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ABSTRACT 

The apparent soil electrical conductivity (ECa) is an attribute commonly used for the 
characterization of the spatial variability of soil, but its determination by handheld sensors 
consumes considerable time and labor. The reduction in the number of sampling points 
allows minimize them but can result in increased uncertainty of interpolated maps. Thus, 
the goal of this study was to identify the best spacing and number of ECa measurements, 
to guarantee the quality of maps generated in three vineyards. The ECa values were 
obtained using a handheld sensor in different sampling grids. The data were submitted to 
descriptive statistical and geostatistical analyses. The relative deviation and Kappa 
coefficient of agreement were used to assess the similarity of generated maps. The reduction 
in the number of points and increase in the size of the sampling grid reduced the quality of 
maps and this reduction was greater when the spacing increased in the direction of the 
terrain slope. A minimum limit of 100 sampling points should be considered for the 
sampling planning to generate ECa spatial distribution maps, with a more conservative 
approach when regarding the increase in spacing in the direction of the terrain slope. 

 
 
INTRODUCTION 

Precision agriculture (PA) encompasses the use of 
equipment for direct collection of information representing 
soil variability. In this context, the measurement of 
apparent soil electrical conductivity (ECa) is important 
because it can be correlated with several soil attributes 
(Fortes et al., 2015; Stadler et al., 2015; Uribeetxebarria et 
al., 2018); thus, it allows the prior knowledge of soil 
variability. This can assist in sampling of other properties 
(Fortes et al., 2015; Sanches et al., 2018) and in the 
demarcation of areas for various types of site-specific 
management, such as productivity (Bottega et al., 2017), 
quality of production (Urretavizcaya et al., 2017), 
irrigation (Haghverdi et al., 2015), and nutritional 
management (Peralta et al., 2015). 

One type of equipment for the measurement of ECa 
can be towed by a vehicle (e.g., tractor or off-road vehicle), 
enabling a large number of measurements (Farahani & 
Flynn, 2007). On the contrary, handheld equipment can be 

used to measure ECa (Rabello et al., 2010; 2011) and this is 
not necessarily conducted continuously or in swaths. 
Handheld equipment is used for areas that are difficult to 
access or which, because of the type of crop, such as dense 
vegetation, tussocks (Rabello et al., 2011), and vineyards 
with crops on trellises with reduced spacing between rows, 
hinders the entry of towed equipment (Rabello et al., 2010). 
Nevertheless, manually operated equipment presents 
disadvantages because of the demand for labor and time, 
which can increase the costs of PA adoption. 

One alternative to reduce costs and ECa sampling 
time is to reduce the distance between swaths for towed 
equipment (Farahani & Flynn, 2007; Andrenelli et al., 
2013) and the number of points sampled by the handheld 
equipment (Nascimento et al., 2014). However, these 
alternatives can result in increased uncertainty in spatial 
distribution in the generated ECa maps and may lead to 
errors regarding specific management decisions for the 
area (Farahani & Flynn, 2007). 
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In a 52 ha area with sandy soil irrigated by a central 
pivot, Farahani & Flynn (2007) observed a smaller and 
higher reduction in the quality of the ECa maps with an 
increase in distances up to 50 and 80 m between the 
measured swaths, respectively, using Veris 3100 
equipment (Veris Technologies, Salina, KS). Andrenelli et 
al. (2013), using an ARP© (Automatic Resistivity 
Profiling) apparatus in a 3.5 ha vineyard with medium 
texture soil, verified that spacing between 12 and 24 m 
swaths resulted, respectively, in electrical resistivity maps 
(1/ECa) with substantial and moderate agreement with the 
map provided by 6 m between swaths. Regarding 
manually transported equipment, Nascimento et al. (2014) 
observed that the reduction from 820 to 90 sampling points 
guaranteed the generation of reliable ECa maps in a 1.6 ha 
table grape vineyard with sandy textured soil with low 
slope in the Brazilian semi-arid region.  

However, the effects of the reduction in the 
number of sampling points on the quality of ECa maps 
with punctual measures using a handheld equipment have 
not been sufficiently studied. Nascimento et al. (2014) 
evaluated only the reduction in the number of sampling 
points, without considering the gradual reduction in 

spacing between them. Moreover, the results may not be 
valid for finer texture soils or steeper slopes. Thus,       
the goal of this study was to identify the optimal number 
of ECa measurements, as well as the best spacing 
between measurements, as acquired by handheld 
equipment, to ensure the quality of spatial distribution 
maps in irrigated vineyards. 

 
MATERIAL AND METHODS 

The study was conducted in three commercial 
vineyards denoted A, B, and C (Table 1), located in the 
municipality of Espírito Santo do Pinhal, state of São 
Paulo, Brazil. The vines were cultivated in trellises and 
irrigated by a drip system, with a lateral line per row of 
plants and two emitters per plant, with the flow of each 
emitter ranging between 1.83 L h-1 (vineyard C) and 1.60 
L h-1 (vineyards A and B). The soil was classified 
predominantly as eutrophic Tb Haplic Cambisol (Santos et 
al., 2018). The classification of topographic relief of the 
predominant slope in vineyards A and C was wavy (8 - 
20%), whereas that of vineyard B was strong wavy (20 - 
45%) (Embrapa, 1979). 

 
TABLE 1. General characteristics of the vineyards under study. 

Vineyard Cultivar Rootstock Area (ha) 
Geographic 
coordinates 

Altitude 
(m) 

Sr × Sp(a) 

(m) 
Soil Texture 

A Cabernet Franc Paulsen 1103 1.5 
22º10'41.1"S 
46º42'11.8"W 

1,183 3.0 × 1.0 Clay 

B Cabernet Sauvignon Paulsen 1103 0.9 
22º10'26.5"S 
46º42'2.3"W 

1,174 2.5 × 1.0 Clay 

C Chardonnay Paulsen 1103 0.6 
22º10'49.1"S 
46º44'28.4"W 

875 2.5 × 1.0 Clay 

a Sr: spacing between rows; Sp: spacing between plants. 
 
