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1 Introduction
Chitosan is a linear polysaccharide of β-(1-4)-D-

glucosamine (deacetylated unit) and n-acetyl-D-glucosamine 
(acetylated unit) derived from chitin, the second most abundant 
polysaccharide in nature after cellulose. Chitin is the main 
component of the exoskeleton of crustaceans, mollusks, 
and arthropods, as well as of the cell walls in some fungi 
(Alvarado et al., 2015). Chitosan films are an excellent choice 
for food packaging, due to its excellent mechanical properties 
and oxygen barrier (Aguirre-Loredo et al., 2014). However, 
the properties of the film can be significantly modified by 
the moisture content of the material. Water is an important 
constituent of foods as it affects the quality and stability as well 
as rheological properties. Also, water promotes the mobility 
of the hydrophilic polymer chains (Pittia & Sacchetti, 2008) 
due to a plasticizing effect. In general, increasing the moisture 
content decreases the glass transition temperature (Tg) and 
modifies the performance and quality of biodegradable packaging 
materials. Plasticization by water molecules is an important 
phenomenon when hydrophilic materials are intended for 
food packaging. The water activity (aw) is a measure of the 
water state in foods; this concept is commonly related to safety 
and quality (Barbosa-Cánovas et al., 2008). Water molecules 
have an important effect on the molecular structure of the 
polymer and thus in the properties of the films, as a result 
of hydration, plasticization or partial solubilization of the 

material. As a result of these processes, the mechanical and 
barrier properties of the films are modified considerably, 
altering the quality of the stored products (Alvarado et al., 
2015; Cunha et al., 2014). Water sorption isotherms represent 
the relationship of the equilibrium moisture content of a food 
product and the relative humidity at a particular temperature 
(Muzaffar & Kumar, 2016). The water activity changes with 
the temperature and usually the food is exposed to a wide 
range of temperatures during transporting and storage. 
Temperature affects the mobility of the molecules of water and 
the dynamic equilibrium between vapor and adsorbents phases 
(Nordin Ibrahim et al., 2013). In food systems, at constant aw, 
an increase in temperature results in a decrease in moisture 
content. In moisture sorption isotherms the experimental 
data can be fitted by several mathematical models, empirical 
or theoretical; however, not all models are applicable to the 
full scale of water activity that ranges from 0 to 1. Most of 
the mathematical models do not include the temperature as a 
parameter into the equation. Usually, to consider this effect, 
each model is fitted to each temperature at the time, obtaining 
different values for each parameter of the model as a function 
of temperature. There are some modified models where the 
temperature is included as a variable. These models are not 
always fully effective fitting the experimental data in the 
whole range of aw. Therefore, the objective of the present study 
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was to compare several mathematical models to determine 
their suitability to describe the effect of temperature on the 
sorption isotherms of biodegradable chitosan-based films at 
temperatures of 15, 20, 25, and 30 °C.

2 Materials and methods
2.1 Materials

Chitosan (Sigma-Aldrich, United States, with a degree of 
acetylation > 75%) from shrimp shell and glacial acetic acid 
(Fermont, Mexico) were employed to obtain biodegradable films. 
Reagent grade salts (Jalmek Cientifica S.A. de C.V., Mexico) 
were used to prepare supersaturated aqueous saline solutions 
to obtain a wide range of equilibrium relative humidity (RHeq) 
environments, as described in section 2.3.

2.2 Film preparation

Film-forming solution was prepared by dissolving 1 g of 
chitosan in 100 mL of 1% acetic acid (v/v). The filmogenic solution 
was centrifuged at 3000 rpm for 20 min (Eppendorf, 580HR 
model) to remove insoluble particles and air bubbles. The films 
were obtained by the casting method using 150 mm × 150 mm 
glass molds. Solutions were dried in a dehydrator with forced 
convection (Excalibur Products, United States) at 30 ± 1 °C for 
3 h. After drying, films were stored at room temperature for 
7 days in a desiccator containing silica gel. Preliminary tests 
showed that 5 days are enough for the films to reach equilibrium.

