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1 Introduction
The cortex of Eucommia ulmoides Oliver (EU) is a type of 

traditional Chinese medicine and its application in China dates 
back to about 2,000 years ago. EU leaves were discovered to have 
similar chemical compositions and medicinal effects to the bark 
in recent years. In the past 30 years, EU leaves have become a 
popular functional healthy food in China and Japan as they were 
found to be abounding with bioactive compounds (polyphenolic 
acids, flavonoids, and iridoids) and nutrients (amino acids, 
vitamins, and minerals) (Wang et al., 2019). Besides, they showed 
strong antioxidant activity both in vivo and in vitro. The leaves 
extract can inhibit lipid peroxidation in experimental models 
(Yen & Hsieh, 1998); while, the leaves can scavenge chemical 
free radicals and reactive oxygen species, reduce cholesterol and 
“fatty liver”, and restrict oxidative damage in deoxyribose and 
DNA (Hussain et al., 2016). EU leaves also displayed stronger 
antioxidant activities in vitro (Yen & Hsieh, 1998; Zhang et al., 
2007). It was reported that the leaves can reduce blood pressure, 
suppress mutagenicity and chromosome aberration (Hussain et al., 
2016). The benefits to health mentioned above explain the 
increasing attention on EU leaves as an industrial material for 
preparing medicine and functional foods.

In harvest seasons, tons of EU leaves are sent to the factory to 
be dried and stored. During drying, some active ingredients are 
oxidized and decomposed, and the content decreases, reducing 
the quality of plant tissues (Rocha et al., 2011; Khan et al., 2022; 
Thamkaew et al., 2021). As for tea, the most studied leaf processing 
products, short-term heating techniques named Sha-qing in 
Chinese is common for tea processing, which maintains its 
color, aroma, and taste. Other process before drying like steam 
is adopted to make dried green vegetable products. Therefore, 
the application of similar techniques to EU leaves could retain 
active ingredients. Instead, the postharvest process of EU leaves, 
especially the pre-process before drying, is rarely studied. 
Steaming and frying, are the traditional ways in China to process 
green vegetable or tea products. Air heating with electric ovens 
and microwaves has also been used to process plants in recent 
years (Rocha  et  al., 2011; Thamkaew  et  al., 2021; Qin  et  al., 
2022). The microwave process is considered a better method 
as it can avoid browning, reduce drying duration, and control 
undesirable biotransformation in foods (Rodríguez-Lora et al., 
2022; Vadivambal & Jayas, 2007; Aydar, 2021).
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Therefore, the methods of microwave, steam, air heating, 
and frying were adopted for the EU leaves process respectively 
in this paper to clarify their effects on EU leaves antioxidant 
activity and main active compounds. The active compounds 
contents, antioxidant activity, and contents of TPC and TFC of 
the samples were also elaborated.

2 Materials and methods
2.1 Materials and reagents

The EU leaves employed in the study were collected from 
branches in the middle part of EU trees (30a) in a garden of 
Northwest A&F University, Yangling, China in July 2021, and 
stored in a refrigerator until processed within 24 hours.

Rutin trihydrate, quercetin, chlorogenic acid, 1,1-diphenyl-
2-picrylhydrazyl (DPPH), and Folin-Ciocalteu’s polyphenol 
reagent were purchased from Sigma-Aldrich Co. (Shanghai, 
China), while Geniposidic acid and aucubin from National 
Institutes for Food and Drug Quality Control (Beijing, China). 
All other chemicals were of analytical grade.

2.2 Methods

Process

Every sample weighs about 40 g, and the pre-process is as 
follows.

Natural way (control). Samples were dried in the shade at 
room temperature (15-25 oC) until the water content was lower 
than 15 wt%.

Microwave. Leaves with a thickness of ca 1 ± 0.2 cm were 
tiled on the glass tray in a microwave oven (G8023YSL-V1, 
2450 MHz, Foshan Galanz Electric Company), and treated with 
different power (160W-800W) for different periods.

Steam. After water boiling in a steamer for 5 min, samples 
with a thickness of ca 1 ± 0.2 cm were tiled on a grate in the 
steamer for different time periods.