ECa measurements were conducted on December 

20 and 21, 2017 (vineyards A and B, in this order) and 
February 7, 2018 (vineyard C), during the morning, using 
a handheld ECa meter (Rabello et al., 2010; 2011) (Figure 
1). The meter was composed of metallic rods used as 
electrodes for the induction of electric current and it 
measured the potential difference in a given layer of soil. It 
had a PIC18F258 microprocessor, which was used as the 
central processor and a battery for power. 

During field measurements, the equipment was 
coupled to a HiPer GGD (TOPCON, Pleasanton, CA, 

USA) GNSS (Global Navigation Satellite System) receiver 
with signal corrected by the RTK (Real Time Kinematic) 
system for the georeferencing of the points measured. The 
ECa measurements were obtained along interspersed rows 
and after every 5 plants within the rows, in the continuous 
wetted band resulting from the irrigation system. The 
metallic rods were spaced horizontally for the ECa 
readings to be representative of the soil layer from 0.0 to 
0.4 m in depth. Thus, a sampling grid of 6 × 5 m was 
obtained for vineyard A and another of 5 × 5 m for 
vineyards B and C.  

 

 
FIGURE 1. Handheld meter for apparent soil electrical conductivity (ECa) (a); and measurement of ECa in the vine rows, 
using the handheld meter coupled to the GNSS receiver (rover) (b). 



Effects of size and sampling grid on the quality of apparent soil electrical conductivity maps 3 
 

 
Engenharia Agrícola, Jaboticabal, v.39, special issue, p.1-12, sep. 2019 

To identify the best sample size in different grids to guarantee the quality of interpolated ECa maps, the number of 
points was reduced based on the initial grid size for each vineyard (6 × 5 m for vineyard A and 5 × 5 m for vineyards B and C), 
used as reference for the construction of an additional 15, 14, and 9 different grids for vineyards A, B, and C, respectively 
(Table 2). The number of grids evaluated varied according to the size of each vineyard; consequently, it also varied with the 
respective minimum number of practicable points to demarcate homogeneous zones.  
 
TABLE 2. Sampling grid (SG) used for measurement of apparent soil electrical conductivity and number of points measured 
(n) in vineyards A, B, and C. 

- - - - Vineyard A - - - - - - - - Vineyard B - - - - - - - - Vineyard C - - - - 
SG (m) n SG (m) n SG (m) n 

6 × 5 (reference) 511 5 × 5 (reference) 321 5 × 5 (reference) 221 
12 × 5 263 10 × 5 163 10 × 5 115 
12 × 10 132 10 × 10 85 10 × 10 59 
18 × 5 190 15 × 5 110 15 × 5 75 
18 × 10 95 15 × 10 57 15 × 10 38 
18 × 15 71 15 × 15 39 15 × 15 29 
24 × 5 143 20 × 5 86 20 × 5 59 
24 × 10 72 20 × 10 45 20 × 10 30 
24 × 15 53 20 × 15 31 20 × 15 22 
24 × 20 42 20 × 20 26 20 × 20 18 
30 × 5 119 25 × 5 66 - - 
30 × 10 60 25 × 10 33 - - 
30 × 15 44 25 × 15 24 - - 
30 × 20 35 25 × 20 20 - - 
30 × 25 30 25 × 25 17 - - 
30 × 30 25 - - - - 

 
A descriptive statistical analysis was conducted for 

the ECa dataset from all sampling grids used after removal 
of outliers (three times beyond the interquartile range) 
from the full dataset (removal of three values, required for 
vineyard B only). The Kolmogorov-Smirnov (K-S) non-
parametric normality test was also applied with a 5% 
significance level for the dataset from each sampling grid 
to determine the need for data transformation because lack 
of normality could affect the reliability of semivariograms 
(Oliver & Webster, 2014). The descriptive statistical 
analysis and normality test were performed using the R 
3.3.3 software (R Core Team, 2017). 

Thereafter, a geostatistical analysis was applied to 
each dataset to characterize and evaluate the presence of 
spatial dependence in the data measured in different 
sampling grids. For this, experimental semivariograms 
were calculated using the Matheron’s (1965) estimator, 
considering 50% of the maximum distance between 
sampling points as suggested by Landim (2006). The 
existence and type of anisotropy was verified to determine 
the need for correction based on a method described by 
Oliver & Webster (2014). According to Yamamoto & 
Landim (2013), the objective of the anisotropy correction, 
when present, is to obtain an isotropic semivariogram, 
allowing for the fittingof a single spatial correlation model.  

Spherical, exponential, and gaussian models were 
fitted to the isotropic experimental semivariograms and 
selected on the basis of the lowest value of the root mean 
square error (RMSE) of the cross-validation. Then, the 
parameters (nugget effect: C0, sill: C0 + C, and the spatial 
dependence range: A) of the selected semivarigram model 

were obtained. The degree of spatial dependence (DSD, 
%) (Equation 1) was determined according to Cambardella 
et al. (1994) and classified as strong (DSD < 25%), 
moderate (25 % ≤ DSD < 75 %), and weak spatial 
dependence (DSD ≥ 75 %). 

