Acessibilidade / Reportar erro

Alzheimer disease neuropathology:understanding autonomic dysfunction

A neuropatologia da doença de Alzheimer: entendendo a disfunção autônoma

Abstract

Alzheimer's disease is a widely studied disorder with research focusing on cognitive and functional impairments, behavioral and psychological symptoms, and on abnormal motor manifestations. Despite the importance of autonomic dysfunctions they have received less attention in systematic studies. The underlying neurodegenerative process of AD, mainly affecting cortical areas, has been studied for more than one century. However, autonomic-related structures have not been studied neuropathologically with the same intensity. The autonomic nervous system governs normal visceral functions, and its activity is expressed in relation to homeostatic needs of the organism's current physical and mental activities. The disease process leads to autonomic dysfunction or dysautonomy possibly linked to increased rates of morbidity and mortality.

Objective:

The aim of this review was to analyze the cortical, subcortical, and more caudal autonomic-related regions, and the specific neurodegenerative process in Alzheimer's disease that affects these structures.

Methods:

A search for papers addressing autonomic related-structures affected by Alzheimer's degeneration, and under normal condition was performed through MedLine, PsycInfo and Lilacs, on the bibliographical references of papers of interest, together with a manual search for classic studies in older journals and books, spanning over a century of publications.

Results:

The main central autonomic-related structures are described, including cortical areas, subcortical structures (amygdala, thalamus, hypothalamus, brainstem, cerebellum) and spinal cord. They constitute autonomic neural networks that underpin vital functions. These same structures, affected by specific Alzheimer's disease neurodegeneration, were also described in detail. The autonomic-related structures present variable neurodegenerative changes that develop progressively according to the degenerative stages described by Braak and Braak.

Conclusion:

The neural networks constituted by the central autonomic-related structures, when damaged by progressive neurodegeneration, represent the neuropathological substrate of autonomic dysfunction. The presence of this dysfunction and its possible relationship with higher rates of morbidity, and perhaps of mortality, in affected subjects must be kept in mind when managing Alzheimer's patients.

Key words:
Alzheimer; neurodegeneration; autonomic; autonomic dysfunction; dysautonomy.

Resumo

A doença da Alzheimer é uma doença amplamente estudada com foco nos comprometimentos cognitivo e funcional, sintomas de comportamento e psicológicos e manifestações motoras anormais. As disfunções autônomas, apesar de sua importância, foram menos consideradas por estudos sistemáticos. O processo neurodegenerativo subjacente dessa doença, principalmente nas áreas corticais, vem sendo estudado há mais de um século. Entretanto, estruturas autônomas não foram estudadas do ponto de vista neuropatológico com o mesmo interesse. O sistema nervoso autônomo encontra-se relacionado a funções viscerais normais e sua atividade é expressa em relação a necessidades homeostáticas das atividades correntes físicas e mentais do organismo. O processo da doença leva a disfunção autônoma ou disautonomia, possivelmente relacionada com taxas maiores de morbidade e mortalidade.

Objetivo:

O foco dessa revisão é analisar as estruturas autônomas corticais, subcorticais e mais caudais, assim como o processo neurodegenerativo específico da doença de Alzheimer que acomete essas estruturas.

Métodos:

Foi realizada busca de artigos sobre estruturas autônomas atingidas pela degeneração de Alzheimer e em condições de normalidade, através do MedLine, PsycInfo e Lilacs, assim como nas referências bibliográficas dos artigos de interesse encontrados, busca manual de estudos clássico em periódicos e livros mais antigos, abrangendo mais de um século de publicações.

Resultados:

As principais estruturas autônomas centrais são analisadas do ponto de vista funcional, incluindo áreas corticais, estruturas subcorticais (amígdala, tálamo, hipotálamo, tronco cerebral) e medula. Estas constituem as redes neurais autônomas subjacentes às funções vitais. As mesmas estruturas, atingidas pela neurodegeneração específica da doença de Alzheimer foram também descritas de modo detalhado. As estruturas autônomas apresentam alterações neurodegenerativas de grau variável que se desenvolvem de modo progressivo de acordo com os estágios degenerativos descritos por Braak e Braak.

Conclusão:

As redes neurais constituídas pelas estruturas autônomas centrais, quando lesadas pela neurodegeneração progressive, representam o substrato neuropatológico da disfunção autônoma. A presença dessa disfunção e sua possível relação com taxas mais elevadas de morbidade e talvez de mortalidade entre os indivíduos comprometidos deve ser considerada quando se trata de pacientes com doença de Alzheimer.