2.3 Moisture adsorption isotherms

To evaluate the interaction of water with chitosan films, 
the moisture adsorption isotherms were obtained following 
the static method of microclimates (Wolf et al., 1985). One-L 
acrylic containers with an airtight lid were used to obtain 
microclimates in the range from 22 to 90% of equilibrium relative 
humidity (RHeq) at 15, 20, 25 and 30 °C using supersaturated 
saline solutions of CH3COOK, MgCl2, K2CO3, NaBr, NaCl, 

KCl and BaCl2. The  amount of salt and water for preparing 
supersaturated saline solutions and aw values (aw = RHeq/100) 
for each temperature are listed in Table 1.

Rectangular samples of chitosan films were placed by triplicate 
on brackets over saline solutions, ensuring that the absorption 
of water vapor molecules takes place on both sides of the film. 
Containers were placed in a chamber with controlled temperature 
for 7 days. After equilibrium in each microclimate, the samples 
were weighed using an analytical balance (0.0001 g sensitivity) 
and then the dry weight was determined using an oven at 
110 °C for 20 h.

2.4 Mathematical moisture sorption models

Modified equations of the models were used to take 
into account the effect of the temperature on the adsorption 
isotherms. A comparison of the fitting was carried out for both 
the original (without including the temperature effect) and the 
modified models.

In this study, 10 mathematical models were used to 
describe the adsorption isotherms of chitosan films at different 
temperatures (Aviara  et  al., 2004; Ayala Aponte  et  al., 2011; 
Furmaniak et al., 2007; Gálvez et al., 2006; Timmermann et al., 
2001). From these 10 equations (Equations 1-10; Table 2), 5 are 
the original models and 5 are modified versions of each model 
where the temperature is taken into account. The parameters 
were estimated by nonlinear regression using the least squares 
method to minimize the sum of squares of the residuals between 
calculated and experimental values.

2.5 Statistical analysis

The best model to predict the equilibrium moisture content was 
selected considering the value of the coefficient of determination 
(R2) and the value of %E (mean percentage error). To assess the 
fitting of each model, the values of the R2 and %E were calculated 

Table 1. aw values of several salts as a function of temperature.

Salt
Preparation amount aw

Salt (g) Water (mL) 15 °C 20 °C 25 °C 30 °C

CH3COOK 200 70 0.2340 0.2311 0.2251 0.2161

MgCl2 200 25 0.3330 0.3307 0.3278 0.3244

K2CO3 200 90 0.4315 0.4316 0.4316 0.4317

NaBr 200 100 0.6070 0.5910 0.5760 0.5600

NaCl 200 60 0.7561 0.7547 0.7529 0.7509

KCl 200 80 0.8592 0.8511 0.8434 0.8362

BaCl2 200 70 0.9110 0.9050 0.9040 0.9010

Adapted from: Alzamora et al. (2003), Figura & Teixeira (2007) and Kitic et al. (1986).



Water sorption isotherms of chitosan films

Food Sci. Technol, Campinas, 37(1): 112-118, Jan.-Mar. 2017114

using the software OriginPro v. 8.5.1. (OriginLab Corporation), 
and the %E was calculated using Equation 11.

100% *  e p

e

x x
E

x n

 −
 = ∑
 
 

	 (11)

Taking into account the approximation by non-linear 
regression, a value of R2 ≥ 0.98 was considered a good fitting. 
In the case of %E, values lower than 5 indicate a good fit; values 
between 5 and 10, indicate a reasonable adjustment and values 
higher than 10 indicate a poor fit (Muzaffar & Kumar, 2016; 
Peng et al., 2007; Slavutsky & Bertuzzi, 2012).

