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1 Introduction
Black locust (Robinia pseudoacacia L.) is a deciduous tree 

that is 10-25 m in height and is characterized by rapid growth. 
It is an important afforestation tree species that is widely planted 
throughout the world from temperate to subtropical areas 
(Rédei et al., 2008). Black locust flowers are milky white and 
rich in flavonoids, rendering them a healthy food that is very 
popular in Chinese markets (Wang et al., 2006; Wang, 2019). 
Robinia pseudoacacia f. decaisneana (Carr.) Voss is a cultivar of 
black locust that possesses red flowers. It has high ornamental 
value and is often used for landscaping. At present, the molecular 
mechanism of the flower color difference etween the red and 
white flowers of black locust is unclear.

In most plants, anthocyanins are the main pigments dictating 
flower color. They are also an important visual signal for attracting 
insects for pollination (Davies et al., 2012). The anthocyanin 
pathway has been well characterized in model plants. Anthocyanin 
structural genes can be divided into early biosynthesis genes 
(EBGs), including chalcone synthase (CHS), chalcone isomerase 
(CHI), and flavanone 3-hydroxylase (F3H), and late biosynthesis 
genes (LBGs), including flavonoid-3’-hydroxylase (F3’H), 
dihydroflavonol 4-reductase (DFR), anthocyanidin synthase 
(ANS), and UDP-glucose: flavonoid 3-O-glucosyltransferase 
(UFGT) (Hichri et al., 2011). Anthocyanins are transferred stored 
in the vacuoles where they exhibit color (Wang et al., 2014b). 
Transcription factors from the MYB, bHLH, and WD40 gene 
families usually control the activity of the anthocyanin pathway 

(Zhao et al., 2013; Zhang et al., 2019). In horticultural plants, 
the expression of MYB genes plays an important role in flower 
and fruit coloration (Naing & Kim, 2018), such as LhMYB6, 
LhMYB12, and MYB12-Lat in Asiatic lily, and MdMYBA, 
MdMYB10, and MdMYB110a in apple (Takos  et  al., 2006; 
Chagné et al., 2013; Espley et al., 2007).

Black locust flowers, as forest by-products, have potential market 
value. Researchers have analyzed the functions and components 
of extracts from various flowers; for instance, Kim et al. (2011) 
reported that flower extracts have antioxidant activity and alleviate 
DNA damage, and Ma et al. (2021) analyzed red and white flowers 
and found 11 flavonoid glycosides. However, genes related to 
black locust flower coloration have not been reported. In this 
study, the red and white flowers of black locust were subjected 
to combined metabolome and transcriptome analysis, and the 
differences in flavonoid components were explored and the key 
genes controlling flower color were screened. The results will 
provide a reference for the development of black locust flowers as 
a food as well as for the cultivation of anthocyanin-rich varieties.

2 Materials and methods

2.1 Flavonoid metabolite detection

Black locust plants were grown in Longmen Mountain 
(Luoyang, China), and white flowers (WF) and red flowers (RF) in 
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the semi-open stage were sampled on April 12, 2021. Flavonoids 
were extracted and analyzed by MetWare Biotechnology Co. 
Ltd. (Wuhan, China). The flavonoids were detected using an 
ultra-high-performance electrospray ionization-tandem mass 
spectrometry (UPLC-ESI-MS/MS) system. The mobile phase 
A was ultrapure water with 0.1% acetic acid, and mobile phase 
B was acetonitrile with 0.1% acetic acid. The gradient program 
was from 5% to 95% B for 0-9.0 min, maintained at 95% B for 1 
min; and from 95% to 5% B for 11.0-12.1 min, maintained at 5% 
B until 14.0 min. The effluent was scanned using an ESI-triple 
quadrupole-linear ion trap-MS/MS system (Applied Biosystems 
4500 Q TRAP) (Chen et al., 2013).