Palavras-chave:
Alzheimer; neurodegeneração; autônomo; disfunção autônoma disautonomia

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

References

  • 1
    Coote JH. Respiratory and circulatory control during sleep. J Exp Biol 1982;100:223-244.
  • 2
    Engelhardt E, Esbérard CA. The dysautonomy in Alzheimer's disease. Rev Bras Neurol 2005;41:31-42.
  • 3
    Silverthorn DU. Fisiologia Humana. Uma Abordagem Integrada. 2a. ed. São Paulo: Manole; 2003.
  • 4
    Herd JA. The physiology of strong emotions: Cannon's Scientific Legacy Re-examined. Physiologist 1972;15:5-16.
  • 5
    Chu CC, Tranel D, Damasio AR, van Hoesen GV. The autonomic-related cortex: pathology in Alzheimer's disease. Cereb Cortex 1997;7:86-95.
  • 6
    Dampney RAL, Coleman MJ, Fontes MAP, et al. Central Mechanisms Underlying Short- and Long-Term Regulation of the Cardiovascular System. Clin Exp Pharmacol Physiol 2002;29:261-268.
  • 7
    McDougall SJ, Widdop RE, Lawrence AJ. Central autonomic integration of psychological stressors: Focus on cardiovascular modulation. Autonom Neurosci (in press).
  • 8
    Patton HD. The Autonomic Nervous System. In: Patton HD, Fuchs AF, Hille B, Scher AM, Steiner R, Editors. Textbook of Physiology. 21nd Edition, vol. 1. Philadelphia: WB Saunders; 1989:737-758.
  • 9
    Sachs W. The vegetative nervous system. A clinical study. London: Cassel and Company Ltd;1936.
  • 10
    Saper CB, German DC. Hypothalamic pathology in Alzheimer's disease. Neurosci Lett 1987;74:364-370.
  • 11
    Allan LM, Ballard CG, Allen J, et al. Autonomic dysfunction in dementia. J Neurol Neurosurg Psychiatry 2007;78:671-677.
  • 12
    Kaufmann H, Biaggioni I. Autonomic failure in neurodegenerative disorders. Semin Neurol 2003;23:351-363.
  • 13
    Mathias CJ. Autonomic diseases: clinical features and laboratory evaluation. J Neurol Neurosurg Psychiatry 2003;74(supl. III):31-41.
  • 14
    Royall DR, Gao JH, Kellogg DL Jr. Insular Alzheimer's disease pathology as a cause of "age-related" autonomic dysfunction and mortality in the non-demented elderly. Med Hypotheses 2006;67:747-758.
  • 15
    Saper CB. The Central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Ann Rev Neurosc 2002;25:433-469.
  • 16
    Wong SW, Massé N, Kimmerly DS, et al. Ventral medial prefrontal cortex and cardiovagal control in conscious humans. Neuroimage 2007;35:698-708.
  • 17
    An X, Bandler R, Ongur D, Price JL. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol 1998;401:455-479.
  • 18
    Critchley HD, Mathias CJ, Josephs O, et al. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 2003;126:2139.
  • 19
    Critchely HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol 2005;493:154-166.
  • 20
    van Hoesen GW, Parvizi J, Chu CC. Orbitofrontal cortex pathology in Alzheimer's disease. Cereb Cortex 2000;10:243-251.
  • 21
    Meyer S, Strittmatter M, Fischer C, Georg T, Schmitz B. Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. Neuroreport 2004;15:357-361.
  • 22
    Oppenheimer SM. Neurogenic cardiac effects of cerebrovascular disease. Curr Opin Neurol 1994;7:20-24.
  • 23
    Oppenheimer S. Cerebrogenic cardiac arrhythmias: cortical lateralization and clinical significance. Clin Auton Res 2006;16:6-11.
  • 24
    Martin JH. Neuroanatomy, 2nd Ed. Stamford: Appleton & Lange;1996.
  • 25
    Pelosi GG, Tavares RF, Correa FM. Rostrocaudal somatotopy in the neural connections between the lateral hypothalamus and the dorsal periaqueductal gray of the rat brain. Cell Mol Neurobiol 2006;26:635-43.
  • 26
    Rempel-Clower NL, Barbas H. Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol 1998;398:393-419.
  • 27
    Aicher SA, Reis DJ, Nicolae R, Milner TA.Monosynaptic projections from the medullary gigantocellular reticular formation to sympathetic preganglionic neurons in the thoracic spinal cord. J Comp Neurol 1995;363:563-580.
  • 28
