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1 Introduction
Food safety is a global issue that affects public health, 

economic development, and human social stability (Molajou et al., 
2021a; Molajou et al., 2021b). In recent years, there have been 
many public health incidents caused by food safety issues at 
home and abroad, such as “lead crabs” and “parasitic kimchi” 
in South Korea, “horse beef ” in Europe, and “plasticizer health 
products” and “sulphur ginger” in China (Aiyar & Pingali, 2020; 
Bouzembrak et al., 2019; Deng et al., 2021; Fung et al., 2018). 
In order to improve the level of safety supervision and control in 
the food industry, a series of legal documents have been enacted 
around the world to support risk control in the food industry. 
The EU has completed the enactment of the EU Food Law in 
two phases: market-oriented and food safety-oriented, and 
further established the European Food Safety Authority (EFSA) 
to cover all aspects of risk assessment in the food supply chain 
(Authority, 2011; Klintman & Kronsell, 2010; Merten et al., 2011; 
Portier et al., 2016). In China, the Food Safety Law was enacted in 
2009 to replace the Food Sanitation Law, placing greater emphasis 
on the need for food risk assessment (Chen et al., 2015a; Gale 
& Buzby, 2009; Jia & Jukes, 2013).

In this study, in order to take full advantages of the data 
features of large quantity and high dimension, the combination of 
prior risk probability and fuzzy hierarchy partition was employed 
to calculate fuzzy comprehensive risk values based on various 
attributes for use as the expected output of a predictive model 

that can predict and validate risk values, generated using light 
gradient boosting machine (LightGBM) combined with experts’ 
modification operations. Finally, data on meat products and 
aquatic products were used to illustrate how to use this method, 
and its superiority and reasonability were validated.

2 Food safety data sources and characteristics
The sources of food safety data can be broadly summarized 

into three areas: 1) static data, 2) dynamic data, and 3) expert 
experience data (McMeekin et al., 2006; Yusianto & Hardjomidjojo, 
2019). Dynamic data or transactional data is information that 
is periodically updated, meaning it changes asynchronously 
over time as new information becomes available. Data that 
is not dynamic is considered either static (unchanging) or 
persistent, which is data that is infrequently accessed and not 
likely to be modified (Chen et al., 2014). Static data refers to 
data that will not change over a period of time once defined, 
such as standard data in-laws and regulations (passing standard 
line, minimum, maximum detection limit, test basis, judgment 
basis, etc.), information data of sales and production enterprises 
(enterprise-scale, establishment years, major food categories, 
production and sales areas, procurement locations, etc.), etc. 
The data are mostly available in local industry and commerce 
(Salmon et al., 2012). Most of these data exist in the enterprise 
registration information records of local industrial and commercial 
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bureaus. The annual inspection data and sampling data (food 
category, test items, detected content, production time, sampling 
time, etc.) generated by the enterprise food safety system testing 
(generation, processing, circulation, consumption and other 
aspects of routine inspection records and violation records, etc.) 
and routine food sampling are affected by time and geographical 
factors, and the inspection results and sampling records are 
dynamically accumulated and updated (Arpanutud et al., 2009).

Data are collected and entered through local food safety 
monitoring and management systems and stored in the corresponding 
databases for retrieval and query (Lam et al., 2013; Wu & Chen, 
2018). In contrast to the first two types of data, the data given by 
experts based on experience or literature research, such as the 
probability of occurrence of a contaminant in a particular type 
of food, the metric value of the contamination indicator, the risk 
level of the item, etc., can be both stable over time and dynamically 
adjusted to different application contexts (Hammouri et al., 2015; 
Sierra-Soler et al., 2015). Food safety-related data involves food 
information, information of production enterprises, information 
of sales enterprises, information of inspection agencies, national 
laws and regulations, expert experience indicators, inspection 
standards of each contaminant, etc. Their attribute types can 
be broadly summarized as discrete character-based attributes 
(enterprise size, production province, inspection items, etc.), 
discrete numerical attributes (production date, sampling 
date, sample status, etc.), and continuous numerical attributes 
(enterprise turnover, detected content, etc.) (Jia & Jukes, 2013; 
Zhong et al., 2020). Many attribute categories, attribute value 
format is chaotic so that the data has the characteristics of 
high dimensionality and high complexity. Therefore, the data 
mostly show an indistinguishable linear state. The distribution 
pattern is hidden in incomplete data, missing data, incorrectly 
entered data and other noise interference, which increases the 
difficulty of risk analysis (Deng et al., 2021; Donaghy et al., 2021; 
Savelli & Mateus, 2020).

3 Progress of domestic and international research on 
food safety risk assessment

The adverse effects of food safety events and the nature of 
food safety data have led to the enactment of national laws and 
regulations and increasing demand for food safety risk warnings 
(Li et al., 2020).

