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ABSTRACT: This study aimed to develop artificial neural networks for the estimation of tractor 

fuel consumption during soil preparation, according to the adopted system. The multilayer 

perceptron network was chosen. As input data: the soil mechanical penetration resistance, the 

mobilized area by implements, the working gear and the tractor engine speed. The number of layers 

and neurons varied to form different architectures. The adjustment was verified based on various 

statistical criteria. The values estimated by the networks did not differ significantly from those 

obtained experimentally. The conclusion was that the networks showed adequate reliability and 

accuracy to predicting the fuel consumption in each tillage system, in function of the input data and 

this can be a useful tool for planning and management of agricultural operations.   
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INTRODUCTION  

The efficient planning of mechanized farming operations is a complex task because it 

involves multiple factors related to the soil, the machine or implements settings and the man to 

make decisions. Among these factors, the ones that have a greater direct impact on fuel 

consumption and therefore deserve special attention are: the type, the coverage and the state of soil 

compaction, the topography and terrain relief, the technical characteristics of the tractor 

combination with the machine or implement and the proper selection of gears and the engine speed 

by the operator, according to the current working conditions. 

Among the soil characteristics and properties, its mechanical resistance has gained preference 

by most of researchers. In this sense, BORGES et al. (2013) modeled this soil property in function 

of depth and considering its moisture. These dependencies are extremely useful to evaluate and 

predict the soil mechanical resistance in different layers, according to the time of year and can be 

practical tools to define the necessary implements in its rational management. However, these 

models do not allow estimating the fuel consumption required for certain agricultural operation, in 

order to carry out a proper planning of financial resources. 

Also, the soil mechanical resistance to penetration was studied by BORGES et al. (2014). In 

this study, the authors used this resistance to describe the current state of the land and developed a 

statistical model to estimate the tensile strength in discs ploughs, spring tillers and planters. The 

models indicated an increase in tensile strength with the increase of soil mechanical resistance, 

according to an associated exponential function. Therefore, the fuel would follow a similar trend. 

Nevertheless, based on these models it was not possible to predict with adequate precision this 

consumption in agricultural operations. 

MACHADO & TREIN (2013) developed mathematical models to predict the tractive effort in 

rods tools with narrow tips, depending on the soil parameters. The soil indicators used in these 

models, such as cohesion, internal friction angle, steel grip and friction require experimental 

samples and their corresponding laboratory analysis, which hamper the practical application. BAIO 

et al. (2013) developed a computer program for selecting mechanized set by the lowest cost. The 
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calculation of fuel consumption is based on trials carried out in Nebraska (United States), which can 

lead to significant discrepancies to the conditions of Brazilian soils. 

The influence of the technical characteristics of the mechanized set, gears and rotations in the 

tractor engine on fuel consumption is confirmed on the study of MOUNTAIN et al. (2011), VALE 

et al. (2011), SPAGNOLO et al. (2012), FRANTZ et al. (2014), FEITOSA et al. (2015), FIORESE 

et al. (2015) and SOUZA et al. (2015). However, in these studies, the functional dependencies to 

determine this consumption were not established. Moreover, the use of artificial neural networks as 

an alternative to relate variables and parameters of physical and biological processes is growing 

daily and its effectiveness confirmed by ALVES SOBRINHO et al. (2011), PANDORFI et al. 

(2011), CARVALHO et al. (2012), VENTURA et al. (2012), BINOTI et al. (2013, 2014 a, b), 

GEORGENS et al. (2014), SOARES et al. (2014) and VALENTE et al. (2014). 

As a result of this problem, this research was based on the assumption that artificial neural 

networks are a multidimensional inference model and nonlinear with the ability to generalize or 

automatically extract rules from complex data sets. Thus, this study aimed to define the appropriate 

architecture of a neural network to estimate the fuel consumption in agricultural operations, 

depending on the soil mechanical resistance to penetration, on the technical characteristics of the 

mechanized set and on operating conditions defined by gears and rotations in the tractor engine. 

 

MATERIAL AND METHODS 

The study was carried out for two consecutive years in an experimental area of the Federal 

University of Viçosa, located in Viçosa-MG, defined by the geographical coordinates 20 °45’14” of 

South latitude and 42º 52’53” of West longitude and average altitude of 650 m. In the region prevail 

the hilly terrain (about 85%). The area was intended for direct sowing in the five years preceding 

the study with corn and beans, alternately. 