3 Results and discussion
3.1 Moisture adsorption isotherms

Moisture adsorption isotherms of chitosan films obtained 
as a function of temperature are shown in Figure 1, the curves 
are considered type III isotherms according to the classification 
of Brunauer (Lavoyer et al., 2013). The moisture adsorbed by 
chitosan films increased when subjected to high levels of aw and 
decreased with the increase of temperature at a given aw value. 
A similar behavior is observed in all the curves obtained as the 
slope increases rapidly at aw values higher than 0.5. According 
to these results, chitosan films can adsorb up to 40% of moisture 
at 30 °C and as the temperature decreases, the capability to 
adsorb water increases, reaching up to 70% of moisture at 15 °C 
when the material is exposed to an environment of 90% RHeq. 
This behavior is explained taking into account the relationship 
between the kinetic energy of the molecules and the binding 
sites in the adsorbing material. Due to a higher state of excitation 
of molecules, the distance between a water molecule and the 

polymer increases resulting in a decrease of the attractive 
forces, becoming less stable and spreading of the binding sites. 
This might result in a reduction in the total number of active 
sites in which the water molecules interact as a consequence of 
the physical changes in the polymeric material. Therefore, an 
increase in temperature results in a reduction in the amount 
of moisture adsorbed at a given water activity value (Li, 2012; 
Mrad et al., 2013; Muzaffar & Kumar, 2016; Souza et al., 2015). 
Water molecules also have the capability to increase the free 
volume in the polymer matrix, thus increasing the mobility 
of the polymer chains and the permeability of the material 
(Schmid et al., 2015).

Moisture adsorption isotherms can be divided into regions 
that describe the behavior of the material and can help to 
understand the changes taking place in the structural matrix. These 
regions are not static and they change according to the material 
and the experimental conditions. The region corresponding 
to aw < 0.2 describes the adsorption of water in the monolayer 
region; the region corresponding to additional layers of water 
adsorption is allocated between aw 0.2-0.7; the region aw > 0.7, 
corresponds to the condensation of water in the pores of the 
material followed by a dissolution of the material (Ghayal et al., 
2013; Zomorodian et al., 2011). At lower aw values, the slope 
of the curve of the adsorption isotherms of chitosan films was 
smaller and increased at aw values > 0.75. Similar behavior has 
been reported for films made from chitosan-polyvinyl alcohol, 
chitosan-FeCl3 and starch-gelatin (Al-Hassan & Norziah, 2012; 
Hirase et al., 2010; Sébastien et al., 2006; Srinivasa et al., 2003).

According to the literature, the effect of adsorbed water 
on hydrophilic materials can be divided into three regions of 
hydration. In the case of chitosan, when it is hydrated at low 
values of RHeq (< 50%) the rate of relaxation of the solvent 

Table 2. Isotherm models used for experimental data fitting (Aviara et al., 2004; Ayala Aponte et al., 2011; Furmaniak et al., 2007; Gálvez et al., 
2006; Timmermann et al., 2001).
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Where aw is water activity, X is the moisture content on a dry base and T is temperature.
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increases slightly. Intermediate RHeq values (from 50 to 75%) 
increase the mobility of the matrix of chitosan. At higher RHeq 
values (80%) there is a significant increase in the molecular 
mobility of the matrix. It has been reported that the chitosan has 
3 adsorption sites: the hydroxypropyl group, the amino group, 
and the end of the polymer chain consisting of a hydroxyl or 
aldehyde group (Cervera et al., 2004; Gocho et al., 2000). Based 
on the degree of interaction between water and polymer, three 
states of water adsorbed in the hydrophilic materials have been 
proposed: (i) non-freezable or composition water, which does 
not crystallize, even at low temperatures, (ii) linked or freezable 
water, which crystallizes below 0 °C, and (iii) free water, which 
can be crystallized at 0 °C (Lin et al., 2007). After the adsorption 
of water, chitosan may swell, but will stop to some extent due to 
the cross-linking of the crystalline zones (Gocho et al., 2000).

3.2 Modeling of experimental data

There are several models for fitting the experimental data 
of moisture adsorption isotherms. Some equations include the 
effect of the temperature as a parameter. In most of those there 
is no scientific basis to justify the inclusion of the temperature 
effect; usually, its position is defined by trial and error when 
fitting data (Jain et al., 2010). In this work, 10 mathematical 
models used to describe sorption isotherms were tested to fit 
the experimental data of the adsorption isotherms of chitosan 
films. The values obtained for the parameters of each model are 
shown in Table 3.

