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1 Introduction
Pork constitutes a large part of human diets, and large 

quantities of pork are consumed globally every year (Duong et al., 
2022). Pork contains protein, fat, and vitamins (Alfaia et al., 2019; 
Duffy, et al., 2018). The protein is very perishable, eating rotten 
pork will seriously affect human health (Zhang et al., 2019). 
So the freshness of pork has become the focus of consumers’ 
attention (Liu et al., 2019). In order to maintain the freshness of 
pork to ensure human safety, many fresh-keeping methods are 
used on pork, and there are many types of pork on the market 
(Ribeiro et al., 2019; Zhu et al., 2020). Chilled pork is the most 
special and common one, which is preserved at 0-4 °C within 
24 hours after being slaughtered (Cui et al., 2021). It has been 
widely purchased by consumers because it maintains the original 
flavor of the meat without complicated treatment. But because 
of its simple preservation method, it becomes more perishable. 
Demand for safe and high-quality meat is growing, not only 
because of rising living standards but also consumer concerns 
about food safety (Leng  et  al., 2020). The detection of pork 
freshness has always been an area closely related to human life 
and health (Zhuang et al., 2022).

The testing technology of pork freshness in the laboratory 
has been developed and improved significantly over a long 
period of time (Tan  et  al., 2022). However, most of these 
methods are time-consuming and have high requirements for 

operators (Baek et al., 2021). Some polluting or even harmful 
substances will be produced during the detection process, e.g. 
bacteria (Cui et al., 2022), and they are destructive to the pork. 
However, the traditional pork freshness method carried out in 
the laboratory is only suitable for sampling detection of pork, 
not for rapid, nondestructive, and accurate detection. A variety 
of non-contact detection methods have been developed and 
used, among them hyperspectral imaging technology is a typical 
one (Kademi et al., 2019; Xu et al., 2018; Pereira et al., 2021; 
Ghasemi-Varnamkhasti et al., 2018; Zhang et al., 2022).

Hyperspectral imaging technology is a detection method 
that can obtain spectral and spatial information at the same time. 
The hyperspectral image can present the spectral information of 
objects in the form of images, and each pixel in the hyperspectral 
image has a corresponding pixel spectrum at its location 
(Huang  et  al., 2018). Hyperspectral imaging technology has 
been used in a variety of fields and can be competent for defect 
detection and internal content detection (Jiang  et  al., 2022; 
Antequera et al., 2021). Internal content detection is based on 
the response of the object in the corresponding wavebands and 
establishes the prediction model on the spectral information and 
the content index to realize the detection, which has been used 
in the prediction of the freshness of pork (Kucha et al., 2021). 
Due to the similar function with the spectrometer, the spectral 
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data extracted from the hyperspectral image can establish a 
corresponding relationship with the total volatile basic nitrogen 
(TVB-N) content and thus generate a prediction model. Compared 
with the spectrometer, this method can obtain all the spectral 
information of the object, which helps the research be more 
comprehensive and objective.

The spectral information obtained by the hyperspectral 
camera can describe the complete spectral characteristics of the 
object, it can only be used to predict the overall TVB-N value of 
pork when the mean spectrum is used for prediction. When pork 
spoilage exists only in local areas, the overall freshness prediction 
value cannot represent the true freshness of pork. In order to 
predict the distribution of TVB-N content in chilled pork, the 
TVB-N visualization technology on pork has been developed 
over the past several years, which brings hyperspectral imaging 
technology into a new field (Wang et al., 2013). At present, a large 
number of studies have proved the feasibility of visualization of 
TVB-N content in pork (Torres & Amigo, 2020). The prediction 
of TVB-N content at the pixel level with this method is displayed 
in the form of pictures, which represents the freshness of pork 
more intuitively.

Hyperspectral imaging system is precise also expensive. 
If it is used for online nondestructive testing of agricultural and 
forestry products with low added values, it will face problems 
such as high price, slow speed, and high computational cost. 
Thus, it is necessary to establish a multispectral system based 
on the selected wavebands to meet the demands. However, there 
are very few studies conducted on the visualization of TVB-N 
content in chilled pork based on characteristic wavebands.

In the existing research of pork freshness visualization, the 
original spectral images are usually processed to improve the 
visualization effect. However, it will have a certain impact on 
pork freshness prediction, even deviation. At present, no effective 
analysis of the spatial state of pork freshness visualization has 
been reported. In fact, a TVB-N content distribution map is also 
an image that requires simultaneous analysis of the accuracy 
and distribution of the predicted values. At present, mainly 
through the visualization effect of people’s sensory perception, 
quantitative analysis methods are still lacking.