The average annual temperature ranges between 14.0°C and 26.1°C. The weather was 

classified as Cwa, temperate humid with hot summers and dry winters (KÖPPEN & GEIGER, 

1928) and the soil as red-yellow Latosol of clay loam texture (EMBRAPA, 2006).The soil of the 

experimental area had a vegetation cover of 5.59 ton ha-1 of dry mass, density of 1.53 g cm-3 and 

moisture content of 30.46% (volume basis). 

In this study, the tractor used had front-wheel drive (4x2 TDA), MF 265 model, manufactured 

by MASSEY FERGUSON *, with nominal power of 47.8 kW at 2200 rpm and mass of 3700 kg, 

including ballast. As implements and machines mounted on hydraulic lift system, we used a 

reversible plough with 3 discs of 29”, a spring tiller with 6 parabolic rods 30 mm wide provided 

with common tips without flaps and a planter for direct seeding, PC 2123 model, manufactured by 

SEED MAX * with three spaced pantograph units in 450 mm, flat cutting discs of 406 mm 

diameter, seeder and fertilizer doser, furrow openers with double discs and flat compactor wheels in 

a "V" shape.   

Also other equipment and computer tools were necessary such as electronic penetrometer, 

PNT 2000 * Model, manufactured by DLG Industrial Automation Ltd. *, the load cell, SODMEX * 

brand and N400 model, with a sensitivity of 2.156 mV V-1 and nominal range of 50 kN, the flow 

meter built in the Agricultural Mechanization Laboratory of UFV, basically consisting of a 

graduated glass burette with the corresponding log for its handling a profilometer with 200 cm in 

length, composed of a metal structure provided of a base with bubble level, framework to set graph 

paper and  80 holes through which slide the rods of 60 cm length arranged vertically and spaced in 

2.5 cm, laptop computer, ASPIRE 5920 model, ACER* brand, EXCEL spreadsheet and 

STATISTICA 8.0  statistical software. 

The flow meter was installed in the tractor engine power system, controlling the opening and 

closing by the log, respectively, at the beginning and end of the course of the experimental plot. 

Thus, the spent fuel in each transaction was determined by the difference between the initial and 

final volumes. The fuel consumption was evaluated according to the soil tillage, the mobilized area, 
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the slipping on the drive wheels, the working speed and the tractor engine rotations, taking into 

account the soil mechanical resistance. Thus, three soil tillage were defined:  conventional with disk 

plough, reduced with tillers and no tillage with planter, set to 25, 35 and 15 cm of depth, 

respectively. 

As the gears for the tractor were selected three reduced, which were: Second reduced A, 

Second reduced B and Third reduced B. For these three gears, the tractor operated with three 

rotations included in the range of higher engine torque and nominal power, the minimum speed of 

1500 rpm, intermediate of 1700 rpm and maximum of 2000 rpm. Thus, nine combinations of 

displacement speed for the three agricultural sets were defined. The increase in the number of speed 

combinations had as main purpose to raise the amount of data to develop artificial neural networks 

and characterize a wide interval of fuel consumption values in the operation, on the basis of these 

variables. 

The experimental plots measured 20 m of length by 5 m of wide and arranged in the field 

following a randomized block design with four replications, in a split plot scheme, although the data 

of soil mechanical resistance to penetration and performance were analyzed by descriptive statistics. 

Among the blocks, a range of 10 meters wide with surround for maneuvering and equipment 

stabilization was used. Thus, 108 units were placed at the disposal, coming from three tillage 

systems, three gears, three engine speeds and four replicates of each variables combination, totaling 

216 measurements in two years. The soil mechanical resistance to penetration evaluated with the 

aid of digital penetrometer whose rod was inserted to a depth of 40 cm in 10 random points of each 

plot and calculated the corresponding average. 