DSD = (C0/(C0 + C) × 100                                    (1) 
 
The data that presented spatial dependence, i.e., did 

not present a pure nugget effect (PNE) in the semivariogram 

analysis, were interpolated by ordinary kriging. Then, 

spatial distribution ECa maps were generated with three 

classes of values (high, moderate, and low) determined by 

the Jenks optimization method, which minimizes the 

differences between intraclass values and maximizes the 

differences between classes (Fraile et al., 2016). The 

calculation of the experimental semivariograms, the fittingof 

the respective theoretical models, cross-validation, and the 

interpolation of the data were performed using the GS+ 7.0 

software and the RMSE calculation was conducted with the 

R 3.3.3 software (R Core Team, 2017).  
To assess the quality of ECa maps generated by the 

sampling grids, the Kappa coefficient of agreement (Cohen, 
1960) was calculated in relation to the reference maps 

adopted for each vineyard. The higher the calculated value 
of this coefficient, determined using a confusion matrix, the 
greater the agreement between the compared map and the 
reference map. The degree of agreement, according to the 
Kappa coefficient, was classified according to the method of 
Landis & Koch (1977) (Table 3). The relative deviation 

coefficient (RDC) (Coelho et al., 2009) was also used for 
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the comparison between maps to rank them from the best to 
the worst sampling grid, with smaller values being better. 
This coefficient reflects the difference between a thematic 

map and a map assumed as a reference by calculating the 
modulus of the mean difference for the interpolated values 
of both maps (Coelho et al., 2009). This differs from the 

comparison by the Kappa coefficient of agreement, which 
requires classes of values (categories) delimited in each of 
the maps. According to Cherubin et al. (2015), the RDC 

efficiently evaluates the similarity of soil attribute maps. 
The Kappa and RDC coefficients were calculated using a 
Microsoft Excel® spreadsheet.  

 
TABLE 3. Classification of the strength of agreement according to the Kappa coefficient of agreement. 

Kappa coefficient of agreement Strength of agreement 

<0.00 Poor 

0.00-0.20 Slight 

0.21-0.40 Fair 

0.41-0.60 Moderate 

0.61-0.80 Substantial 

0.81-1.00 Almost Perfect 

Source: Modified from Landis & Koch (1977). 
 
Regression analyses were performed to verify the 

relationship between the number of sampling points and the 
values of the coefficients (Kappa and RDC), and the best 
model was chosen based on its coefficient of determination.  

 
RESULTS AND DISCUSSION 

Non-normality was verified only for the ECa data 
measured in the grid with a higher number of points of 
the vineyards A and B (grid size of 6 × 5 m and 5 × 5 m,  
respectively), according to the K-S test at 5% 
significance (Table 4). In some cases, this would require 
the transformation of the dataset for subsequent 
geostatistical analysis. However, it was not necessary to 
transform these data, because the corresponding values of 
the skewness coefficient were barely pronounced (<1), 
indicating a symmetry in the data, which is actually 
required for the use of the semivariograms estimated by 
kriging (Landim, 2006). 

The presence of geometric anisotropy was 
observed (Yamamoto & Landim, 2013; Oliver & 
Webster, 2014), i.e., a variation only in the extent of 

spatial dependence with the change of direction of the 
terrain for the ECa data measured in vineyard A in the 6 
× 5 m, 12 × 5 m, 12 × 10 m, 18 × 5 m, 30 × 15 m, and 30 
× 20 m sampling grids. The anisotropic phenomenon 
observed was characterized by having higher spatial 
dependence in the direction of the plant rows (45°), 
suggesting a greater continuity in this direction, except 
for the grid size of 30 × 20 m, which presented greater 
continuity at 90°. As the plant rows were, in general, 
placed in a direction perpendicular to the slope of the 
vineyard, the anisotropy could be attributed to the 
intrinsic factors of the soil conditioned by the land 
topography. Valerian & Prado (2001) verified the 
existence of anisotropy with greater continuity of the clay 
attribute in the opposite direction to that of the 
toposequence. In other words, factors related to soil 
formation and the transport of particles may have 
contributed to the greater variability of soil attributes, 
such as the granulometric fraction and organic matter in 
the direction of the slope of the vineyard, and 
consequently, the ECa. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



Effects of size and sampling grid on the quality of apparent soil electrical conductivity maps 5 
 

 
Engenharia Agrícola, Jaboticabal, v.39, special issue, p.1-12, sep. 2019 

TABLE 4. Descriptive statistics and normality test of the apparent soil electrical conductivity (ECa, mS m-1) data measured in 
different sampling grids (SG) in three vineyards. 

Vineyard SG (m) n(a) 
Statistical parameters(b) 

DK-S
(c) 

Mean Med Min Max s CV (%) Kur Ske 

A 

6 × 5 511 5.2 5.2 2.8 8.8 0.93 18.0 0.17 0.07 0.06NN 
12 × 5 263 5.3 5.3 3.0 8.8 0.93 17.6 0.27 0.00 0.06N 

12 × 10 132 5.2 5.3 3.2 7.4 0.93 17.9 -0.47 -0.05 0.07N 
18 × 5 190 5.3 5.4 3.1 8.8 0.96 18.1 0.25 0.05 0.09N 

18 × 10 95 5.3 5.3 3.2 7.3 0.96 18.3 -0.43 -0.10 0.09N 
18 × 15 71 5.4 5.4 3.2 8.8 1.09 20.2 0.22 0.10 0.12N 
24 × 5 143 5.3 5.3 3.1 7.4 0.97 18.4 -0.50 -0.18 0.07N 

24 × 10 72 5.2 5.3 3.2 7.4 1.01 19.3 -0.73 -0.15 0.10N 
24 × 15 53 5.3 5.4 3.2 7.2 1.07 20.1 -0.62 -0.29 0.08N 
24 × 20 42 5.2 5.3 3.2 7.1 1.07 20.6 -0.82 -0.11 0.10N 
30 × 5 119 5.2 5.3 3.2 7.2 0.86 16.5 -0.29 -0.31 0.10N 

30 × 10 60 5.2 5.4 3.2 7.2 0.93 17.7 -0.41 -0.40 0.12N 
30 × 15 44 5.2 5.3 3.2 7.2 0.96 18.5 -0.16 -0.20 0.14N 
30 × 20 35 5.1 5.4 3.2 7.1 0.97 19.2 -0.68 -0.29 0.14N 
30 × 25 30 5.1 5.4 3.2 7.1 1.03 20.2 -0.74 -0.31 0.14N 
30 × 30 25 5.2 5.2 3.2 7.2 1.13 21.9 -0.73 0.03 0.09N 