    Andresen MC, Doyle MW, Bailey TW, et al. Differentiation of autonomic reflex control begins with cellular mechanisms at the first synapse within the nucleus tractus solitarius. Braz J Med Biol Res 2004;37:549-558.
  • 29
    Hayward LF, Castellanos M, Davenport PW. Parabrachial neurons mediate dorsal periaqueductal gray evoked respiratory responses in the rat. J Appl Physiol 2004;96:1146-1154.
  • 30
    Zhang W, Hayward LF, Davenport PW. Respiratory responses elicited by rostral versus caudal dorsal periaqueductal gray stimulation in rats. Auton Neurosci 2007;134:45-54.
  • 31
    LeDoux JE. Emotion circuitos in the brain. Ann Rev Neurosc 2000;23:55-184.
  • 32
    Saha S. Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei. Clin Exp Pharmacol Physiol 2005;32:450-456.
  • 33
    Huang H, Ghosh P, van den Pol AN. Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal. J Neurophysiol 2006;95:1656-1668.
  • 34
    Krout KE, Belzer RE, Loewy AD. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 2002;448:53-101.
  • 35
    Otake K, Nakamura Y. Single midline thalamic neurons projecting to both the ventral striatum and the prefrontal cortex in the rat. Neuroscience 1998;86:635-649.
  • 36
    Taber KH, Wen C, Khan A, Hurley RA. The limbic thalamus. J Neuropsychiatry Clin Neurosci 2004;16:127-132.
  • 37
    Giménez-Amaya JM, McFarland NR, de las Heras S, et al. Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 1995;354:127-149.
  • 38
    Giuditta M, Ruggiero DA, Del Bo A. Anatomical basis for the fastigial pressor response. Blood Press 2003;12:175-180.
  • 39
    Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol 1997;41:83
  • 40
    Onat F, Cavdar S. Cerebellar connections: hypothalamus. Cerebellum 2003;2:263-269.
  • 41
    Wen YQ, Zhu JN, Zhang YP, Wang JJ. Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neuroscience Letters, 2004;370:25-29.
  • 42
    Zhu JN, Yung WH, Kwok-Chong Chow B, et al. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 2006;52:93-106.
  • 43
    Mouton LJ, Kerstens L, Van der Want J, Holstege G. Dorsal border periaqueductal gray neurons project to the area directly adjacent to the central canal ependyma of the C4-T8 spinal cord in the cat. Exp Brain Res 1996;112:11-23.
  • 44
    Mtui EP, Anwar M, Gomez R, Reis DJ, Ruggiero DA. Projections from the nucleus tractus solitarii to the spinal cord. J Comp Neurol 1993;337:231-252.
  • 45
    Pyner S and Coote JH. Identification of branching paraventricular neurons of the hypothalamus that project to the rostroventrolateral medulla and spinal cord. Neuroscience 2000; 100:549-556.
  • 46
    Watanabe S, Kitamura T, Watanabe L, Sato H, Yamada J. Projections from the nucleus reticularis magnocellularis to the rat cervical cord using electrical stimulation and iontophoretic injection methods. Anat Sci Int 2003;78:42-52.
  • 47
    Alzheimer A. Uber eigenartige Krankheitsfälle des spätere Alters. Z gesamt Neurolog Psychiatrie 1911;4:356-385.
  • 48
    Perusini G. Uber klinisch und histologisch eigenartige psychische erkrankung des spätere Lebensalters. Histol Histopathol Arb Grosshirnrinde 1909;3:297-358.
  • 49
    Simchowicz T. Histologische Studien über die senile Demenz. Histol u Histopathol Arb Grosshirnrinde 1911;4:267-444.
  • 50
    Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991a;82:239-259.
  • 51
    Delacourte A, David JP, Sergeant N, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease. Neurology 1999;52:1158-1165.
  • 52
    Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 1992; 42:631-639.
  • 53
    Rüb U, Del Tredici K, Del Turco D, Braak H. The intralaminar nuclei assigned to the medial pain system and other components of this system are early and progressively affected by the Alzheimer's disease-related cytoskeletal pathology. J Chem Neuroanat 2002;23:279-290.
  • 54
    Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 1995;16:271-278.
  • 55
    Giess R, Schlote W. Localisation and association of pathomorphological changes at brainstem in alzheimer's disease. Mech Ageing Development 1995;84:209-226.
