0.31373 -2.4982 0.015885 

𝜷𝟑 0.042992 0.31341 0.7553 

Number of observations: 53 Number of degrees of freedom: 49 

𝐒𝐄: 1.28 MJ kg-1 R : 0.571 
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Regarding the ultimate chemical analysis of biomasses, a single model was adjusted for the complete dataset obtaining the 
parameters shown in Table 10. At 5% significance, the null hypothesis is accepted for 𝛽  and 𝛽 ; therefore, [eq. (19)] remains with 
only two plots related to the independent variables 𝐶 and 𝐻. The resulting [eq. (22)] presents a 𝑅  of 0.7013 and 𝑆𝐸 of 1.11 MJ kg-1. 

 
𝐻𝐻𝑉 = 29,241 − 0,11911𝑉𝑀 − 0,33142𝐴𝑠ℎ (20)
 
𝐻𝐻𝑉 = 33,977 − 0,16787𝑉𝑀 − 0,34929𝐴𝑠ℎ (21)
 
𝐻𝐻𝑉 = 0,27293𝐶 + 0,95445𝐻 (22)

 
TABLE 10. Parameters of the model presented in [eq. (19)]. 

Parameters Estimate t-test statistic p-value 

𝜷𝟎 0.12524 0.077918 0.93807 

𝜷𝟏 0.26983 11.53 2.3634×10-19 

𝜷𝟐 0.9326 9.1872 1.5388×10-19 

𝜷𝟑 0.0037024 0.24838 0.80441 

Number of observations: 93 Number of degrees of freedom: 89 

𝑺𝑬: 1.11 MJ kg-1 𝑅 : 0.698 
 

It is evident that when existing models from the 
literature are applied to samples without classification based 
on percentage values of composition, the use of ultimate 
chemical analysis to estimate the higher heating value 
proves to be more efficient compared to proximate chemical 
analysis. This conclusion is based on the evaluation criteria 
of average 𝑅  and 𝑆𝐸. [eq. (1)], which yielded the best 
prediction using proximate analysis, exhibited an 𝑅  of 
0.3135 and 𝑆𝐸 of 1.8537 MJ kg-1. Conversely, [eq. (14)], 
which provided the most accurate estimation using ultimate 
analysis, showed an 𝑅  of 0.69485 and 𝑆𝐸 of 1.1425 MJ   
kg-1. Consequently, [eq. (14)] demonstrated a 122% increase 
in 𝑅  and a 38% reduction in SE when compared to [eq. (1)]. 

The division of samples obtained through proximate 
chemical analysis into two classes contributed to the 
improvement of results for all seven evaluated equations. 
The results between the two classes were not uniform, 
indicating that the most effective model for C1 (Equation 1) 
did not coincide with the most efficient model for C3 
(Equation 9). This strengthens the evidence that the results 
were influenced by the biomass composition rather than the 
reduction of the sample space. With the introduction of 
clustering, the statistical parameters of eqs (1) and (9) 
underwent the following percentage changes, respectively: 
(i) an increase in 𝑅  by 100% and 386%, and a decrease in 
SE by 35% and 61%. 

Clustering the data from ultimate analysis did not 
yield consistent results. The derived equations showed good 
performance only for samples in C4 and were more accurate 
in predicting samples in C2. The evaluated equations 
showed improvements in 𝑅  for C4 ranging from 2.6% to 
344%, whereas C2 exhibited improvements between 17% 
and 204%. In terms of SE, there was a reduction for all 
equations applied to C2 and only three equations applied to 
C4. The percentage ranges of variation were: (i) C: 9.1% to 
64.2%, and (ii) C4: 17.1% to 51.9%. 

Based on the proximate analysis data of C1 and C3, 
new models (Equations 20 and 21) were developed, which 
exhibited higher 𝑅  values and lower SE compared to eqs 

(1), (2), (3), (8), (9), (10), and (13) applied to specific 
groupings. For C1, the best model, [eq. (1)], resulted in an 
𝑅  of 0.629 and 𝑆𝐸 of 1.201 MJ kg-1, while [eq. (20)] 
yielded an 𝑅  of 0.697 and 𝑆𝐸 of 1.05 MJ kg-1. In C3, the 
results ranged from an 𝑅  of 0.577 and 𝑆𝐸 of 1.281 MJ       
kg-1 (Equation 9) to an 𝑅  of 0.678 and 𝑆𝐸 of 1.27 MJ kg-1 
(Equation 21). In summary, there was an increase in 𝑅  and 
a decrease in SE of: (i) 10.8% and 12.5% for C1, and (ii) 
17.5% and 0.85% for C3, respectively. 

Due to the lack of efficiency in classifying ultimate 
analysis data, eqs (4), (5), (6), (7), (11), (12), and (14) were 
evaluated using the complete set of samples. Under these 
circumstances, [eq. (14)] was identified as the most 
effective model with an 𝑅  value of 0.694 and 𝑆𝐸 of 1.142 
MJ kg-1. Additionally, a new model based on [eq. (22)] was 
formulated, resulting in an 𝑅  value of 0.7013 and 𝑆𝐸 of 
1.1090 MJ kg-1, representing a 1% increase in 𝑅  and a 3% 
reduction in 𝑆𝐸.  
 
CONCLUSIONS 

A database comprising information on proximate 
and ultimate chemical analysis of 142 samples of agro-
industrial waste was compiled. The classification of the 
dataset led to enhanced efficacy of the formulas employed 
for estimating the higher heating value (HHV) of biomasses 
using proximate analysis. However, the equations that 
relied on ultimate analysis to predict HHV did not exhibit 
consistent statistical parameters that would justify dividing 
the sample space into classes in this particular case. 

There were no significant disparities in the quality of 
fit when employing ultimate chemical analysis or proximate 
chemical analysis as independent variables in multiple 
linear regression models for HHV predictions. 
Consequently, considering that proximate chemical analysis 
is less costly than ultimate analysis, it can be concluded that 
the clustering methodology, combined with the 
concentrations of constituent elements in the waste, is a 
feasible approach for optimizing and reducing costs in 
obtaining the heating value of biomasses for energy purposes. 
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