Effective risk warning models can be used to extract a priori 
knowledge to establish patterns and analyse risk factors, risk 
levels, or predict risk values, and are important for governments 
to rationally allocate limited resources, correctly identify risk 
points, and address food safety issues at the source (Viscusi, 
1988). There has been a great deal of research and application by 
domestic and foreign scholars. The Delphi method is a method 
for incorporating the opinions of a wide range of experts from 
different regions and fields and involves repeating multiple 
rounds of feedback and revising subsequent questionnaires 
based on intermediate feedback (Pérez-Castellanos, 2004). 
With three rounds of expert feedback based on the importance 
of safety issues, the Delphi method was used in the Brazilian 
Food Trade Risk Assessment Tool (Auad et al., 2018; Ribeiro & 
Quintanilla, 2015; Sossa et al., 2019). The final assessment tool 

consisted of 39 risk items, including additions and refinements 
to the original list of factors by experts.

However, all the evaluation indicators in this method, from 
input attribute indicators to output indicators, are artificially 
determined by experts, which is less efficient and has high labour 
cost, and cannot meet the demand of timeliness of risk warning 
system. The analytic hierarchy process (AHP) deals with complex 
multi-objective decision problems by establishing a three-level 
structure of objective, criterion, and solution levels, so it can be 
used to calculate the weights of attribute indicators and classify the 
evaluation levels, and then has the functions of attribute reduction 
and indicator denoising (Chaiyaphan & Ransikarbum, 2020; 
Geng et al., 2019; Sossa et al., 2019). The research used a single 
AHP method to develop a quantitative risk assessment model 
for the Indian food supply chain by initializing the comparison 
matrix with the indicator preferences of supply chain experts 
and outputting the indicator weights to identify the weak links 
(Ilbahar et al., 2018). Delphi and AHP methods are relatively 
mature risk assessment methods (Chen, 2015).

In addition, risk matrix and grey theory methods have been 
integrated and applied to food safety risk assessment and have 
made some progress (Julong, 1989). However, the above methods 
suffer from the shortcomings of small attribute coverage, low index 
accuracy, high human cost, long assessment process, inability 
to update dynamically, and weak adaptability, resulting in low 
accuracy of assessment results and lack of ability to pinpoint 
risk points (Kamble & Raut, 2019).

The rapid development of computer hardware and software 
is driving the process of informatization in the food industry. 
The accumulation of food safety-related data has created conditions 
for applying intelligent computing methods in food safety risk 
assessment (Cui et al., 2006; Leng et al., 2019).

According to the predicted value, the BP neural network 
with two implicit layers was constructed. The main sources 
of contamination for the following week were predicted to be 
“excessive pathogenic bacteria” and “veterinary drug residues,” 
according to the predicted value.

Using the same BP neural network model, a study selected 
13 attributes such as “province of the production company” and 
“sampling location” of the heavy metal “lead” sampling records 
as inputs to predict the “test results” of the records (Gao, 2021). 
Here, the value of the “test result” attribute is pass or fail, which is 
an existing attribute of the sampling record and does not require 
human-made labelling, which improves the accuracy of the 
prediction result. In addition, another study took the products 
of a dairy company as the object of analysis, and extracted seven 
influencing factors such as transportation time, temperature, 
season, and packaging method as rule mining attribute items, and 
used the association rule and the Apriori algorithm to generate 
a rule base, and used the support and confidence filtering rules 
to retain the most frequent rule combinations (Bu et al., 2020). 
The results are used as the process combinations that should be 
avoided in supply chain linkage development.

A study first used principal component analysis to filter the 
evaluation indicators of yak milk dregs quality and then used 
clustering to group the data into clusters based on the two main 
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indicators of appearance and colour and nutritional quality, and 
finally used p-values to evaluate the cluster variability and derive 
intra-cluster patterns (Chi et al., 2021). Another research used 
Grey relational analysis to determine the index weights of the 
sampled data, developed the label’s risk value, and then used 
Hidden Markov Method to train the model and predict the risk 
value (Jin et al., 2013). The AHP method, as an important method 
for calculating index weights and risk classification with low 
complexity, is usually combined with other theoretical methods 
to improve the accuracy and interpretability of risk assessment.

Another study first used AHP to calculate the weights of risk 
indicators predefined by experts and then combined with Dempster-
Shafer’s theory to synthesize the final risk values (Lyu et al., 2020). 
Similarly, after calculating the weights of each risk indicator by AHP 
to develop a risk value label, research applied an extreme learning 
machine and a deep radial basis neural network, respectively, 
to predict the risk value by using each indicator value as input 
(Mojrian et al., 2020). In addition, support vector machines have 
also been used for risk assessment of a small amount of sample 
data. Figure 1 summarizes the above-mentioned risk warning 
methods and their general algorithmic flow.