BET model theory proposes a multilayer adsorption, a 
monolayer strongly attached to the chains of the material, and 
the subsequent layers thermodynamically tend to behave in 
the same way, however, different from the monolayer and with 
similar characteristics of liquid water (Hartley  et  al., 1992). 
The applicability of the BET model is limited to the low range 
of aw (0-0.75). The parameters are the moisture content in the 
monolayer (xm) and the energy involved in the process of water 
adsorption (c). xm is the amount of water which is adsorbed 
strongly at specific binding sites on the surface of the material 
and can also be set as a measure of the availability of active sites 
of a material for the adsorption of water molecules (Figura & 
Teixeira, 2007; Lavoyer et al., 2013; Quirijns et al., 2005). In the 
chitosan-based films, BET model fitted appropriately the range 
from 0 to 0.75 aw. The xm values decreased when the experimental 
temperature increased, changing from 10.99 to 6.75 g water/100 g 
dry matter at 15 and 30 °C, respectively. The original and modified 
models of BET gave a good fit to the experimental data in the 
range from 0 to 0.75 aw. In moisture adsorption isotherms of 
foods such as vegetables, BET model fit the experimental data 
in a range from 0.1 to 0.5 aw (Kaymak-Ertekin & Sultanoğlu, 
2001). The BET model has a little dependence on temperature, 
and a greater dependence is observed in the initial ranges of 
relative humidity (Furmaniak et al., 2007).

Anderson (1946) modified the equation of BET assuming 
that the adsorption heat from the second to ninth layer is less 
than the heat of liquefaction. The equation of Anderson was 
later derived kinetically and statistically by Boer (1953) and 
Guggenheim (1966), respectively. Both the BET and the GAB model 

Figure 1. Moisture adsorption isotherms of chitosan films as a function of the temperature (symbols), fitted to the original GAB model (lines).
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are based on the same principle of monolayer coverage (xm) and 
the parameter c; however, GAB model introduced an additional 
constant (k) which gives the higher versatility. The inclusion of 
the parameter k assumes that molecules which are in multilayer 
have interaction with the sorbent and this interaction changes 
in energy levels somewhere between the monolayer and the 
free water molecules, the value of the constant k is always less 
than 1 (Furmaniak et al., 2007; Barbosa‑Cánovas et al., 2008; 
Timmermann et al., 2001) as showed in this study. The moisture 
content in the monolayer represents the amount of water required 
to form a monolayer on the surface (Arslan & Togˇrul, 2005). 
In chitosan films, increasing the temperature results in a significant 
decrease in the xm values according to the data obtained with 
the GAB and BET models (Figure 2).

The constant c from the BET model is logarithmically related 
to the difference between the chemical potential of the sorbate 
molecules in pure liquid and the first layer of sorption. On the 
other hand, the c constant of GAB model is related to the difference 
between the quantities in the upper layers and the monolayer, 
while the constant k is related to the difference of the sorbate 
pure liquid state and the upper layers or multilayered, and the 
product of both (cGAB + k = cBET) represents the equivalent 
of the parameter c of BET (Timmermann et al., 2001). It has 
been observed that the values of xm and c in both models can 
show a characteristic behavior, where xm values calculated by the 
model of BET are usually smaller than the GAB. In this work, the 
xm values calculated by the BET model were lower than the GAB 
model, for all temperatures (Table 3). Also, the constant energy c 

Table 3. Sorption isotherm model parameters and coefficient of regression R2 values for chitosan films.

Model Temp (°C)
Parameters

xm c k A B C

T

aw Range 0-0.75 15 10.99 15,985.16 - - - -
R2= 0.9244 20 10.29 1,757.52 - - - -
%E= 20.1029 25 8.03 13,361.27 - - - -

30 6.75 6,281.44 - - - -

Modified BET

aw Range 0-0.75 15 9.59 4,490.89 - - - -
R2= 0.9215 20 8.35 3,181.96 - - - -
%E= 13.9420 25 6.38 2,637.54 - - - -

30 5.74 1,787.79 - - - -

GAB

aw Range 0-0.9 15 16.74 9.15 0.84 - - -
R2= 0.9714 20 15.27 9.37 0.82 - - -
%E= 7.9196 25 10.15 3,887.34 0.85 - - -