Air heating. Leaves with a thickness of ca 1 ± 0.2 cm were 
tiled on a tray in an oven with ventilation (DHG-9240A, 2050W, 
Shanghai Jingmi instrument company) at different temperatures 
for different time periods.

Frying. Leaves with a thickness of ca 1 ± 0.2 cm were tiled 
in a round frying pan on a cooker (SK2103, Midea electric 
company) and stir-fried at different temperatures for different 
time periods.

Then, all samples were air-dried in the shade at room 
temperature (15-25 oC) until the water content was lower than 
15 wt%, and powdered and stored at -18 oC before extraction. 
Each process was conducted three times.

Determination of contents of active compounds

Extract preparation

Each sample of the air-dried and grounded EU leaves (10 g) 
was extracted twice with 60% (v/v) ethanol solution (150 mL) at 

60 oC for 60 min. The two extracts were combined, filtered, and 
evaporated to dryness under vacuum at 50 oC to obtain brown 
residue. The sealed extracts were stored at -18 oC before analysis.

Total Flavonoids (TFC)

TFC was determined using a modified colorimetric method 
(Zhishen et al., 1999). TFC was calculated with a rutin standard 
curve, and expressed as rutin equivalents in milligrams per gram 
of dry plant sample.

Total Polyphenolics (TPC)

TPC was estimated according to a protocol with a minor 
modification (Singleton  et  al., 1999). The mixture of sample 
solution (one mL), distilled water (5 mL), and 1 mol/L Folin-
Ciocalteu’s polyphenol reagent (0.5 mL), was allowed to react 
for 5 min, and then added with 5 g/100 mL Na2CO3 (1 mL). 
Thereafter, it was thoroughly mixed and placed in the dark for 
1 hour, and the absorbance was measured at 725 nm with a 
spectrophotometer. A gallic acid standard curve was obtained 
to calculate TPC, which was expressed as gallic acid equivalents 
(GAE) in milligrams per gram of dry plant material.

Chlorogenic acid and geniposidic acid

HPLC was performed to determine the contents of chlorogenic 
acid and geniposidic acid in the samples (Dong et al., 2011). 
A Shimadzu HPLC system (LC-10AT) equipped with a UV 
detector (SPD-10AVP), and a Shim-pack VP-ODS column 
(150 mm × 4.6 mm, 5 µm) were used. The mobile phase was 
ethanol/water/acetic acid (24/75/1, v/v), with a flow rate of 
1 mL/min, injection volume of 10 µL, and detection wavelength 
of 240 nm. The contents were calculated based on the peak areas 
in the chromatogram.

Rutin and quercetin

HPLC was employed again to measure the contents of rutin 
and quercetin in the leaves. The mobile phase was methanol/
water/phosphoric acid (50/49.5/0.5, v/v), with a flow rate of 
1.0 mL/min, injection volume of 20 µL, and detection wavelength 
of 270 nm.

Aucubin

An improved method was adopted by using 
dimethylaminobenzaldehyde as a colorimetric reagent to 
determine the content of aucubin (Dong et al., 2011).

Antioxidant activity assay

Antioxidant activity of the processed leaves was investigated 
by IC50 of DPPH radical scavenging activity, and the effect of 
scavenging DPPH radical was measured according to a previous 
method (Zhang et al., 2013). The sample solution in ethanol 
(2 mL) was added to 500 μmol/L DPPH free radical solution 
(1 mL), shaken, and placed in the dark at room temperature for 
20 min. The absorbance of the mixture was measured at 517 nm. 
Solution (1 mL) of 500 μmol/L DPPH free radical mixed with 
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alcohol (2 mL) was used as the control. The radical scavenging 
activity of samples was calculated according to Equation 1.

( )   /
  %   100   100

  
absorbance of sample

Inhibition effect
absorbance of control

= − 

×

 



	 (1)

Statistical analysis

All results were obtained from three independent experiments 
and expressed as mean ± SD. Differences between treatments 
(p < 0.05) were determined by Duncan’s multiple range test. 
Data analysis was performed using SAS statistical software (SAS 
Institute Inc., Cary NC).

