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1 Introduction
Acute myocardial infarction (AMI) is an ischemic heart 

disease that is caused by acute and persistent ischemia/hypoxia 
of the coronary arteries. When myocardial infarction occurred, 
the cardiomyocytes caused irreversible damage and necrosis due 
to hypoxia and decreased supply of ATP (Boersma et al., 2003; 
Reed et al., 2017). The necrotic cells activate d the autoimmune 
system and released a severe inflammatory response after releasing 
their contents. On the one hand, the release of inflammatory 
mediators initiated the repair of damaged tissues by the body 
(Michaels et al, 2000; Maier et al., 2005). On the other hand, 
inflammatory cytokines could induce cardiomyocyte apoptosis, 
and cardiomyocyte apoptosis further promoted the increase of 
inflammatory cytokines, which was one of the main causes 
of AMI progression (Pop et al., 2014; Westman et al., 2016). 
Therefore, anti-inflammatory treatment was an important part 
of the treatment of patients with AMI (Ong et al., 2018).

microRNA is a small non-coding RNA that plays an important 
role in regulating the transcription of genes. Previous studies had 
found that miRNAs participated in cardiomy--ocyte development, 
proliferation, apoptosis and other processes (Bang et al., 2014; 
Lu et al., 2010), and could be used as a new biomarker, playing an 
important role in the early diagnosis, prognosis (Wang et al., 2010; 
Yang  et  al.,  2017), and even treatment of acute myocardial 
infarction. More and more research have showed that miRNAs 
were involved in the regulation of inflammatory response in AMI 
patients (Hristov & Weber, 2015; Yang et al., 2015a). In animal 

experiments, miR-223-3p had been found as a novel MicroRNA 
Regulator of expression of voltage-gated K+ channel Kv4.2 in 
acute myocardial infarction (Liu et al., 2016). And lots of previous 
researches had shown that miR-223-3p could inhibit inflammation 
in patients with various diseases by targeting inhibition of 
NLRP3 expression, such as acute lung injury (Feng et al., 2017), 
intestinal inflammation (Neudecker  et  al.,  2017) and others 
(Haneklaus et al., 2012; Bauernfeind et al., 2012).

However, the regulatory mechanism of miR-223-3p on 
circulating inflammation in patients with AMI is unknown. 
In this study, we detected the expression of miR-223-3p by 
Real-time quantitative PCR, and found that miR-223-3p was 
not only up-regulated in the circulating of AMI patients, but 
also was associated with myocardial injury and inflammation 
in AMI patients. In vitro experiments shown that miR-223-3p 
suppressed inflammation to protect cardiomyocytes by targeting 
NLRP3 in peripheral blood mononuclear cells. All in all, this 
paper provide a new idea for AMI anti-inflammatory treatment.

2 Materials and methods

2.1 Patients and blood sample

53 cases AMI people which were diagnosed according to WHO 
standards for AMI (Mendis et al., 2011) and 53 cases UA patients 
which were diagnosed according to ACC/AHA 2007 guidelines 
(Anderson et al., 2007) were randomly included in this study, 
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and their blood samples were collected within 12 hours after 
the onset of chest pain. At the same time, there were 53 healthy 
people who were accepted a medical examination. In addition, 
10 cases healthy volunteers donated their blood for this study.

The present study was performed with the approval of the 
Ethics Committee of the Changzhou No.2 People’ s Hospital, 
Affiliated Nanjing Medical University. All aspects of the study 
complied with the Declaration of Helsink. (Cook et al., 2003) 
In addition, all participants signed the informed consent.

2.2 Serological clinical testing

Serum was separated from blood samples after entrifuging 
(1000 × g) for ten minutes (5810R, Eppendorf AG, Germany). 
Automatic biochemical analyzer (AU680, Beckman Coulter, 
Inc., Brea, CA, USA) was used to detect the serum content of 
creatine kinase MB (CK-MB), cardiac troponin I (cTnI), aspartate 
aminotransferase (AST), lactate dehydrogenase (LDH), and 
commercial elisa kit (Shanghai Kang Lang biology, China). was 
used to detect the serum content of TNF-α, IL-6, IL-1β and IL-8.