30 7.81 482.41 0.89 - - -

Modified GAB

aw Range 0-0.9 15 16.27 10.94 0.85 - - -
R2= 0.9847 20 16.79 7.84 0.80 - - -
%E= 8.3945 25 11.22 18.40 0.84 - - -

30 8.31 15.33 0.90 - - -

Henderson

aw Range 0-0.9 15 - - - 1.28 -4.90 -
R2= 0.9666 20 - - - 1.34 -5.05 -
%E= 11.8945 25 - - - 1.47 -5.38 -

30 - - - 1.21 -4.38 -

Modified Henderson
aw Range 0-0.9 15-30 - - - 0.00055 1.15 1.31

R2= 0.9729
%E= 11.0574

Halsey

aw Range 0-0.9 15 - - - 321.11 1.89 -
R2= 0.9807 20 - - - 283.75 1.92 -
%E= 12.4197 25 - - - 255.68 2.03 -

30 - - - 77.50 1.74 -

Modified Halsey
aw Range 0-0.9 15-30 - - - 6.79 -0.06 1.90

R2= 0.9703
%E= 9.9392

Oswin

aw Range 0-0.9 15 - - - 25.96 0.44 -
R2= 0.9813 20 - - - 23.27 0.43 -
%E= 8.6661 25 - - - 18.77 0.40 -

30 - - - 15.17 0.47 -

Modified Oswin
aw Range 0-0.9 15-30 - - - 33.38 2.13 -0.61

R2= 0.9781
%E= 9.6822
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of BET is usually higher than the values obtained with the GAB 
model (Timmermann et al., 2001). The modified GAB model 
gave a better fit than the original model for the experimental data 
obtained from the moisture adsorption isotherms in the range 
from 0.10 to 0.90 aw (Table 3). As the parameters of the GAB 
equation are based on the physical phenomena involved in water 
adsorption by hydrophilic materials, it is considered the most 
suitable model to describe experimental data (Bratasz et al., 2012; 
Figura & Teixeira, 2007; Furmaniak et al., 2007; Lavoyer et al., 
2013; Medeiros et al., 2006; Souza et al., 2015; Timmermann et al., 
2001; Zhang & Han, 2008).

The original and modified Oswin models gave an excellent 
fit to the experimental data. A %E value of 8.66 was obtained 
from the modified equation. Similar values have been reported 
for adsorption isotherms of soybeans, where the modified 
model presented the most suitable fitting (Aviara et al., 2004). 
This model has been found to be convenient to describe moisture 
adsorption isotherms of biodegradable films (Srinivasa et al., 
2007), as well as products with high contents of protein and 
starch (Chen, 2002). In dried fruits, the modified model of 
Oswin gave a better fit than the modified model of Henderson 
at temperatures from 30 to 50 °C (Jain et al., 2010).

The original model of Henderson was effective in modeling 
experimental data of adsorption at temperatures of 10 to 30 °C. 
Similar behavior is reported for dried papaya adsorption isotherms 
(Jain et al., 2010). The modified model of Henderson gave the best 
fit, with an R2 of 0.9729 and a mean percentage error of 11.06.

Halsey equation is a multimolecular sorption model where 
the binding energy of the sorbate is a function of the strength of 
sorption. The Halsey equation gave a good fit to the experimental 
data with an R2 = 0.9711 and 0.9703 for the original and the 
modified model, respectively. The mean percentage error 
decreased from 12.42 to 9.94 % for the original and the modified 
model, respectively. Similar behavior was observed with the BET 
model as the %E decreased from 20.10 to 13.94 on the modified 
model. This model is recommended for foods such as meat, 
dairy products and seeds (Ghayal et al., 2013; Zomorodian et al., 
2011). The model showed a poor fit for biodegradable chitosan 
films with polyethylene glycol (Srinivasa et al., 2007).

4 Conclusions
The original and modified GAB and Oswin models fitted 

better to the experimental data of moisture adsorption isotherms 
of biodegradable films based on chitosan. On the other hand, 
only the modified models of Halsey and Henderson showed 
good fit. In general, the modified models were best suited to 
describe the behavior of moisture adsorption of chitosan films.
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