To determine the soil profile mobilized by the implement, before and after each operation, the 

profilograph backed up and leveled on wooden stakes placed outside the area affected by the tools, 

guiding the metal frame perpendicular to the direction of the equipment movement. Thus, the rods 

represent the original or natural profile of the terrain and the internal revolved. The corresponding 

area to the cross section of the mobilized soil was calculated by numerical method. The slipping of 

the driving tractor wheels was determined, according to the equation:  

                                    (1) 

that, 

S - slipping on the drive wheels of the tractor (%); 

Ssc - displacement speed of the equipment in the transport position (m s-1), and 

Scc – displacement speed of the equipment in the operation (m s-1). 

 

Based on the studies of TERRA & PASSADOR  (2012), VENTURA et al. (2012), BINOTI et 

al. (2013, 2014 a, b) and VALENTE et al. (2014), the artificial neural networks with the 

"Perceptron" structure with multi-layer (MPL) was chosen to determine fuel consumption in 

agricultural operations according to the performance criteria. The architecture of the networks was 

set up according to the suggestions of TERRA & PASSADOR (2012) and VENTURA et al. (2012) 

that is, changing the number of intermediate layers and the number of neurons in the layers. The 

profile input of the mobilized soil; the mechanical resistance and the slipping on the drive wheels 

variables as well as the output fuel consumption variable were normalized to reduce the effects of 

scale. However, the preparation system, the gear and the engine rotation are represented by nine 

independent binary variables (“dummy”), which assume the values 0 and 1. 

According to the suggestions of BINOTI et al. (2013, 2014 a, b), CANSIAN et al. (2014), 

GEORGENS et al. (2014) and VALENTE et al. (2014),for training and validation, the data were 

randomly divided into two sets, corresponding to 75% and 25%, respectively. In all architectures 

the logistic function to enable the networks was used, and the initial weights randomly generated 

between -0.5 and 0.5.The layers are interconnected by complete synapses, each neuron of i layer 
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was connected to all neurons of the next layer (i + 1), the synapse being oriented forward only 

(“feed forward”). Also, the back propagation error was used as the learning algorithm. 

According to SOUSA & MENEZES (2013), BINOTI et al. (2014 a, b) and GEORGENS et al. 

(2014), to reduce the number of obtained networks and to select the most appropriate, the 

coefficients and indexes of the corresponding program for training and validation were used, as well 

as the average error and the root mean square error were determined, given by:  

                                           (2) 

that, 

AE – average error (dimensionless); 

N - total number of observations (dimensionless); 

FCobsi - actual fuel consumption measured in observation i (L), and 

FCesti - Estimated fuel consumption corresponding to the observation I (L). 

 

          (3) 

that, 

RMSE - root mean square error (%); 

N - total number of observations (dimensionless); 

FCobsi - actual fuel consumption measured in observation i (L), and 

FCesti - Estimated fuel consumption corresponding to the observation i (L). 

 

The neural networks classified as satisfactory were analyzed more rigorously, applying the t 

test ("Student") and developing the residues scatter diagrams and the corresponding histogram, as 

suggested by BORGES et al. (2014). Also, using as reference the studies of BINOTI et al. (2014 a, 

b), GEORGENS et al. (2014) and SOARES et al. (2014) the correlation coefficients and the 

Willmott index were calculated, as well as the performance index, which measure the closeness of 

the values estimated by the networks observed. These statistical criteria are expressed 

mathematically by: 

                 (4) 

that, 

r - correlation coefficient (dimensionless); 

N - total number of observations (dimensionless); 

FCobsi - actual fuel consumption measured in observation i (L); 

FCesti - Estimated fuel consumption corresponding to the observation I (L); 

FCAobs - average actual fuel consumption (L), and 

FCAest – average estimated fuel consumption (L). 
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                             (5) 

that, 

Iw - coefficient of Willmott index (dimensionless); 

N - total number of observations (dimensionless); 

FCobsi - actual fuel consumption measured in observation i (L); 

FCesti - estimated fuel consumption corresponding to the observation i (L); 

FCAobs - average actual fuel consumption (L), and 

FCAest – average estimated fuel consumption (L). 

 

IwrPi                          (6) 

that, 

Pi - performance index (dimensionless); 

r - correlation coefficient (dimensionless), and 

Iw - coefficient of Willmott index (dimensionless). 

*The branding does not mean a recommendation from the authors, but the characterization of the equipment used in this research.  