B 

5 × 5 321 4.5 4.4 1.5 9.1 1.30 28.8 0.89 0.72 0.09NN 
10 × 5 163 4.5 4.4 1.5 8.9 1.27 28.2 0.75 0.59 0.08N 

10 × 10 85 4.4 4.5 1.5 8.9 1.27 28.6 1.15 0.50 0.07N 
15 × 5 110 4.7 4.5 1.8 8.3 1.27 27.2 -0.13 0.56 0.12N 

15 × 10 57 4.6 4.5 1.8 7.4 1.27 27.4 -0.06 0.43 0.10N 
15 × 15 39 4.7 4.5 2.8 7.4 1.28 27.2 -0.53 0.57 0.12N 
20 × 5 86 4.4 4.5 1.5 7.6 1.32 30.0 -0.13 0.27 0.06N 

20 × 10 45 4.3 4.4 1.5 7.4 1.30 30.1 -0.05 0.05 0.06N 
20 × 15 31 4.3 4.5 1.5 7.4 1.34 31.4 0.03 0.03 0.10N 
20 × 20 26 4.4 4.7 1.5 6.8 1.39 31.6 -0.56 -0.45 0.13N 
25 × 5 66 4.8 4.7 1.5 7.4 1.33 27.9 -0.52 0.12 0.08N 

25 × 10 33 4.6 4.5 1.5 7.4 1.45 31.5 -0.15 0.29 0.09N 
25 × 15 24 4.7 4.7 1.5 7.4 1.50 31.9 -0.27 0.08 0.12N 
25 × 20 20 4.7 4.8 1.5 7.4 1.73 36.7 -1.01 -0.02 0.11N 
25 × 25 17 4.6 4.8 1.5 6.8 1.45 31.4 -0.32 -0.45 0.12N 

C 

5 × 5 221 4.6 4.4 1.1 8.7 1.38 30.3 -0.33 0.26 0.08N 
10 × 5 115 4.7 4.6 1.1 7.6 1.46 31.2 -0.44 0.01 0.06N 

10 × 10 59 4.8 4.6 1.6 7.6 1.50 31.1 -0.56 0.09 0.10N 
15 × 5 75 4.7 4.6 2.3 7.4 1.20 25.7 -0.18 0.48 0.10N 

15 × 10 38 4.8 4.6 2.8 7.3 1.21 25.1 -0.19 0.59 0.19N 
15 × 15 29 4.8 4.8 2.3 7.1 1.23 25.8 -0.26 -0.06 0.08N 
20 × 5 59 4.9 4.8 2.7 7.3 1.41 28.8 -1.17 0.22 0.12N 

20 × 10 30 4.9 4.7 3.0 7.3 1.43 29.0 -1.15 0.41 0.16N 
20 × 15 22 4.9 4.7 3.0 7.3 1.28 26.2 -0.73 0.44 0.10N 
20 × 20 18 5.0 4.8 3.0 7.3 1.40 28.2 -0.75 0.44 0.13N 

a n: number of points measured. b Med: median; Min: minimum value; Max: maximum value; s: standard deviation; CV: coefficient of 
variation; Kur: kurtosis coefficient; Ske: skewness coefficient. c DK-S: calculated values of the Kolmogorov-Smirnov test (K-S); N and NN: 
follows and does not follow a non-normal distribution, respectively, based on the critical value calculated at 5% significance.  
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Among the sampling grids studied, only the 30 × 25 
m and 30 × 30 m grids in vineyard A did not ensure spatial 
dependence among the ECa data (experimental 
semivariograms with PNE; Table 5). The occurrence of 
PNE, i.e., the non-existence of a sill in the experimental 
semivariogram, demonstrated that the spacing between 
samples used was greater than the spatial dependence 
range (Oliver & Webster, 2014) and insufficient for 
interpolation based on geostatistical tools (Landim, 2006).  

Vineyard A presented the lowest values of spatial 
dependence range in the majority of the sampling grids 
tested (between 22.8 and 47.6 m: Table 5) in comparison 
to those of the other vineyards (between 79.4 and 39.9 m 
for vineyard B and between 74.6 and 32.3 m for vineyard 
C). Therefore, this resulted in the occurrence of PNE only 
in this vineyard, when distances beyond 25 m were used 
between points of ECa measurements. 

 
TABLE 5. Models and their respective parameters to fit the experimental semivariograms of  apparent soil electrical 
conductivity (ECa, mS m-1) and cross-validation parameters for the different sampling grids (SG) and the number of points (n). 

Vineyard 
SG 
(m) 

n Model(a) 
Nugget 
effect 

Sill 
Range 

(m) 
DSD(b) 

(%) 
Cross-validation(c) 

b r2 RMSE 

A 

6 × 5 511 Exp. 0.40 0.90 36.3 44.2M 1.04 0.35 0.76 
12 × 5 263 Exp. 0.15 0.87 39.6 17.1F 0.90 0.32 0.77 

12 × 10 132 Exp. 0.12 0.89 38.7 13.6F 0.75 0.19 0.85 
18 × 5 190 Sph. 0.23 0.92 35.9 24.8F 0.93 0.38 0.79 

18 × 10 95 Sph. 0.41 0.89 39.6 46.8M 0.90 0.17 0.87 
18 × 15 71 Sph. 0.32 1.11 40.2 28.9M 0.93 0.23 0.95 
24 × 5 143 Sph. 0.26 0.94 22.8 27.5M 0.92 0.30 0.81 

24 × 10 72 Exp. 0.24 1.00 29.4 24.1F 0.63 0.05 0.99 
24 × 15 53 Sph. 0.42 1.08 31.4 38.5M 0.49 0.03 1.07 
24 × 20 42 Sph. 0.39 1.04 39.1 37.5M 0.52 0.02 1.05 
30 × 5 119 Exp. 0.15 0.68 25.3 21.6F 0.99 0.30 0.72 

30 × 10 60 Sph. 0.51 0.79 39.5 64.1M 0.47 0.02 0.92 
30 × 15 44 Sph. 0.24 0.83 47.6 29.3M 0.35 0.03 0.99 
30 × 20 35 Sph. 0.13 0.85 31.9 14.8F -0.30 0.01 1.05 
30 × 25 30 PNE(d) - - - - - - - 
30 × 30 25 PNE - - - - - - - 