2.3 Real-time quantitative PCR

Real-time quantitative PCR (RT-qPCR) was used to detect 
the expression of miRNA and mRNA. Total RNA was isolated by 
QIAzol lysis reagent (QIGEN, Germany) in the serum and isolated 
by trizol (taraka, Japan) in cells. And then One Step PrimeScript 
miRNA cDNA Synthesis Kit (Takara, Japan) was used to synthesize 
cDNA. PCR parameters set: 37 °C/60 minutes, 85 °C/5 seconds.

20 ul RT-qPCR system was prepared with SYBR Premix 
Ex TaqTM II (TakaRa, Japan), and ABI 7500 Fluorescence 
Quantitative PCR Instrument (Applied Biosystems, USA) was 
used to expand. U6 was chosen as internal reference for miRNA, 
and GAPDH for mRNA. RT-qPCR parameters set: 95°C/30s, 
[90°C/5s, 65°C/30s] -40 cycles. RT-qPCR primers, miR-223-3p-F: 
5’-ACACTCCAGCTGGGTGTCAGTTTGTCAAAT-3’;.
miR-223-3p-R:5’-TGGTGTCGTGGAGTCG-3’; NLRP3-F: 
5’-GATCTTCGCTGCGATCAACAG-3’; NLRP3-R: 
5’-CGTGCATTATCTGAACCCCAC-3’.

2.4 Cell and cell transfection

THP-1 cells (TIB-202, ATCC, USA) was cultured with 
RPMI-1640  medium (R8758, sigma-Aldrich, USA) which 
was plused 10% fetal bovine serum (10099-141, Gbico, USA). 
H9C2 cells (CRL-1446, ATCC, USA) was cultured with DMEM 
medium (12491-15, ThermoFisher, USA). 37°C and 5% CO2 
was the culture environment for all cells.

miR-223-3p-NC (5’-AGAUCCAGCCAGGCGAUAUAUGU-3’), 
miR-223-3p-mimic (5’-UGUCAGUUUGUCAAAUACCCCA-3’) 
and miR-223-3p-inhabitor (5’-ACAGUCAAACAG

UUUAUGGGGU-3’) were designed and synthesized by 
Shenggong Bioengineering Co., Ltd. (ShangHai, China), and 
were directly transferred into cells by Lipofectamine™ 2000 
transfection reagent (11668019, Invitrogen, CA, USA). For wild 
type or mutation mRNA 3’-UTR of SNLRP3, they were first 

connected to pisCHECK2 (Promega, WI, USA) and then being 
transfected into cells as miRNA.

2.5 Western blot

RIPA lysate buffer (P0013C, Beyotime, Shanghai, China) was 
used to extract total cellular protein, and BCA kit (P0009, Beyotime, 
Shanghai, China) was used to determine protein concentration. 
Then cell lysates were separated by SDS-page and transferred to PVDF 
membrane. Primary antibody was selected as follows: anti-NLRP3 
(ab214185,1:1000, ABCAM, Cambs, UK), or anti-GAPDH 
(ab9485,1:3000, ABCAM, Cambs, UK). And second antibody was 
selected as follows: goat anti-rabbit (ab150077, 1:1000, ABCAM, 
Cambs, UK). Primary antibody was incubated overnight at 4 °C 
and second antibody was incubated for 1 hour at room temperature.

2.6 Cell apoptosis assay

24 hours after inducing by different dose of IL-1β (CYT-708, 
AmyJet Scientific, WuHan, China), H9C2 cells were collected, and 
the Annexin V FITC/PI kit (Invitrogen, USA) was used for flow 
cytometry to detect apoptosis. Beckman CytoFLEX Flow cytometry 
(BECKMAN, USA) was used to analysis the apoptosis of cells.

2.7 Statistical analysis

Data was presented in (mean±standard deviation) and analyzed 
by SPSS 25.0. Student’s t-test or chi-square test was used to compare 
differences between two groups. One-way ANOVA with Duncan’s 
post-hoc test was used for comparing multiple groups. The correlation 
between serum level of miR-223-3p and inflammatory factors / 
myocardial enzyme in patients with AMI was analyzed by Pearson’s 
correlation coefficient. Logistic regression models were constructed 
to determine the odds ratio (OR) and 95% confidence interval (CI) 
for putative risk factors associated with AMI. P < 0.05 was considered 
to indicate a statistically significant difference.