 

RESULTS AND DISCUSSION 

This study did not have as purpose a detailed statistical analysis of soil mechanical resistance 

to penetration, the main aim was to relate it to the fuel consumption in each plot. So we opted for 

the general characterization of that variable (Table 1). This table shows the descriptive statistics of 

soil penetration resistance from 108 measurements. The small difference between the average and 

the median, as well as the low skewness coefficient, indicate a distribution of data close to normal, 

however, very elongated because the kurtosis coefficient value is less than 0.263. Also, there was a 

satisfactory variation coefficient, since the aforementioned resistance often presents large variations 

around the average. 

TABLE 1. Descriptive statistics for soil mechanical resistance to penetration. 

Statistic  Value Unit 

Average 1.64 MPa 

Median 1.67 MPa 

Standard deviation 0.23 MPa 

Variance  0.05 MPa 

Kurtosis Coefficient  -1.37 Dimensionless 

Skewness Coefficient -0.10 Dimensionless 

Variation Coefficient  13.88 % 

 

The variation coefficient for the soil mechanical resistance to penetration obtained in this 

study was lower than the ones estimated by MARASCA et al. (2011), CAMPOS et al. (2012) and 

MION et al. (2012), which found high spatial variability of that resistance. The variation coefficient 

in these studies reached values higher than 40%, indicating much scatter of data. The main causes 

for these differences may be related to soil textural classification, status and coverage class, 

management systems and earlier cultures, as well as the water content in the soil at the time of the 

harvest.  
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The table 2 contains descriptive statistics of the performance variables of mechanized set, 

corresponding to 36 measurements for each soil tillage system. In this table, the little difference 

between the average and the median for all variables, regardless of the soil tillage system, can be 

seen. 

 

TABLE 2. Descriptive statistics for the performance variables of the mechanized set. 

Statistic  Soil tillage system 

Performance variables 

Mobilized area 

(m2). 

Slipping 

(%) 

Fuel consumption  

(L ha-1) 

Average 

Conventional 0.55 12.60 19.60 

Reduced 0.52 11.70 7.89 

No tillage 0.31 3.10 7.12 

Median 

Conventional 0.55 12.55 19.65 

Reduced 0.52 11.98 7.81 

No tillage 0.31 3.00 7.47 

Standard deviation 

Conventional 0.04 2.12 1.81 

Reduced 0.02 2.25 1.05 

No tillage 0.04 1.11 1.16 

Variance 

Conventional 0.01 4.51 3.28 

Reduced 0.00 5.08 1.11 

No tillage 0.01 1.23 1.35 

Kurtosis Coefficient  

(dimensionless) 

Conventional -1.22 0.17 -0.49 

Reduced -1.55 -0.54 0.24 

No tillage -1.22 0.76 -1.23 

 Skewness Coefficient 

(dimensionless) 

Conventional -0.13 0.31 -0.31 

Reduced -0.02 0.17 0.61 

No tillage -0.15 0.43 -0.35 

 Variation Coefficient 

(%) 

Conventional 7.21 16.86 9.24 

Reduced 3.74 18.25 13.33 

No tillage 11.67 19.73 16.29 

 

However, in Table 2, the Kurtosis and Skewness coefficients are very different from 0.263 

and zero, respectively, values which characterize the proximity of the data to a normal distribution.  

Table 2 shows that the no tillage system showed the highest values of the variation coefficient for 

all performance variables and the greater oscillation corresponded to the slipping. 

The variation coefficients for the slipping on the drive wheels obtained in this study were 

higher than those estimated by MONTEIRO et al. (2013) and FIORESE et al. (2015) of 3.73% and 

5.29%, respectively. These differences are mainly due to the experimental conditions, because this 

study evaluated the slipping on agricultural land with the implements in operation, depending on the 

gear and the engine speed, which favored its decrease. However, the variation coefficient for the 

slipping on the drive wheels corresponding to the conventional and reduced systems of this study 

are similar to those determined by LEITE et al. (2011) in a range from 7.59 to 16.21%, 

SPAGNOLO et al. (2012) of 20.05% and CHIODEROLI et al. (2014) of 21.16%. Thus, it appears 

that the variable analyzed is subject to constant fluctuation, which leads to a greater dispersion of 

the data. 