3 Results and discussion
3.1 Effects of different processes on TFC

Flavonoids, which can be found in many plants, are generally 
antioxidants and act as free radical scavengers, as they are potential 
reducing agents and prevent the occurrence of oxidative reactions 
inside the body (Dias et al., 2021). Flavonoids, as the main active 
components in EU leaves, are in the range of 10.0 – 30.0 mg/g in 
content. Besides, the content is much higher in leaves collected 
in May than in those harvested in other months (Zhang et al., 
2013). Figure 1 illustrates the TFC of EU leaves processed with 
microwave, steam, air heating, and frying, which, as mentioned, 
is expressed as rutin equivalents in milligrams per gram of dry 
leaf sample.

Figure  1a confirms the significant role of microwave’s 
output power on TFC in samples. In other words, higher output 
power is accompanied by higher TFC with the process time 
period unchanged, and leaves processed with 800 W for 2.5 min 
exhibited the highest TFC, 26.2 mg/g, which shares the results 
of the study on Eucommia male flower (Dong et al., 2011). 
Such phenomenon can be attributed to the requirement for 
high output power by enzyme deactivation, such as polyphenol 
oxidase. Obviously, output power greater than 480 W was in 
a superior position to receive high TFC because of the higher 
TFC of leaves processed with such power than those handled 
with lower power.

In addition, the processed time also mattered. The samples 
treated for 1 min (160 W - 800 W) exhibited the lowest contents, 
which proved the lack of time for microwave action. The condition 
of lower output power (160 W and 320W) and time period 
(2.5 min) better protected flavonoids than 1 min and 5 min. 
The lower TFC of leaves treated for 5 min (480 W – 800 W) 
than samples processed for 2.5 min indicates that the time is 
too long to affect active compounds, which may come down to 
the strong thermal effect of microwave, and the great impact 
of high temperature on active ingredients (Zhang et al., 2006). 
Within the time duration designed in the experiment, the highest 
TFC was found in leaves treated with output power of 800 W 
for 2.5 min, which advocates TFC preservation in microwave 
with high output power and medium time.

Figure 1. TFC of the processed EU leaves.
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Steam is one of the traditional methods used for food 
production (Pongmalai & Devahastin, 2020; Sun et al., 2020). 
Figure 1b shows the higher TFC (25.6 mg/g) of leaves treated 
for 20 min than those treated for a longer or shorter time. 
The similar TFC in some samples processed in this way with those 
treated with modern techniques, such as the microwave, merits 
mentioning. Despite its longer time for mass and heat transfer 
in the leaves than microwave, the steam effectively avoids the 
higher temperature of samples, and protects the heat-sensitive 
components, which confirms the high TFC over a long period 
of time (10-20 min) of samples treated with steam. The steam 
temperature that is not high can exert certain oxygen isolation 
effect, which may explain the favorable performance of steam 
(Wu et al., 2022).

Air heating is commonly used for process of vegetables and 
plant medicines (Thamkaew et al., 2021). Figure 1c reveals the 
influence of temperature and time on flavonoid contents. To be 
specific, leaves heated at a lower temperature (80 oC) exhibited 
lower TFC regardless of the heated time, while longer process 
duration at higher temperatures led to higher TFC. Among all 
experiments, treatments at 100 oC for 30 and 60 min, and at 
120 oC for 15 to 60 min resulted in favorable TFC above 20 mg/g, 
which still eclipsed compared with that of samples processed 
with microwave and steam.

Frying treatment is popular for the process of green tea. 
Figure 1d demonstrates the obvious effect of temperature and 
treatment time on TFC. The temperature and flavonoids content 
was in direct proportion for samples fried for 3 min or 4 min, the 
temperature of 100 oC was a better choice for samples fried for 
5 min, and no significant difference was observed regardless of 
temperature among samples fried for 6 min. Samples treated for 
5 min showed a higher flavonoids content at lower temperatures 
of 80 and 100 oC, while leaves heated at high temperature (e.g. 
130 oC), and short duration (e.g. 3 min or 4 min) presented high 
TFC (24.4 and 24.7 mg/g). Manual frying, which is integral to 
green tea production and seems like a Chinese cooking process, 
serves as a competitive candidate for flavonoids preservation.

3.2 Effects of different treatments on TPC

Polyphenols, another kind of main bioactive compounds 
in EU leaves, are about 70 -110 mg/g in content, a value much 
higher than that of the flavonoids. Samples harvested in summer 
contained more phenolic compounds than those collected in 
other seasons (Zhang et al., 2013). Figure 2 validates the role of 
the four pretreatments on the contents of phenolic compounds. 
Besides, TPC of samples varied in the range of 46.39- 102.93 mg/g.