3 Results

3.1 miR-223-3p was up-regulated in the circulating of 
AMI patients

The expression of miR-223-3p in the serum or PBMC of 
healthy people (n = 53), UA patients (n=53) and AMI patients 
(n = 53) were measured by RT-qPCR, and results showed that 
the serum or PBMC level of miR-223-3p in the AMI patients 
was significantly higher than that in UA group (P < 0.001), and 
that in control group was the lowest of three group (Figure 1).

3.2 miR-223-3p was associated with the occurrence of AMI

Univariate analysis showed that (Table 1) there were no 
significant differences in gender, age, smoking, hypertension, 
TC, TG, HDL-C and LDL-C between three group (P > 0.05). 
However, the serum CK-MB, cTnI, AST, LDH, TNF-α, IL-6, 
IL-1β and IL-8 in AMI patients was significantly higher than 
that in health people and UA patients (P < 0.001).

In logistic regression, we made AMI (1 = yes, 0 = no) 
as the dependent variable, age, male (0 = female, 1 = male), 
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hypertension (0 = no, 1 = yes), smoking (0 = no, 1 = Yes), 
hyperlipidemia (0 = none, 1 = yes), TC, TG, LDL-C, HDL-C, 
CK-MB, cTnI, AST, LDH, TNF-α, IL-6, IL-1β and IL-8 as 
independent variables. And we found that (Table 2) serum or 
PBMC miR-223-3p was a protective factor in the occurrence 
of AMI.

3.3 miR-223-3p was associated with myocardial injury and 
inflammation in AMI

To analyze the correlation between circulating miR-223-3p 
and myocardial injury-related enzymes in 53 cases AMI 
patients, and found that (Figure 2) the serum miR-223-3p was 
negatively correlated with serum CK-MB (r = -0.567, P < 0.001), 

Figure 1. miR-223-3p expression in the circulating of AMI, UA and Health group. (A-B) miR-223-3p was high expression in the serum (A) or 
PBMC (B) of patients with AMI (n = 53) which was compared with health people (n = 53) or UA patients (n = 53).

Table 1. Comparison of clinical data of the three groups of study subjects.

Variables
No-AMI

AMI Probability value
Health UA 

Number (cases) 53 53 53 not applicable 

Age (year) 60.2 ± 7.9 59.6 ± 9.0 60.8 ± 8.2 0.674

male (n/%) 32/60.4 36/67.9 35/66.0 0.623

Smoking (n/%) 27/50.9 26/49.1 29/54.7 0.398

Hypertension (n/%) 20/37.7 22/41.5 21/39.6 0.428

TC (mmol/L) 3.98 ± 0.72 4.08 ± 0.93 4.19 ± 0.92 0.366

TG (mmol/L) 1.45 ± 0.83 1.51 ± 0.89 1.53 ± 1.06 0.471

HDL-C (mmol/L) 1.22 ± 0.84 1.19 ± 0.92 1.12 ± 0.89 0.209

LDL-C (mmol/L) 2.35 ± 0.92 2.42 ± 0.62 2.52 ± 0.67 0.513

CK-MB (U/L) 15.3 ± 4.2 15.5 ± 6.8 136.0 ± 76.9 <0.001

cTnI (ug/L) 0.12 ± 0.06 0.34 ± 0.11 54.9 ± 28.6 <0.001

AST (U/L) 30.9 ± 3.9 33.6 ± 8.3 69.8 ± 14.7 <0.001

LDH (U/L) 156.8 ± 22.4 165.1 ± 36.4 687.4 ± 242.2 <0.001

TNF-α (ng/L) 75.9 ± 26.4 142.3 ± 80.2 275.2 ± 109.3 <0.001

IL-6 (ng/L) 12.1 ± 6.8 35.2 ± 19.3 73.3 ± 30.8 <0.001

IL-1β (ng/L) 21.8 ± 10.5 46.9 ± 25.1 112.8 ± 32.8 <0.001

IL-8 (ng/L) 20.4 ± 7.3 45.3 ± 19.2 98.1 ± 30.9 <0.001

TC = total cholesterol, TG = triglycerides, HDL-C = high-density cholesterol, LDL-C = low density cholesterol, AMI = acute myocardial infarction, UA = unstable angina, n = number.
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cTnI (r = -0.589, P < 0.001), AST (r= -0.316, P = 0.0213) and 
LDH (r = -0.397, P = 0.0033), and the PBMC miR-223-3p was 
negatively correlated with serum CK-MB (r = -0.544, P < 0.001), 
cTnI (r = -0.489, P = 0.0002), AST (r = -0.281, P = 0.0413) and 
LDH (r = -0.381, P = 0.0049).