The fuel consumption measured in this study showed greater variability than the one 

estimated by LEITE et al. (2011), VALE et al. (2011), SPAGNOLO et al. (2012), CHIODEROLI et 

al. (2014) and FRANTZ et al. (2014), whose variation coefficients were 3.34; 5.73; 1.31; 5.28 and 

3.17%, respectively. However, they approached the ones determined by SOUZA et al. (2015) 

between 6.05 and 15.12%.These discrepancies agree with the expected because this study used a 

larger number of operating conditions for agricultural equipment, given by the three gear and three 
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engine speeds in order to increase the range of fuel consumption, which justifies high fluctuations 

around the average.  

According to the criteria of the consulted literature, different network architectures containing 

up to two intermediate or hidden layers and each one having at most 24 neurons, a total of 64 

combinations, were defined and tested. However, only eight had satisfactory levels, given by the 

small difference between the selection parameters and program test, the mean error, the squared 

determination coefficient (R2) and the root mean square error (Table 3). In this Table, the best 

results correspond to the artificial neural networks 1, 2, 3, 5, 6 and 7.The networks 4 and 8 showed 

greater difference in the program parameters and high root mean square error value (Table 3).  

 

TABLE 3. Evaluated index values for each artificial neural network architecture. 

ANN Architecture 
Program parameters 

Average error R2 RMSE 
Selection Test 

1 MLP 12:12-12-1:1 0.2116 0.2245 -0.0022 0.9875 4.1091 

2 MLP 12:12-18-1:1 0.1996 0.1587 0.0013 0.9905 3.5820 

3 MLP 12:12-21-1:1 0.1754 0.1937 -0.0010 0.9910 3.5352 

4 MLP 12:12-24-1:1 0.2170 0.2685 -0.0061 0.9854 4.4634 

5 MLP 12:12-10-3-1:1 0.1743 0.1689 -0.0014 0.9906 3.5467 

6 MLP 12:12-18-2-1:1 0.2255 0.1886 0.0064 0.9891 3.9061 

7 MLP 12:12-18-3-1:1 0.1788 0.1767 -0.0025 0.9874 4.1942 

8 MLP 12:12-21-2-1:1 0.2978 0.2045 -0.0048 0.9808 4.9883 

 

Based on Table 2, the increase in the number of hidden layers and neurons did not affect the 

accuracy because the best values were obtained with the networks 2, 3, 5 and 6, whose architectures 

have one or two layers maximum of twenty-one neuron. These results do not agree with the 

suggestions of TERRA & PASSADOR (2012), about the number of neurons in layers, because 

none of their proposed criteria was adequate for the data of this study. However, they confirm the 

recommendations of BINOTI et al. (2013, 2014 a, b) and GEORGENS et al. (2014). These authors 

state that there is no precise criterion to define the number of neurons in layers, requiring the test 

and verification of various networks through trial. 

Considering that the artificial neural networks 2, 3, 5 and 6 provided the most appropriate 

indicators, only those networks were object of complementary analysis to check its efficiency and 

reliability, as graphic as analytical. Thus, the frequency histograms and the residues diagrams were 

initially developed as a function of the fuel consumption measured for each artificial neural network 

(Figures 1 and 2). 
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FIGURE 1. Frequency histogram of the residues: a) ANN 2; b) ANN 3; c) ANN 5; d) ANN 6. 

 

  

  

FIGURE 2. Residues values in function of the measured fuel consumption: a) ANN 2;            

b) ANN 3; c) ANN 5; d) ANN 6. 

 

Based on Figure 2, the differences between the measured and the estimated fuel consumption 

by the neural network were distributed with appropriate symmetry and near normal curve, meaning 

that the majority of small magnitude residues concentrated in the center, around zero and the other 

with higher values in the extremes. This characteristic of the frequency histogram in relation to the 

normal is a fundamental assumption for defining criteria about the efficiency in the network 

prediction. Also, according to Figure 2, there is no relation between the residues and the variables 

considered in the prepared networks, because the dots are located randomly along the horizontal 

axis, and there are no evidences of a pattern of functional dependence. 

Although the distribution of residues showed normal characteristics and no pattern of 

functional dependence, the graphical analysis is considered a subjective process. Thus, we also 

decided to verify analytically the normality and efficiency of the networks through the 

Kolmogorov-Smirnov test, Lilliefors and Shapiro-Wilk, as well as the t (Student) test between the 

measured and estimated values. The results corresponding to those tests are shown in Tables 4 and 

5. 
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TABLE 4. Results of the normality tests for the four artificial neural networks. 