B 

5 × 5 321 Sph. 0.95 1.70 71.6 55.8M 1.00 0.27 1.12 
10 × 5 163 Sph. 0.64 1.56 50.2 40.8M 0.94 0.27 1.06 

10 × 10 85 Sph. 0.67 1.51 52.8 44.3M 0.68 0.10 1.19 
15 × 5 110 Sph. 0.96 1.72 79.4 56.0M 0.95 0.16 1.17 

15 × 10 57 Exp. 0.75 1.44 47.2 52.1M 0.31 0.01 1.24 
15 × 15 39 Exp. 0.06 1.60 39.9 3.9F 0.91 0.11 1.19 
20 × 5 86 Sph. 0.68 1.75 53.5 38.7M 0.91 0.29 1.09 

20 × 10 45 Sph. 0.39 1.69 50.4 23.1F 0.83 0.26 1.08 
20 × 15 31 Sph. 0.62 1.63 73.4 38.3M 0.31 0.02 1.27 
20 × 20 26 Sph. 0.16 1.63 45.0 9.9F 1.19 0.24 1.09 
25 × 5 66 Exp. 0.88 1.76 55.2 50.0M 0.85 0.13 1.19 

25 × 10 33 Sph. 1.23 2.09 61.3 59.0M 0.69 0.07 1.38 
25 × 15 24 Sph. 1.34 2.34 60.0 57.4M -0.87 0.06 1.61 
25 × 20 20 Sph. 1.63 3.25 57.2 50.0M -0.63 0.04 2.17 
25 × 25 17 Sph. 0.23 1.84 67.9 12.7F 0.76 0.15 2.20 

C 

5 × 5 221 Exp. 0.38 2.54 71.2 14.9F 1.01 0.48 0.99 
10 × 5 115 Sph. 0.68 2.82 70.6 24.2F 1.01 0.42 1.11 

10 × 10 59 Sph. 0.83 2.96 70.3 28.1M 0.88 0.26 1.29 
15 × 5 75 Sph. 0.37 1.68 68.6 22.3F 0.96 0.45 0.89 

15 × 10 38 Sph. 0.28 1.66 72.0 16.7F 0.96 0.44 0.89 
15 × 15 29 Exp. 0.03 1.54 74.6 2.1F 1.02 0.42 0.92 
20 × 5 59 Sph. 0.68 2.39 58.0 28.5M 0.96 0.43 1.06 

20 × 10 30 Sph. 0.75 2.27 48.4 33.2M 0.93 0.27 1.21 
20 × 15 22 Sph. 0.27 1.68 32.3 15.9F 1.56 0.30 1.08 
20 × 20 18 Sph. 0.90 1.91 34.8 46.9M 0.22 0.00 1.38 

a Exp. and Sph.: exponential and spherical, respectively. b DSD: degree of spatial dependence; S and M: strong and moderate spatial 
dependence, respectively, according to Cambardella et al. (1994). c b, r2, and RMSE: angular coefficient, coefficient of determination, and 
root mean square error, respectively, of the cross-validation for the adopted model. d PNE: pure nugget effect. 
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There was a predominance of strong spatial 
dependence among the sampling grids of vineyard C 
(Table 5), indicating better estimates by kriging for this 
vineyard. This is evidenced by the better cross-validation 
results found in this vineyard, i.e., a higher coefficient of 
determination (r2) and angular coefficient (b) closer to 
unity compared to those of other vineyards.  

Generally, the analysis of the cross-validation 
results (Table 5) revealed that the quality of the fittted 
semivariogram models gradually decreased with the 
increase in the spacing between ECa sampling points and 
reduction in the number of points. According to Oliver 
&Webster (2014), the number of sampling points is a 
determining factor in the reliability or accuracy of the 
experimental semivariogram, presenting in general a direct 
relationship between the sample size and the accuracy of 
the semivariogram. 

In a more specific assessment of the cross-
validation results, vineyard B presented a reduction with 
increased intensity of b, r2, and RMSE from 10 m grids in 
both directions (Table 5). The same result was observed in 
the other vineyards, in general, for spacing above 20 m in 
at least one of the directions of the sampling grid, except 
with spacing of 5 m in the other direction (from 24 × 10 
and 20 × 10 m for vineyards A and C, respectively). The 
increase in spacing between sampling points and the 
resulting reduction in their number, resulted in a decrease 
in the number of point pairs used in the calculation of 
semivariance, which reflected negatively on the 
confidence interval, and therefore, on the accuracy and 

reliability of the semivariogram (Webster & Oliver, 1992; 
Oliver & Webster, 2014). 

In all vineyards assessed, when the spacing of 5 m 
was used in at least one of the directions of the sampling 
grid, the result of the cross-validation was, in most cases, 
similar to that observed for the grid with higher sample 
size (reference) of the same vineyard (Table 5). Moreover, 
these same grids with 5 m in either direction, frequently 
presented better cross-validation results compared to other 
grids with a similar or even higher number. This means 
that greater reliability and accuracy of the experimental 
semivariograms can be ensured when reduced dimensions 
(5 m in this case) in one of the directions of the sampling 
grid is used. This is due to the greater detail of the 
variability of the ECa detected by random sampling at a 
reduced spacing in either direction, which facilitates the 
structuring of the semivariograms. In addition, this type of 
sampling  grid tends to involve a greater number of points 
measured, which is also important in the quality of the 
semivariograms (Oliver & Webster, 2014). 

The ECa maps interpolated for the three vineyards 
based on different sampling grids are shown in Figure 2. 
From the increase in the spacing between points and 
decrease in the number of points measured, the maps 
showed a reduction in the detail of the spatial variability of 
the ECa, i.e., homogeneous zones of ECa presented greater 
continuity and gradually smoothed contours. This 
demonstrated a reduction in the similarity of the maps in 
relation to the reference because of the decrease in the 
sample size and the increase in the spacing between points. 
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FIGURE 2. Spatial distribution of the apparent soil electrical conductivity in three categories of values originating from 
measurements from different sampling grids and with a different number of points (in parentheses), in vineyards A, B, and C.  
 