2.2 Metabolite data analysis

All metabolites were annotated using the MetWare database 
and quantified using multiple reaction monitoring. The different 
flavonoids between WF and RF were analyzed using partial 
least squares-discriminant analysis (PLS-DA). The thresholds 
of variable importance in the projection (VIP) ≥ 1 and absolute 
log2FC (fold-change) ≥ 1 were used to determine significantly 
different flavonoids.

2.3 Transcriptome sequencing

Sequencing libraries were generated by Biomarker Technologies 
Co. Ltd (Beijing, China) and sequenced with an Illumina NovaSeq 
6000 platform. Reads containing poly-N or adapters as well as 
reads that were low quality were discarded. Trinity software was 
used to assemble high-quality reads (Grabherr et al., 2011). The 
transcriptome data have been deposited in the Genome Sequence 
Archive (GSA) under accession number PRJCA008127 (http://
bigd.big.ac.cn/gsa). Gene function was annotated by aligning 
against the Swiss-Prot, Pfam, Kyoto Encyclopedia of Genes and 
Genomes (KEGG), Eukaryotic Orthologous Groups (KOG), 
and Gene Ontology (GO) databases.

2.4 Differential expression analysis

Gene expression levels were estimated by RSEM (Li & Dewey, 
2011), and differentially expressed genes were screened using 
the DESeq R package with the thresholds of q-value < 0.05 and 
| log2(foldchange) | > 1.

2.5 Quantitative real-time PCR analysis

The first-strand cDNA was synthesized using the Prime 
ScriptTM RT reagent Kit with gDNA Eraser (TaKaRa, China). 
Transcriptional levels of flavonoid structural genes were detected 

using TB Green® Premix Ex Taq™ II (Tli RNaseH Plus) (TaKaRa, 
China) on a CFX96TM Real-Time System (Bio-Rad, USA). The 
quantitative real-time PCR (qRT-PCR) reaction was performed 
with TB Green Premix Ex Taq II. The amplification program was 
as follows: 95 °C for 3 min, followed by 40 cycles of 95 °C for 
10 s, 55 °C for 20 s, and 72 °C for 20 s. GADPH was used as an 
internal control (Wang et al., 2014a). Primers used for qRT-PCR 
are shown in Table 1. The 2-△△Ct method was used to calculate 
gene expression (Livak & Schmittgen, 2001).

3 Results

3.1 UPLC-MS/MS-based quantitative metabolomic analysis 
of black locust flowers

In order to elucidate the flavonoid components of black locust 
flowers, the flavonoid metabolites of RF and WF were analyzed. 
A total of 308 flavonoid metabolites were identified, including 
20 anthocyanins, 12 chalcones, 10 flavanols, 19 flavanones, nine 
flavanonols, 64 flavones, 18 flavonoid carbonosides, 97 flavonols, 
40 isoflavones, nine proanthocyanidins, and 10 tannins (Table S1).

A hierarchical clustering heatmap was constructed using the 
quantitative metabolite data. As shown in Figure 1, there was 
a clear separation between the red and white flower samples. 
Principal component analysis also showed an obvious separation 
between the WF and RF samples (Figure S1). These results 
indicated that the flavonoid profiles differed between RF and WF.

3.2 Flavonoid metabolome profiling of RF and WF samples

Differential compounds between WF and RF were screened 
using PLS-DA models, and a total of 175 differential metabolites 
were identified. Compared with WF, 123 compounds were 
up-regulated and 52 compounds were down-regulated in RF 
(Figure 2). Five anthocyanins were significantly up-regulated 
in RF, including malvidin-3-O-arabinoside, delphinidin-3-O-
galactoside, rosinidin-3-O-glucoside, cyanidin-3-O-(2”-O-
glucosyl)glucoside, and delphinidin-3,5-di-O-glucoside, and 
these represent the main pigments of the red flowers.