Under the guidance of the State Administration of Market 
Supervision and Administration, local food and drug supervision 
and management agencies have been actively engaged in 
regulatory, technological innovation, and technical difficulties to 
overcome, and have continuously strengthened the construction 
of food supervision information technology (Fu, 2014; Liu et al., 
2019). However, compared with other countries, the long-
standing food culture and unique geographical location have 
created the existing complex food system in China, and the 
diversity in food types, processing methods, packaging and 
storage methods, additives, and additional methods is far 
greater than that of foreign countries. In this regard, after a 
comprehensive analysis of data characteristics, in this review a 
combination of boundary value division hierarchy and Bayesian 
prior probability are used to calculate the expected output of 
the model and LightGBM is used with minimal training cost 
and good accuracy for risk value prediction (Lin & Sun, 2020; 
Wu, 2020). In practical applications, experts can correct the 
prediction results to help improve the accuracy of the output 
rules until the prediction model gradually approximates the 
optimal decision solution.

Figure 1. Classification of the previous algorithm studies.
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4 Using the LightGBM model to predict the outcome
Previous studies have mostly used numerical features from 

sampling data as input for risk value prediction, such as the content 
of each test item, production sampling quarter, temperature, 
yield, etc. (Geng et al., 2019; Ma et al., 2020; Marvin et al., 2016; 
Williams et al., 2011; Zhang et al., 2018). The small number of 
features increases the error between the risk prediction and the 
actual risk value, resulting in a “false risk” contrary to the fact 
and even misleading decisions. The inability to consider the 
full range of risk point attributes causes valuable relationships 
and patterns in the data to be ignored. In addition, the labeling 
of training data only takes into account the influence of expert 
factors on index weights. It ignores the significant statistical 
information that already exists in a large amount of historical 
data. The labeling is done directly without a method to check 
the error of both, which inevitably leads to mislabeling. In order 
to ensure the reliability of the experimental data and reduce 
the risk of false warnings, the a priori risk probability of the 
historical data combined with the fuzzy hierarchical division 
method is used to calculate the specific eigenvalue weights of each 
attribute, and the result of the weighted sum of the discrete and 
continuous attribute eigenvalues and then normalization is used 
as the risk value. In order to learn the above-established rules, 
discrete attributes are processed using unique thermal coding and 
used for outcome prediction using the LightGBM model, with 
the consequent incorporation of expert intervention strategies 
for accuracy verification and outcome correction. As shown in 
Figure 2, the raw data is divided into two processing steps: on the 
one hand, it is used for model expected output value calculation; 
on the other hand, it is used for model output feature processing. 
The processing result features of the two steps are divided into 
the training set and test set, which are used for model training 
and testing to verify the results, respectively.

5 Gradient boosting tree
In classification problems, the decision tree uses the Gini 

coefficient or information gain as an indicator of how well an 
attribute feature distinguishes between categories, which is used 
to determine the splitting nodes. Cart regression trees use mean 
square error or exponential error as an indicator to select the 
best splitting point when processing regressions (Ahmad et al., 
2018; Mahjoobi & Etemad-Shahidi, 2008; Su  et  al., 2004). 
In supervised learning, the expectation is to obtain a stable 
model with high accuracy and generalization power, but due 
to limitations in the amount of data and the method itself, only 
multiple biased models, or weakly supervised models, can be 
obtained. Integrated learning combines these weakly supervised 
models by voting to smooth out noise correction errors and 
obtain a strongly supervised model with better performance, 
i.e., the idea of “bagging.” With the decision tree as a sub-model, 
the random forest completes the model generation by two 
random selections: random selection of the training set and 
random selection of the sub-model splitting features (Rad & 
Ayubirad, 2017). The random sampling with put-back ensures 
the independent homogeneous distribution of the sub-model 
training set, and the splitting by selecting some features helps 
prevent overfitting. It can be seen that in constructing the random 

forest, each weakly supervised model generation process has 
the same sampling priority for the data. The gradient boosting 
decision tree (GBDT) also uses Cart regression tree as a weak 
learner, but unlike the parallel construction of sub-models of 
RF, GBDT adopts the idea of “boosting” for the progressive 
construction of sub-model association and solves the problem 
that the loss function is a general function by fitting a negative 
gradient between sub-models, in order to achieve the purpose 
of the fastest loss reduction. Therefore, there are errors in 
such function estimation. Based on this, research proposed 
an eXtreme Gradient Boosting (XGBoost) model, which was 
extended into a second-order Taylor expansion with a regular 
term correction, which greatly improved the accuracy of the 
model (Chen et al., 2015b).