From the calculated RDC values (Table 6), the best 
sampling grids evaluated in vineyard A were of 18 × 10 m 
and 12 × 5 m (5.65 and 5.77%, respectively). For 
vineyards B and C, the best grid size among the tested was 
10 × 5 m (RDC of 6.64 and 8.56%, respectively). The 
worst grids identified were 24 × 20 m, 25 × 25 m, and 20 × 
15 m for vineyards A, B, and C, respectively. Less reliable 
maps than the reference map of the three vineyards 
originated not only from greater spacing and with smaller 
numbers of points, but in some cases also because of the 

conformation of the sampling grids. This was not verified 
in other studies when using the RDC for this type of 
evaluation, as in those on corn productivity maps (Coelho 
et al., 2009) and soil chemical attributes (Cherubin et al., 
2015), which verified with no exception that reducing the 
number of points increased the difference with respect to 
the reference map. The reduced size of the areas evaluated 
in the present study and the smaller difference in the 
number of points between evaluated grids may explain this 
difference with the above mentioned studies.  
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TABLE 6. Relative deviation coefficient (RDC) and Kappa coefficient of agreement for the maps of apparent soil electrical 
conductivity generated based on measurements made in different sampling grids (SG) in vineyards A, B, and C. 

Vineyard SG (m)(a) n(b) RDC (%) Kappa Classification(c) 

A 

12 × 5 263 5.77 0.53 Moderate 
12 × 10 132 5.92 0.47 Moderate 
18 × 5 190 5.82 0.51 Moderate 

18 × 10 95 5.65 0.44 Moderate 
18 × 15 71 7.28 0.46 Moderate 
24 × 5 143 7.25 0.34 Fair 

24 × 10 72 6.99 0.28 Fair 
24 × 15 53 7.71 0.33 Fair 
24 × 20 42 8.80 0.24 Fair 
30 × 5 119 6.95 0.28 Fair 

30 × 10 60 7.07 0.27 Fair 
30 × 15 44 7.11 0.29 Fair 
30 × 20 35 8.09 0.24 Fair 

B 

10 × 5 163 6.64 0.45 Moderate 
10 × 10 85 8.38 0.30 Fair 
15 × 5 110 9.01 0.43 Moderate 

15 × 10 57 10.68 0.35 Fair 
15 × 15 39 12.90 0.28 Fair 
20 × 5 86 9.76 0.27 Fair 

20 × 10 45 12.05 0.10 Slight 
20 × 15 31 11.67 0.32 Fair 
20 × 20 26 15.00 0.04 Slight 
25 × 5 66 11.68 0.34 Fair 

25 × 10 33 12.18 0.26 Fair 
25 × 15 24 11.28 0.25 Fair 
25 × 20 20 13.26 0.23 Fair 
25 × 25 17 17.17 0.04 Slight 

C 

10 × 5 115 8.56 0.63 Substantial 
10 × 10 59 11.66 0.57 Moderate 
15 × 5 75 14.63 0.43 Moderate 

15 × 10 38 16.95 0.22 Fair 
15 × 15 29 14.79 0.40 Fair 
20 × 5 59 14.82 0.46 Moderate 

20 × 10 30 18.49 0.34 Fair 
20 × 15 22 19.22 0.30 Fair 
20 × 20 18 19.05 0.35 Fair 

a spacing between rows × spacing between plants. b n: number of points measured. c classification of agreement with the reference map, 
based on the Kappa coefficient of agreement according to Landis & Koch (1977). 

 
Based on the Kappa coefficient (Table 6), the 

agreement between the maps generated in different 
sampling grids and the reference map of the respective 
vineyard was classified according to Landis & Koch (1977) 
as substantial only for the 10 × 5 mgrid of vineyard C and 
slight for the 20 × 10 m, 20 × 20 m, and 25 × 25 m grids of 
vineyard B. The remaining grids tested resulted in maps 
with moderate or fair agreement. This shows that from the 
first reduction (approximately 50%) of the number of points 
measured from the reference grid to the following grid, a 
considerable drop occurred in the quality of maps. 

When evaluating the variation in the RDC and 
Kappa coefficients according to the number of points 
measured jointly in the three vineyards (Figure 3), a trend 
in the potential reduction of RDC values (Figure 3a) and 
logarithmic increase of Kappa values (Figure 3b) was 
observed with the increase in the number of measured 
points. This confirmed the reduction in the quality of maps 
with the reduction in the number of measured points as 
also observed in several studies with varied types of data 
(Bazzi et al., 2008; Coelho et al., 2009; Nascimento et al., 
2014; Cherubin et al., 2015). 
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FIGURE 3. Relative deviation coefficient (RDC) (a) and Kappa coefficient (b) according to the number of measured points of 
apparent soil electrical conductivity in the different sampling grids established in vineyards A, B, and C. * and ns: significant 
and not significant at 5% by the t-test, respectively.  

 
According to Oliver &Webster (2014), less than 

100 sampling points results in unreliable semivariograms 
because below this value a considerable increase in the 
confidence interval of the semivariance occurs, which 
compromises the accuracy of the fitted model (Webster & 
Oliver, 1992). Based on Figure 3, the lower limit of 100 
sampling points should be considered in the planning of 
future ECa sampling, given that the average rate of change 
of RDC and Kappa coefficients with the increase in the 
number of measurements was lower (in module) in the 
range above 100 points (-0.02 and 7.04 × 10-4 by number 
of points, for RDC and Kappa, respectively) compared to 
the range below 100 (-0,11 and 2.53 × 10-3 by number of 
points, to RDC and Kappa, respectively). This indicated 
that the maps generated with less than 100 sampling points 
presented a more accentuated decline in quality. Therefore, 
to avoid excessively reduced quality in the interpolated 
maps, the minimum limit of 100 should be used. 