Figure 2a illustrates the larger impact of output power of 
microwave than treatment time. Samples treated with higher 

Figure 2. TPC of the processed EU leaves.
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output power (640 W, 800 W) had more phenolic compounds 
than those treated with lower output power (160 W, 320 W, 
480 W) regardless of treatment time. As for the processing 
time, 2.5 min was suitable to protect polyphenols under higher 
output power. Besides, leaves processed with 640 W for 2.5 min 
and 5 min, and 800 W for 2.5 min showed TPC over 94 mg/g.

Figure 2b supports the steam’s ability to preserve polyphenols 
as a conventional method. At the experimental conditions, 
leaves exposed to steam for a short time of 3 min or 10 min 
contained much more phenolic compounds (> 98mg/g) than 
samples treated for a longer time (20 - 40 min), and even more 
than samples treated with microwave.

Figure 2c verifies the obvious effect of temperature and time 
on the TPC of air heating leaves. The low temperature of 80 oC 
was not suitable to protect polyphenols due to the samples’ low 
polyphenols contents (46 - 60 mg/g). For higher temperature 
(e.g. 100 oC and 120 oC), longer times of 30 min and 60 min 
were better choices. However, all samples heated in the oven 
contained less polyphenol than those processed by microwave 
and steam at proper working conditions.

Figure 2d reveals the TPC ranging from 78 to 94 mg/g in 
frying processed leaves, which are affected by frying temperature 
and time. No significant change in samples’ TPC was observed 
at the temperature of 80 oC and 100 oC regardless of processed 

time, and only the treatment at 130 oC for 5 min resulted in a 
higher TPC, which was even close to the best samples processed 
by microwave and steam.

3.3 Effects of different treatments on the leaves’ antioxidant 
activity

EU leaves showed a strong antioxidant activity in vivo and 
in vitro, and the association between antioxidant activity and 
flavonoides and polyphenols content was proposed (Wang et al., 
2019, 2020). Figure 3a reveals the inverse proportion between 
output power and IC50 of DPPH, which suggests the growing 
antioxidant activity with higher microwave power. Besides, 
the strongest activity (IC50 = 127 μg/mL) was observed in the 
sample with the most flavonoides and polyphenols and treated 
at 800 W for 2.5 min.

Figure  3b reveals the advantage of steam in preserving 
antioxidant activity. The IC50 of samples steamed for 10 min 
was only 119 µg/mL, even lower than that of the best sample 
in microwave group. Besides, the polyphenols of samples were 
102 mg/g, excelling all other samples, which strengthened the 
competitiveness of the traditional method.

Figure 3c displays the results of air heating. Samples heated 
at higher temperature (120 oC) and for longer time (30 min 
and 60 min) presented antioxidant activity of 166 µg/mL and 

Figure 3. IC50 of DPPH free radicles of the process EU leaves.
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acid content. Therefore, the development of EU leaves for health 
food or medicines requires proper pre-process before drying, 
which enhances leaves quality.

4 Conclusions
Fresh leaves are commonly dried for storage before extraction. 

The comparison between four pre-processing methods of 
microwave, steam, frying, and air heating with leaves directly 
dried without processing reveals the failure of air heating in the 
ventilation oven to better preserve active ingredients, and the 
ability of the other three to better preserve active components 
and antioxidant activities. The content of active components in 
leaves is affected by microwave power, time, and temperature. 
Samples heated at 800W for 2.5 min by microwave performed 
the highest TFC (26.2 mg/g), and exhibited higher antioxidant 
activity, TPC, chlorogenic acid content, rutin content, and 
geniposide acid content than those of untreated samples. Samples 
steamed for 10 minutes exhibited a chlorogenic acid content of 
28.4 mg/g, TPC of 102.93 mg/g, and the IC50 for DPPH radical 
of 119 μg/mL. Besides, leaves fried experienced an increase in 
chlorogenic acid content, TFC, TPC, and DPPH scavenging 
ability. Given their favorable performance in preserving active 
ingredients and no need for advanced equipment, the methods 
of frying and steam merit further study.
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