3.3 De novo assembly

The transcriptomes of the black locust flowers were sequenced. 
About 11.3 Gb, 11.5 Gb, and 10.9 Gb bases of clean data were 
obtained from the three RF samples, and 11.2 Gb, 11.2 Gb, and 
10.4 Gb bases of clean data were obtained from the three WF 
samples. After de novo assembly, 53,992 unigenes were obtained 
with an N50 of 1817 nt. There were 19,633 unigenes with a 

Table 1. Primers used for quantitative real-time PCR.

Gene Forward primer Reverse sequence
GAPDH TCAACAATGCCAAACCTG GTGTCAACGAGCACGAAT

F3’H TCTCAGTGGTAGAAACGCCA AATCCCCATCCTTGTCCCAG
ANS ATCAACCGCCTCAAGAAAGC GACCACTTGCATTGTTGGCT
3GT TCTAGTGCAGGAAGAGGGGA ATCATGTGCTGCTCTCCCTT

FNSII TTCTGGAAGGAGAGGTTGCC GTCAATCCTGGCCGTTCATC
ANR GCATTGCTACGCACTGTATG GTAACCAGTCCCATCATCCT
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length of 300-500 bp, accounting for 36.6% of unigenes; 15,127 
unigenes with a length of 500-1,000 bp, accounting for 28.02% 
of unigenes; 10,382 unigenes with a length of 1,000-2,000 bp, 
accounting for 19.23% of unigenes; and 8,850 unigenes with a 
length > 2,000 bp, accounting 16.39% of unigenes. Among the 
unigenes, 29,132 unigenes could be annotated to nine public 
databases.

3.4 Analysis of differently expressed genes (DEGs) between 
WF and RF

Through comparative analysis of the transcriptome between 
WF and RF, a total of 2,595 DEGs were obtained, of which 
2,264 were annotated into public databases. Compared with 
WF, 1,394 unigenes were up-regulated and 1,201 unigenes were 
down-regulated in RF (Figure 3). In terms of KEGG annotation, 
1,523 unigenes were annotated to 128 pathways. Twenty-eight 
pathways were enriched, including three pathways related to 
flower color, namely “isoflavonoid biosynthesis (Ko00943)”, 

“flavonoid biosynthesis (Ko00941)”, and “flavone and flavonol 
biosynthesis (Ko00944)”.

3.5 Identification of DEGs involved in flower color

A total of five DEGs related to flower color were identified 
(Table 2). Among them, three anthocyanin structural genes, 
including F3’H (c76211.graph_c0), ANS (c70083.graph_c0), 
and 3GT (c80641.graph_c0), were up-regulated in RF. Two 
genes, FNSII (c87553.graph_c0) and ANR (c69641.graph_c0), 
involved in flavone and flavanone biosynthesis, were down-
regulated in RF.

3.6 Transcriptome profiles of the transcription factors

A total of 51 transcription factors belonging to 14 families 
were differentially expressed in RF and WF, of which 29 were 
up-regulated and 22 were down-regulated in RF. MYB and bHLH 
play critical roles in the regulation of the anthocyanin pathway, 
and among the DEGs, nine MYB genes and four bHLH genes 

Figure 1. Hierarchical clustering heatmap of flavonoid metabolites in WF and RF.
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were up-regulated, and five MYB genes and four bHLH genes 
were down-regulated in RF (Table 3).

3.7 Quantitative RT-PCR analysis of flavonoid structural 
genes

The transcription levels of the five flavonoid structural genes 
were verified using qRT-PCR (Figure 4). The results showed 
that F3’H, ANS, and 3GT were up-regulated, while FNSII and 
ANR were down-regulated in RF, which was consistent with 
the transcriptome data.

Data represent the means ± SD of three independent 
biological replicates. Bars represent the standard errors of three 
biological replicates.