ANN and Architecture 

Normality test 

Kolmogorov-Smirnov 

(D statistical) 
Lilliefors 

Shapiro-Wilk 

(W statistical) 

2) MLP12:12-18-1:1  D= 0.1752 p<0.01 ** p<0.01** W= 0.9045 p=0.0011** 

3) MLP12:12-21-1:1  D= 0.1174 p<0.10 ns P<0.08 ns W= 0.9598 p=0.0742 ns 

5) MLP 12:12-10-3-1:1 D= 0.0959 p<0.05 * p<0.01** W= 0.9324 p=0.0351* 

6) MLP 12:12-18-2-1:1 D= 0.1662 p<0.01 ** p<0.01** W= 0.9178 p=0.0005** 
Obs. p: Probability value; ns: not significant;* and **: Significant at 5 y 1%. 

 

TABLE 5. Results of the t-Student test for the four artificial neural networks. 

ANN and Architecture  

t-Student Values 

Significance 
Calculated  

Tabulated 

α = 5% α = 1% 

2) MLP 12:12-18-1:1 0.0387 

1.6520 2.3439 

ns 

3) MLP 12:12-21-1:1 0.0276 ns 

5) MLP 12:12-10-3-1:1 0.1810 ns 

6) MLP 12:12-18-2-1:1 0.1872 ns 
Obs. α: Probability level; ns: not significant 

 

According to Table 4, only the residues of the neural network 3 (MLP 12: 12-21-1: 1) showed 

normality. Taking as reference the studies of TORMAN et al. (2012) and LOPES et al. (2013), the 

non-significance in normality tests gives it greater reliability to this network. However, the t-test 

indicated that there are no differences between the measured fuel consumption values and the 

estimated by the four networks (Table 5).These results allow to affirm that the four networks are 

appropriate, although the third formed by a single hidden layer with twenty-one neuron is presented 

as the most suitable for predicting this consumption, depending on the variables that characterize 

the soil, the implement type in combination with the tillage system and operating conditions for 

mechanized set. 

In Table 6, the statistical criteria to evaluate the efficiency of the four artificial neural 

networks are summarized. These results demonstrate that the mentioned networks had excellent 

performance, characterized by the high coefficients obtained, which exceeded the minimum value 

of 0.7, suggested by TERRA & PASSADOR (2012), BINOTI et al. (2013, 2014 a, b) and 

GEORGENS et al. (2014). Therefore, the developed networks showed adequate reliability and 

accuracy, justifying its application for planning purposes and managing of agricultural operations. 

Such networks can be implemented with MATLAB, as suggested by FERRO & STURARO (2013) 

or with JAVA, according to CAMPOS et al. (2010) and MADSEN & ADAMATTI (2011). 

However, an alternative proposed by DAYS (2008), is the VBA programming language ("Visual 

Basic for Applications"), available in Microsoft Excel that enables easy interaction with the 

variables, data and spreadsheets.   

 

TABLE 6. Summary of statistical criteria to evaluate the neural networks efficiency. 

ANN and Architecture 
Statistical Criterion  

Correlation coefficient Willmont Index Performance Index 

2) MLP 12:12-18-1:1 0.9905 0.9951 0.9857 

3) MLP 12:12-21-1:1 0.9910 0.9954 0.9865 

5) MLP 12:12-10-3-1:1 0.9891 0.9943 0.9835 

6) MLP 12:12-18-2-1:1 0.9906 0.9953 0.9859 
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CONCLUSIONS 

The multilayer artificial neural networks of perceptron type are suitable for estimating the fuel 

consumption in agricultural operations.  

It was possible to define and check the architectures to consider the soil mechanical resistance 

to penetration, the mobilized area, the sliding and engine working conditions.  

The use of binary variables to introduce the tillage system and the operating conditions in the 

architectures raised the generalization of the neural networks.  

The developed artificial neural networks showed adequate reliability and accuracy in 

predictions, which justifies its application. 

The obtained artificial neural networks can be a useful tool for planning and management of 

mechanized farming operations, requiring programming for its implementation. 
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