Alternatively, high RDC and reduced Kappa values, 
which identify maps with the greatest divergence from the 
reference map, did not correspond exclusively to the 
reduction in the sample size, because some grids were not 
necessarily better than others because they had a higher 
number of measured points. For example, the 24 × 5 m grid 
of vineyard A displayed a lower agreement compared to the 
18 × 15 m grid (Table 6), even with a higher number of 
measured points (143 to 72 points). This indicated that not 
only should the number of points be considered in the 
planning of sampling, but also the conformation of the 
sampling grid (spacing used in both directions). 

Figure 4 shows the variation in the Kappa 
coefficient of agreement as a function of the conformation 
of the sampling grid used for ECa measurements. It should 
be emphasized that the region of graphics where the 
response surface is not visible (upper corner), corresponds 
to the grids not evaluated in this study. 

 

 
FIGURE 4. Kappa coefficient of agreement according to the spacing of sampling points of apparent soil electrical conductivity 
in the direction between rows (Sr) and between plants (Sp) in vineyards A, B, and C (a, b, and c, respectively). 
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A higher decline in the Kappa coefficient was 
observed in response to the increase in spacing between 
rows (Sr) in an even spacing between plants (Sp), mainly in 
vineyards A and C (Figure 4a and 4c). This indicated that 
the increase in the spacing between ECa measurements in 
the direction of the slope of the vineyards (spacing of plant 
rows) may have interfered more strongly with the quality of 
maps, because the variability of several soil attributes tends 
to be greater in the direction of the slope, such as that of the 
presence of clay (Valeriano & Prado, 2001). However, a 
more detailed study is needed to identify the most 
appropriate minimum spacing in this direction, because 
factors peculiar to each vineyard, such as area and slope 
intensity, influence the variation in the final results.  
 
CONCLUSIONS 

The reduction in the number of points measured 
and the conformation of the sampling grid influenced the 
quality of maps of apparent soil electrical conductivity 
(ECa). The sampling grids in vineyard A of 12 × 5 m (263 
points) and 18 × 10 m (95 points) and vineyards B and C 
of 10 × 5 m (163 and 115 points, respectively), resulted in 
maps more similar to those of the reference grids (6 × 5 m 
- vineyard A and 5 × 5 m - vineyards B and C). 

A minimum limit of 100 sampling points should be 
considered in the sampling plan to generate spatial 
distribution maps of the ECa using handheld sensors in 
vineyards with areas similar to those assessed in this study, 
close to 1 ha. 

The increase in spacing in the direction of the slope 
of the vineyard (between rows) was more damaging to the 
quality of ECa maps compared to the increase in the 
direction of the rows. However, more detailed studies 
should be carried out to verify the minimum limit more 
appropriate to spacing in the direction of the slope. 
 
ACKNOWLEDGMENTS  

We thank the Coordenação de Aperfeiçoamento de 
Pessoal de Nível Superior (CAPES) for granting a 
scholarship to the first author. Also, the Conselho 
Nacional de Desenvolvimento Científico e Tecnológico 
(CNPq) for granting a scholarship to the second author and 
financial support for the project, and Vinícola Guaspari for 
supporting the research. 
 
REFERENCES 

Andrenelli MC, Magini S, Pellegrini S, Perria R, Vignozzi 
N, Costantini EAC (2013) The use of the ARP© system to 
reduce the costs of soil survey for precision viticulture. 
Journal of Applied Geophysics 99:24-34. DOI: 
https://doi.org/10.1016/j.jappgeo.2013.09.012 

Bazzi CL, Souza EG, Uribe-Opazo MA, Nóbrega LHP, 
Pinheiro Neto R (2008) Influência da distância entre 
passadas de colhedora equipada com monitor de colheita 
na precisão dos mapas de produtividade na cultura do 
milho. Engenharia Agrícola 28(2):355-363. DOI: 
http://dx.doi.org/10.1590/S0100-69162008000200016 

 

Bottega EL, Queiroz DM, Pinto FAC, Souza CMA, 
Valente DSM (2017) Precision agriculture applied to 
soybean: Part I - Delineation of management zones. 
Australian Journal of Crop Science 11(5):573-579 DOI: 
http://doi.org/10.21475/ajcs.17.11.05.p381 

Cambardella CA, Moorman TB, Nocak JM, Parkin TB, 
Karlen DL, Turco RF, Konopka AE (1994) Field-scale 
variability of soil properties in central Iowa soils. Soil 
Science Society of America Journal 58(5):1501-1511. DOI: 
http://doi.org/10.2136/sssaj1994.03615995005800050033x 

Cherubin MR, Santi AL, Eitelwein MT, Amado TJC, 
Simon DH, Damian JM (2015) Dimensão da malha 
amostral para caracterização da variabilidade espacial de 
fósforo e potássio em Latossolo Vermelho. Pesquisa 
Agropecuária Brasileira 50(2):168-177. DOI: 
http://doi.org/10.1590/S0100-204X2015000200009 

Coelho EC, Souza EG, Uribe-Opazo MA, Pinheiro Neto R 
(2009) Influência da densidade amostral e do tipo de 
interpolador na elaboração de mapas temáticos. Acta 
Scientiarum Agronomy 31(1):165-174. DOI: 
http://dx.doi.org/10.4025/actasciagron.v31i1.6645 

Cohen J (1960) A Coefficient of agreement for nominal 
scales. Educational and Measurement 20(1):37-46. DOI: 
https://doi.org/10.1177/001316446002000104 

Farahani H J, Flynn RL (2007) Map quality and zone 
delineation as affected by width of parallel swaths of 
mobile agricultural sensors. Biosystems Engineering 
96(2):151-159. DOI: 
https://doi.org/10.1016/j.biosystemseng.2006.10.010 

Embrapa - Empresa Brasileira de Pesquisa Agropecuária 
(1979) Súmula da X Reunião Técnica de Levantamento de 
Solos. Rio de janeiro, Serviço Nacional de Levantamento e 
Conservação de Solos, 83p. 