  • 56
    Nagy Z, Esiri MM, Jobst KA, et al. Relative roles of plaques and tangles in the dementia of Alzheimer's disease: correlations using three sets of neuropathological criteria. Dementia 1995;6:21-31.
  • 57
    Parvizi J, Van Hoesen GW, Damasio A. The selective vulnerability of brainstem nuclei to Alzheimer's disease. Ann Neurol 2001;49:53-66.
  • 58
    Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 2004;62:1984-1989.
  • 59
    Giannakopoulos P, Herrmann FR, Bussière T, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology 2003;60:1495-1500.
  • 60
    Bonthius DJ, Solodkin A, van Hoesen GW. Pathology of the Insular Cortex in Alzheimer Disease Depends on Cortical Architecture. J Neuropathol Exper Neurol 2005;64:910-922.
  • 61
    Swaab DF, Grundke-Iqbal I, Iqbal K, et al. Tau and ubiquitin in the human hypothalamus in aging and Alzheimer's disease. Brain Res 1992;590:239-249.
  • 62
    Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex 1991;1: 103-116.
  • 63
    Kromer Vogt LJ, Hyman BT, Van Hoesen GW, Damasio AR. Pathological alterations in the amygdala in Alzheimer's disease. Neuroscience 1990;37:377-385.
  • 64
    Unger JW, Lapham LW, McNeill TH, et al. The amygdala in Alzheimer's disease: neuropathology and Alz 50 immunoreactivity. Neurobiol Aging 1991;12:389-399.
  • 65
    Yilmazer-Hanke DM. Alzheimer's disease. The density of amygdalar neuritic plaques is associated with the severity of neurofibrillary pathology and the degree of beta-amyloid protein deposition in the cerebral cortex. Acta Anat (Basel) 1998;162:46-55.
  • 66
    Scott SA, DeKosky ST, Sparks DL, Knox CA, Scheff SW. Amygdala cell loss and atrophy in Alzheimer's disease. Ann Neurol 1992;32:555-563.
  • 67
    Vereecken TH, Vogels OJ, Nieuwenhuys R. Neuron loss and shrinkage in the amygdala in Alzheimer's disease. Neurobiol Aging 1994;15:45-54.
  • 68
    Braak H, Braak E. Alzheimer's disease affects limbic nuclei of the thalamus. Acta Neuropathol 1991;81:261-268.
  • 69
    Grossi D, Lopez OL, Martinez AJ. Mamillary bodies in alzheimer's disease. Acta Neurol Scand 1989;80:41-45.
  • 70
    McDuff T, Sumi SM. Subcortical degeneration in Alzheimer's disease. Neurology 1985;35:123-126.
  • 71
    Paskavitz JF, Lippa CF, Hamos JE, et al. Role of the dorsomedial nycleus of the thalamus in Alzheimer's disease. J Geriatr Psychiatry Neurol 1995;8:32-37.
  • 72
    van der Werf YD, Witter MP, Groenewegen HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 2002;39:107-140.
  • 73
    Braak H, Braak E. Alzheimer's disease: striatal amyloid deposits and neurofibrillary changes. J Neuropathol Exp Neurol 1990;49:215-224.
  • 74
    Brilliant MJ, Elble RJ, Ghobrial M, Struble RG. The distribution of amyloid beta protein deposition in the corpus striatum of patients with Alzheimer's disease. Neuropathol Appl Neurobiol 1997;23:322-325.
  • 75
    Selden N, Mesulam MM, Geula C. Human striatum: the distribution of neurofibrillary tangles in Alzheimer's disease. Brain Res 1994a;648:327-331.
  • 76
    Selden N, Geula C, Hersh L, Mesulam MM. Human striatum: chemoarchitecture of the caudate nucleus, putamen and ventral straitum in health and Alzheimer's disease. Neuroscience 1994b;60:621-636.
  • 77
    Burke WJ, Coronado PG, Schmitt CA, et al. Blood pressure regulation in alzheimer's disease. J Auton Nerv Syst 1994b; 48:65-71.
  • 78
    Byne W, Mattiace L, Kress Y, Davies P. Alz-50 immunoreactivity in the hypothalamus of the normal and Alzheimer human and the rat. J Comp Neurol 1991;306:602-612.
  • 79
    Nakamura S, Takemura M, Ohnishi K, et al. Loss of large neurons and occurrence of neurofibrillary tangles in the tuberomammillary nucleus of patients with Alzheimer's disease. Neurosci Lett 1993;151:196-199.
  • 80
    van de Nes JA, Kamphorst W, Ravid R, Swaab DF. The distribution of Alz-50 immunoreactivity in the hypothalamus and adjoining areas of Alzheimer's disease patients. Brain 1993;116:103-115.