Furthermore, we also analyzed the correlation between 
circulating miR-223-3p and serum inflammatory factors in 53 cases 
AMI patients, and found that (Figure 3) the serum miR-223-3p 
was negatively correlated with serum TNF-α (r = -470, P = 0.0004), 
IL-6 (r = -400, P = 0.003), IL-1β (r = -0.553, P < 0.001) and 
IL-8 (r = -0.268, P = 0.0493), and the serum miR-223-3p was 
negatively correlated with serum TNF-α (r = -0.419, P = 0,0018), 
IL-6 (r = -0.448, P = 0.0008), IL-1β (r = -0.522, P < 0.001) and 
IL-8 (r = -371, P = 0.0063).

3.4 miR-223-3p regulated inflammation by targeting NLRP3

According to the bioinformatics website (Agarwal et al., 2015), 
we found that there was a complementary sequence to 
miR-223-3p at the 3’-UTR end of NLRP3 mRNA (Figure 4A). 
We validated the luciferase gene reporter system, and found that 
transfection of miR-223-3p-mimic significantly increased WT 
type 3’-UTR luciferase activity (P < 0.001) in THP-1 cells, and 
miR-223-3p-inhabitor significantly decreased it, but not work 
in MUT (Figure 4B).

In addition, miR-223-3p was negatively correlated with 
NLRP3 mRNA in PBMC of 53 cases AMI patients (r=-0.675, 
P < 0.001) (Figure 4C). In PBMC of 10 cases healthy people, 
transferring miR-223-3p-mimic could inhibit the expression of 
NLRP3, and exactly the opposite with miR-223-3p-inhabitor 

(Figure 4F and Figure 4G). More important was the change of 
TNF-α in culture for PBMC, as shown in Figure 4E, miR-223-3p 
could decrease the content of TNF-α.

3.5 Cardiomyocytes apoptosis by IL-1β in a dose-dependent

We examined the effects of different concentrations of IL-1β 
on apoptosis of H2C9 cells, and found that the apoptotic rate 
of H2C9 cells increased with increasing TNF-α concentration 
(Figure 5).

4 Discussion
In this paper, we found that the circulating miR-223-3p in 

AMI patients was significantly higher than that in UA patients 
and healthy people. Moreover, univariate and logistic regression 
analysis showed the circulating miR-223-3p was a protective 
factor in the occurrence of AMI. Although there were no clinical 
data in published studies indicating that miR-223-3p was highly 
expressed in peripheral blood of patients with AMI, animal studies 
had shown that (Liu et al, 2016) upregulation of miR-223-3p 
in AMI repressed the expression of KCND2/Kv4.2 resulting in 
reduction of Ito density that could cause APD prolongation and 
promote arrhythmias in AMI.

In addition, we also found that circulating miR-223-3p in 
AMI patients was negatively correlated with serum myocardial 
enzyme, such as CK-MB, cTnI, AST and LDH, and was negatively 
correlated with serum inflammatory cytokines, such as TNF-α, 
IL-6, IL-1β and IL-8. Myocardial local and systemic inflammatory 
responses played an important role in the development of 
ventricular remodeling and heart failure after acute myocardial 

Table 2. Results of the logistic regression analysis.