Fortes R, Millán S, Prieto MH, Campillo C (2015) A 
methodology based on apparent electrical conductivity and 
guided soil samples to improve irrigation zoning. Precision 
Agriculture 16(4):441-454. DOI: 
https://doi.org/10.1007/s11119-015-9388-7 

Fraile A, Larrodé E, Magreñán ÁA, Sicilia JA (2016) 
Decision model for siting transport and logistic facilities in 
urban environments: A methodological approach. Journal 
of Computational and Applied Mathematics 291(1):478-
487. DOI: https://doi.org/10.1016/j.cam.2014.12.012 

Haghverdi A, Leib BG, Washington-Allen RA, Ayers PD, 
Buschermohle MJ (2015) Perspectives on delineating 
management zones for variable rate irrigation. Computers 
and Electronics in Agriculture 117:154–167. DOI: 
https://doi.org/10.1016/j.compag.2015.06.019 

Landim PMB (2006) Sobre Geoestatística e mapas. Terræ 
Didatica 2(1):19-33. 

Landis JR, Koch GG (1977) The measurement of observer 
agreement for categorical data. Biometrics 33(1):159-174. 

Matheron G (1965) Les variables régionalisées et leur 
estimation: une application de la théorie de fonctions 
aléatoires aux sciences de la nature. Paris, Masson et Cie, 
306p. 

 



Henrique Oldoni, Bruno R. S. Costa, Romero C. Rocha Junior, et al. 12 

 

 
Engenharia Agrícola, Jaboticabal, v.39, special issue, p.1-12, sep. 2019 

Nascimento EF, Bassoi LH, Rabello LM (2014) Definição 
da malha de amostragem da condutividade elétrica do solo 
para obtenção de zonas de manejo em pomar de videira. 
In: Bernardi ACC, Naime JM, De Resende AV, Bassoi 
LH, Inamasu RY (ed). Agricultura de precisão: resultados 
de um novo olhar. Brasília, Embrapa, p413-420. 

Oliver MA, Webster R (2014) A tutorial guide to 
geostatistics: Computing and modelling variograms and 
kriging. Catena 113:56-69. DOI: 
https://doi.org/10.1016/j.catena.2013.09.006 

Peralta NR, Costa JL, Balzarini M, Franco MC, Córdoba 
M, Bullock D (2015) Delineation of management zones to 
improve nitrogen management of wheat. Computers and 
Electronics in Agriculture 110:103–113. DOI: 
https://doi.org/10.1016/j.compag.2014.10.017 

R Core Team (2017) R: A language and environment for 
statistical computing. Vienna, R Foundation for Statistical 
Computing, 2017. Available: https://www.R-project.org. 
Accessed: Dec 10, 2017. 

Rabello LM, Inamasu RY, Bernardi ACC (2010) Sistema de 
medida de condutividade elétrica do solo. São Carlos, SP, 
Embrapa Instrumentação (Circular Técnica, 54). Available: 
http://www.infoteca.cnptia.embrapa.br/handle/doc/884863. 
Accessed: Apr 14, 2019. 

Rabello LM, Inamasu RY, Bernardi ACC, Naime JM, 
Molin JP (2011) Mapeamento da condutividade elétrica do 
solo – sistema protótipo. In. Inamasu RY, Naime JM, De 
Resende AV, Bassoi LH, Bernardi ACC (ed). Agricultura 
de precisão: um novo olhar. São Carlos, SP, Embrapa, 
p41-45. 

Sanches GM, Magalhães PSG, Remacre AZ, Franco HCJ 
(2018) Potential of apparent soil electrical conductivity to 
describe the soil pH and improve lime application in a 
clayey soil. Soil & Tillage Research 175:217-225. DOI: 
https://doi.org/10.1016/j.still.2017.09.010 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Santos HG dos, Jacomine PKT, Anjos LHC dos, Oliveira 
VA de, Lumbreras JF, Coelho MR, Almeida JA de, Araujo 
Filho JC de, Oliveira JB de, Cunha TJF (2018) Sistema 
brasileiro de classificação de solos. Brasília, Embrapa, 5 
ed. 356p. 

Stadler A, Rudolph S, Kupisch M, Langensiepen M, Van 
Der Kruk J, Ewert F (2015) Quantifying the effects of soil 
variability on crop growth using apparent soil electrical 
conductivity measurements. European Journal of 
Agronomy 64:8-20. DOI: 
https://doi.org/10.1016/j.eja.2014.12.004 

Uribeetxebarria A, Arnó J, Escolà A, Martínez-Casasnovas 
JA (2018) Apparent electrical conductivity and 
multivariate analysis of soil properties to assess soil 
constraints in orchards affected by previous parceling. 
Geoderma 319:185-193. DOI: 
https://doi.org/10.1016/j.geoderma.2018.01.008 

Urretavizcaya I, Royo JB, Miranda C, Tisseyre B, 
Guillaume S, Santesteban LG (2017) Relevance of sink-
size estimation for within-field zone delineation in 
vineyards. Precision Agriculture 18(2):133-144. DOI: 
https://doi.org/10.1007/s11119-016-9450-0 

Valeriano MM, Prado H (2001) Técnicas de 
geoprocessamento e de amostragem para o mapeamento de 
atributos anisotrópicos do solo. Revista Brasileira de 
Ciência do Solo 25(4):997-1005. DOI: 
http://dx.doi.org/10.1590/S0100-06832001000400022 

Webster R, Oliver MA (1992) Sample adequately to 
estimate variograms of soil properties. European Journal 
of Soil Science 43:177-192. DOI: 
http://dx.doi.org/10.1111/j.1365-2389.1992.tb00128.x 

Yamamoto JK, Landim PMB (2013) Geoestatística: 
conceitos e aplicações. São Paulo, Oficina de Textos. 215p. 