4 Discussion
Flavonoids have positive health impacts, such as by 

decreasing the risk of cardiovascular diseases, inhibiting 
the development and progress of different types of cancers, 
and reducing gut inflammation (Kopustinskiene et al., 2020; 

Pei et al., 2020; Maleki et al., 2019). Therefore, foods rich in 
flavonoids have become increasingly popular. Analysis of the 
flavonoid metabolome of the white and red flowers of black 
locust identified 308 flavonoids, of which 175 differed between 
WF and RF, with 123 up-regulated and 52 down-regulated in 
RF. These results showed that there were great differences in the 
flavonoid composition between the red and white flowers. This 
study preliminarily identified the flavonoid profiles in WF and 
RF, providing a foundation for the development of black locust 
flowers as a flavonoid-rich food or drug.

Anthocyanins are flavonoids and are the primary pigments 
in most flowers. In tree peony, Rhododendron species, and other 
ornamental flowers, differences in anthocyanin contents are the 
key factors influencing the richness and diversity of flower colors 
in different varieties (Zhang et al., 2020; Du et al., 2018). Of the 
differential metabolites between RF and WF, five anthocyanins 
increased significantly, including malvidin-3-O-arabinoside, 
delphinidin-3-O-galactoside, rosinidin-3-O-glucoside, cyanidin-
3-O-glucoside, and delphinidin-3,5-di-O-glucoside. The results 
showed that the accumulation of these five types of pigments 
was the main contributor to the red coloration of RF.

Figure 2. Volcano plot of differentially accumulated metabolites between WF and RF.
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Figure 3. Analysis of differentially expressed genes in WF and RF.

Table 2. Transcript profiles of DEGs involved in the flavonoid pathway in WF and RF.

Gene name Gene ID WF_FPKM RF_FPKM FDR log2FC Regulated
F3’H c76211.graph_c0 12.55333 115.2167 2.81E-32 2.9937 up
ANS c70083.graph_c0 122.97 1036.817 1.39E-58 2.891557 up
3GT c80641.graph_c0 135.9033 321.7067 0.003921 1.010333 up

FNSII c87553.graph_c0 8.266667 1.31 7.29E-09 −2.42646 down
ANR c69641.graph_c0 3.183333 0.05 2.76E-18 −4.33675 down

Table 3. Differentially expressed MYB and bHLH genes in RF and WF.

Gene family Gene ID WF_FPKM RF_FPKM FDR log2FC Regulated
MYB c71325.graph_c0 3.21 7.07 1.08E-05 1.01 up

c72408.graph_c0 0.34 3.63 1.96E-12 2.90 up
c72163.graph_c0 0.35 2.54 3.39E-05 2.15 up
c75524.graph_c0 1.09 4.39 6.09E-04 1.56 up
c72849.graph_c0 1.66 4.44 1.42E-05 1.18 up
c75341.graph_c0 0.74 3.19 3.68E-07 1.83 up
c88685.graph_c1 30.31 116.99 2.07E-07 1.98 up
c89531.graph_c0 0.11 7.55 1.33E-08 3.36 up
c74223.graph_c0 1.74 8.43 7.21E-11 2.16 up
c84655.graph_c0 5.57 2.63 1.09E-04 −1.13 down
c72549.graph_c0 5.36 2.72 3.26E-03 −1.01 down
c85131.graph_c2 5.35 1.16 1.40E-08 −2.33 down
c82305.graph_c1 107.78 39.99 1.08E-05 −1.35 down
c81473.graph_c2 29.79 11.15 7.62E-11 −1.38 down

bHLH c74899.graph_c0 0.88 3.54 2.39E-05 1.69 up
c88771.graph_c1 6.59 12.47 1.98E-10 1.25 up
c77816.graph_c0 1.29 3.94 2.29E-04 1.54 up
c86677.graph_c3 3.36 7.90 3.91E-03 1.22 up
c78679.graph_c0 5.60 2.15 9.04E-04 −1.40 down
c78347.graph_c0 23.76 11.03 8.87E-09 −1.18 down
c83896.graph_c0 13.40 7.74 7.32E-08 −1.30 down
c76319.graph_c0 22.92 3.15 1.39E-33 −2.63 down
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genes, namely F3’H, ANS, and 3GT, were up-regulated in the red 
flowers, leading to the accumulation of anthocyanins.
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