Variables B S.E. Wald Sig. Exp (B) 95% CI

Age (year) 0.151 0.052 2.675 0.112 0.942 0.909-1.010

male (n/%) -0.895 0.610 1.752 0.171 2.402 0.615-9.063

Smoking (n/%) 3.102 0.416 6.034 0.006 1.112 0.356-3.374

Hypertension (n/%) -0.166 0.341 0.143 0.235 0.706 0.236-2.215

TC (mmol/L) 0.321 0.621 0.308 0.414 0.204 0.211-2.371

TG (mmol/L) -1.015 0.521 3.514 0.061 0.338 0.109-1.051

HDL-C (mmol/L) -0.107 0.148 0.508 0.439 1.037 0.945-1.139

LDL-C (mmol/L) 0.053 0.203 0.002 0.968 0.997 0.847-1.172

CK-MB (U/L) 0.162 0.784 0.139 0.130 0.754 0.187-3.076

CTnI (ug/L) 0.245 1.063 0.458 0.025 2.087 0.265-16.426

AST (U/L) 0.631 1.820 0.047 0.102 2.291 0.009-564.45

LDH (U/L) 1.242 2.719 0.812 0.068 4.621 0.162-131.75

TNF-α (ng/L) 8.523 3.020 4.522 0.043 0.350 0.000-0.508

IL-6 (ng/L) 5.614 2.250 3.017 0.083 3.349 0.488-20.646

IL-1β (ng/L) 0.251 0.038 5.223 0.032 1.210 1.144-1.278

IL-8 (ng/L) 2.312 1.258 3.125 0.059 1.258 0.982-1.324

PBMC miR-223-3p -2.124 0.792 7.301 0.005 8.210 1.784-38.214

Serum miR-223-3p -1.592 0.625 5.012 0.008 9.236 2.354-26.371

B = regression coefficient, S.E.= standard error, CI = confidence interval, n = number.
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infarction. In AMI patients, myocardial injury came from two 
aspects. In addition to myocardial ischemic injury after AMI, 
immune-mediated inflammatory response also played a role 
in aggravating myocardial damage and expanding myocardial 
infarction. Necrotic myocardial tissue after AMI caused complement 
activation, cytokine release, inflammation, and chemotaxis and 

infiltration of immune cells, as well as myocardial damage through 
pathological autoimmune responses (Frangogiannis et al., 2002). 
Cytokines, such as TNF-α, IL-6, IL-1β and IL-8, were polypeptides 
secreted by various cells such as lymphocytes, monocytes, 
macrophages, and vascular endothelial cells. They were released 
into the blood during the inflammatory reaction, and their 

Figure 2. Circulating miR-223-3p was negatively correlated with serum myocardial enzyme in AMI. A-D, Serum miR-223-3p expression was 
negatively correlated with serum CK-MB (A), cTnI (B), AST (C) and LDH (D) levels in AMI patients; E-H, The expression of miR-223-3p in 
PBMC was negatively correlated with serum CK-MB (E), cTnI (F), AST (G) and LDH (H) levels in AMI patients.

Figure 3. Circulating miR-223-3p was negatively correlated with serum inflammatory factor in AMI. A-D, Serum miR-223-3p expression was 
negatively correlated with serum TNF-α (A), IL-6 (B), IL-1β (C) and IL-8 (D) levels in AMI patients; E-H, The expression of miR-223-3p in 
PBMC was negatively correlated with serum TNF-α (E), IL-1β (F), IL-6 (G) and IL-8 (H) levels in AMI patients.
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Figure 4. miR-223-3p regulated inflammation in PBMC by targeting NLRP3. (A) Sequence in which NLRP3 and miR-223 are combined; (B) 
miR-223-3p-NC/miR-223-3p-mimic/miR-223-3p-inhabitor were transected into THP-1 cells, and luciferase activity was detected (Perform 3 
independent replicate experiments); (C) miR-223-3p was negatively correlated with NLRP3 mRNA in PBMC of AMI patients (n = 53); (D) 
RT-qPCR was used to detect the expression of miR-223-3p in PBMC of healthy people (n = 10); (E) The content of IL-1β in culture medium for 
PBMC of 10 cases healthy people; (F) RT-qPCR was used to detect the expression of NLRP3 mRNA in PBMC of healthy people (n = 10) (Perform 
3 independent replicate experiments); (G) Western blot was used to detect the expression of NLRP3 mRNA in PBMC of healthy people (n = 10) 
(Perform 3 independent replicate experiments). Compared with miR-223-3p-NC, *** was P < 0.001.

Figure 5. IL-1β induced the apoptosis of cardiomyocytes in a dose-dependent. (A-E) Flow cytometry was used to detect the apoptosis of H9C2 
cells with 0 (A), 2 (B), 4 (C), 8 (D) and 16 (E) ug/L IL-1β; (F) Statistical analysis of apoptosis in H9C2 cells (3 independent repeats per experiment).
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factor / myocardial enzyme. More importantly was miR-223-3p 
suppressed circulating inflammation to protect cardiomyocytes 
by targeting NLRP3 in AMI patients.
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