6 LightGBM principle and advantage analysis
In the GBDT-like model mentioned above, the best model 

is obtained by tuning in the function space using the gradient 
descent method. However, in constructing sub-models, each 
feature has to traverse all the sample points to select the 
optimal segmentation point, which is a very time-consuming 
operation. In this regard, the LightGBM model was proposed 
by Sun et al. (2020). He uses gradient-based one-sided sampling 
on the training data and mutually exclusive feature bundling 
on the features to improve the learner’s training speed and 
generalization ability, respectively. Each time the weak learner 
is updated, one-sided sampling compresses the training data 
set and reduces the computational effort without changing the 
distribution of feature values and losing accuracy. In addition, 
sampling increases the diversity of the weak learner, which in 
turn improves the generalization ability. However, the features 
of high-dimensional data are often sparse. This results in a 
large number of mutually exclusive features in the data, i.e., 
there are usually no non-zero values for a record at the same 
time, as in the case of One-Hot encoded features. Therefore, 
LightGBM bundles mutually exclusive features to improve 
operational efficiency. There are two issues involved: which 
features should be tied together and how they should be tied. 
By constructing a weighted undirected graph, LightGBM 
models the construction of a feature set as a graph colouring 
problem, using a greedy-like algorithm to obtain the result 
with a complexity of O(#feature2). Although the complexity 
is higher when dealing with high-dimensional features, it only 
needs to be processed once. The algorithm uses a partitioned 
histogram to bundle the mutually exclusive features in the 
feature set regarding the bundling method. The mutually 
exclusive features are combined by recording the number of 
blocks per feature and shifting the defined range (Al Daoud, 
2019; Ke et al., 2017).

In this way, the weak learner finds the segmentation nodes 
by simply iterating through all the block values to determine 
the segmentation point, with an iterative complexity of O (# 
blocks * feature2).

Although the segmentation points found by discretizing the 
feature values are not as accurate as the original feature values, 
the decision tree itself is a weak learner. The error caused by bin 
segmentation serves as a regular term.
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7 Comparison of prediction results by models
To verify the effectiveness of LightGBM, the results are 

compared between the different methods using the same training 
data and test data. Similarly, the training data is still partitioned 
by 20% to obtain a validation set adjusted to the super-reference 
of the other methods. The comparison methods include BP 
neural networks, RBF networks, random forests, the usual 

GBDT, XGBoost, and LightGBM models, and Table 1 shows 
the results of the tuned parameters, the minimum validation 
set loss during tuning, and the prediction error on the same 
test set for the current dataset size. For all other parameters, 
the default values are used.

As a result, a combination of fuzzy hierarchy partition and prior 
risk probability could be used to calculate fuzzy comprehensive 

Figure 2. Flow chart of the algorithm using LightGBM.
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risk values based on multiple traits as the predicted outcome of a 
predictive model that can forecast and confirm risk levels, created 
with the use of a LightGBM and skilled adjustment procedures, 
to fully exploit the high dimension and large amount of data. 
Finally, the results of the various techniques are compared 
using the same training and test data to ensure that LightGBM 
is effective. The results of this study’s risk analysis, including 
the attribute significance distribution and risk levels, might be 
valuable to decision-makers.

8 Conclusion
In summary, the output of this research method consists of 

three parts: risk value prediction, risk analysis conclusion, and 
attribute value importance distribution. The risk value prediction 
enables the rapid calculation of more accurate risk values for 
newly entered data and incorporates dynamic intervention 
strategies for experts, breaking the limitations of fixed rules in 
the original method.

Based on the derived risk values, the statistically significant 
risk analysis results provide the experts with a reference for 
intervention. Finally, the importance distribution of attribute 
values comprehensively illustrates the contribution of continuous 
and discrete attributes to risk, and decision-makers can make 
any combination of attribute values according to the distribution 
law to develop more accurate risk prevention and control 
strategies, such as targeted sampling, high-frequency sampling, 
and contaminant tracing. Food safety is an important issue for 
people’s health.

In this paper, we first summarize and analyse the food safety 
data and the intelligent methods used in the past.

According to the characteristics of the data and the 
shortcomings of the existing methods, we propose a risk 
value calculation rule combining a priori risk probability and 
fuzzy hierarchy and apply the LightGBM model combined 
with expert empirical intervention strategies for risk value 
correction and prediction. However, there are still many 
shortcomings in the method. In terms of data application, it 
is crucial to take into account the time series to obtain a more 

refined time-series correlation of risk patterns. In terms of 
model application, it is also important to address the issue 
of “data silos” in food safety by integrating data from various 
sources and coordinating training to obtain a more general 
model that meets actual needs.
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