  • 81
    Schultz C, Ghebremedhin E, Braak H, Braak E. Neurofibrillary pathology in the human paraventricular and supraoptic nuclei. Acta Neuropathol 1997;94:99-102.
  • 82
    Larner AJ. The cerebellum in Alzheimer's disease. Dement Geriatr Cogn Disord 1997;8:203-209.
  • 83
    Braak H, Braak E, Bohl J, Lang W. Alzheimer's disease: amyloid plaques in the cerebellum. J Neurol Sci 1989;93:277-287.
  • 84
    Suenaga T, Hirano A, Llena JF, et al. Modified Bielschowsky and immunocytochemical studies on cerebellar plaques in Alzheimer's disease. J Neuropathol Exp Neurol 1990;49:31-40.
  • 85
    Joachim CL, Morris JH, Selkoe DJ. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer's disease. Am J Pathol 1989;135:309-319.
  • 86
    Wegiel J, Wisniewskia HM, Dziewiatkowskib J, et al. Cerebellar atrophy in Alzheimer's disease-clinicopathological correlations. Brain Res 1999;818:41-50.
  • 87
    Sjöbeck M, Englund E. Alzheimer's disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Dis 2001;12:211-218.
  • 88
    Rüb U, Schultz C, Tredici K, Braak H. Early involvment of tegmentopontine reticular nucleus during the evolution of Alzheimer's disease-related cytoskeletal pathology. Brain Res 2001a;908:107-112.
  • 89
    Scinto LF, Frosch M, Wu CK, Daffner KR, Gedi N, Geula C. Selective cell loss in Edinger-Westphal in asymptomatic elders and Alzheimer's patients. Neurobiol Aging 2001;22:729-736.
  • 90
    Marcyniuk B, Mann DM e Yates PO. The topography of cell loss from locus coeruleus in Alzheimer's disease. J Neurol Sci 1986;76:335-345.
  • 91
    Zweig RM, Ross CA, Hedreen JC et al. Neuropathology of aminergic nuclei in Alzheimer's disease. Prog Clin Biol Res 1989;317:353-365.
  • 92
    Iseki E, Matsushita M, Kosaka K et al. Distribution and morphology of brain stem plaques in Alzheimer's disease. Acta Neuropathol 1989;78:131-136.
  • 93
    Kemper TL. Neuroanatomical and Neuropathological Changes During Aging and Dementia. In: Albert ML e Knoefel JE, editors. Clinical neurology of aging. 2nd Ed. Oxford: Oxford University Press;1994:3-67.
  • 94
    Mosqueda-Garcia R. Central autonomic regulation. In: Robertson D, Low PA, Polinsky RJ, editors. Primer on the autonomic nervous system. San Diego: Academic Press;1996:3-12.
  • 95
    Rüb U, Tredici K, Schultz C, Thal DR et al. The autonomic higher order processing nuclei of the lower brain stem are among the early targets of the Alzheimer's disease-related cytoskeletal pathology. Acta Neuropathol 2001b;101:555-564.
  • 96
    Parvizi J, van Hoesen GW, Damasio A. Selective pathological changes of the periaqueductal gray matter in Alzheimer's disease. Ann Neurol 2000;48:344-353.
  • 97
    Bohl J, Ulbricht D, Steinmetz H. Neurofibrillary tangles in peripheral autonomic ganglion cells. In: Iqbal K, Winblad B, Nishimura T, Takeda M, Wisniewski HM, editors. Alzheimer's disease: biology, diagnosis and therapeutics. Chichester: John Wiley & Sons Ltd;1997:281-287.
  • 98
    Saito Y, Murayama S. Expression of tau immunoreactivity in the spinal motor neurons of Alzheimer's disease. Neurology 2000;55:1727-1730.
  • 99
    Schmidt ML, Zhukareva V, Perl DP et al. Spinal cord neurofibrillary pathology in Alzheimer disease and guam Parkinsonism-dementia complex. J Neuropathol Exp Neurol 2001;60:1075-1086.
  • 100
    Yamada M. On the distribution of senile changes in the spinal cord. Folia Psychiatr Neurol Jpn 1978;32:249-251.

Publication Dates

  • Publication in this collection
    Jul-Sep 2008

History

  • Received
    14 July 2008
  • Accepted
    22 Aug 2008
Academia Brasileira de Neurologia, Departamento de Neurologia Cognitiva e Envelhecimento R. Vergueiro, 1353 sl.1404 - Ed. Top Towers Offices, Torre Norte, São Paulo, SP, Brazil, CEP 04101-000, Tel.: +55 11 5084-9463 | +55 11 5083-3876 - São Paulo - SP - Brazil
E-mail: revistadementia@abneuro.org.br | demneuropsy@uol.com.br