The multispectral detection system for TVB-N content in 
pork has been studied. Most of the multispectral imaging systems 
are mainly established based on the selected characteristic bands. 
This method can achieve rapid detection of pork freshness at 
a relatively low cost. However, there are still few studies on the 
visualization of pork TVB-N content based on characteristic 
bands. In order to finally realize the real rapid nondestructive 
testing, the research on the visualization of pork TVB-N content 
based on the characteristic wavebands needs to be carried out. 
The research on full wavebands and characteristic wavebands 
can provide a strong theoretical basis for the visualization of 
pork TVB-N content.

In this paper, the accuracy relationship between the 
freshness prediction models based on hyperspectral and their 
visualization under the two bands of VIS-NIR and SW-NIR 
and their combined bands were studied. Through quantitatively 
evaluating the visualization results and exploring ways to 

improve the visualization effect, it can help to lay a foundation 
for the establishment of a multi-spectral system suitable for the 
freshness detection of agricultural products.

2 Materials and methods
2.1 Meat materials and sample preparation

Five pieces of fresh pork longissimus muscles were purchased 
from the local market (Nanjing, Jiangsu Province, China). Each 
piece of pork was minced into 20 meat slices with a thickness 
of about 1 cm. All samples were transported to the laboratory 
in an incubator at about 4 °C, and then each slice was packaged 
with plastic wrap and stored in a refrigerator at 4 °C. In the 
subsequent test, 2 slices were taken out daily from each piece 
of longissimus muscles for TVB-N measurement. The test was 
conducted for 10 days. Before each experiment, the pork slices 
were placed in the air for 30 minutes to eliminate the water 
adhering to the surface.

2.2 Reference measurement

TVB-N content in pork samples is employed as the indicator 
to represent the pork freshness. The images of each sample were 
corresponding to the TVB-N content values tested through the 
semi-micro Kjel-dahl method based on the Chinese National 
Standard GB 5009.228-2016 (Frank et al., 2019). The TVB-N 
content value can be calculated by the following Equation 1:
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m

− × × ×
=

×
 (1)

where TVB-N (mg/100 g) is the content of the meat sample, 
V1 (mL) is the consumption of HCl by the meat filtrate, V2 (mL) 
is the consumption of HCl by the blank water, c (mol/L) is the 
concentration of the HCl, and m(g) is the mass of the meat.

2.3 Hyperspectral image acquisition and optimal spectral 
data extraction

Hyperspectral image system

A non-destructive testing system was established for 
acquiring hyperspectral images in this study. There are two 
hyperspectral cameras, a lighting system, a dark chamber, 
an uninterruptible power supply (UPS, C3K, SANTAKUPS, 
China), and a computer in this system. The two hyperspectral 
cameras are a visible near-infrared camera (VIS-NIR) and a 
short-wave near-infrared camera (SW-NIR), with a spectral 
range of 550 to 1000 nm and 900 to 1700 nm, respectively. 
With those two cameras, hyperspectral images with a range of 
550 to 1700 nm could be obtained. The VIS-NIR camera is an 
assembled camera that comprises an acousto-optic tunable filter 
(AOTF Camera Video Adapter CVA-200, BRIMEROSE, USA), 
a visible near-infrared camera (ORCA-R2, HAMAMATSU, 
Japan), and a zoom lens (Nikon, AF.S NIKKOR 18-200 mm 
1:3.5-5.6G ED VR II, Japan). The SW-NIR camera is a kind 
of linear array hyperspectral camera (GaiaField-V10E-AZ4, 
Jiangsu Dualix Spectral Image Technology Co. Ltd, China), 
which has an internal push sweep device inside. Hence, these 
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two cameras with different acquisition modes can capture the 
image of the sample on the same platform. The lighting system 
includes 12 halogen lamps (50W, Philips GU5.3, China), which 
were supplied by a UPS, and the system was surrounded by a 
doom. In order to isolate the influence of external light, the 
system is surrounded by a dark chamber.

Acquisition of hyperspectral images and hyperspectral curves

The VIS-NIR hyperspectral camera captured images with 
672 × 512 pixels by applying variable exposure mode. The spectrum 
interval of each channel was 3 nm, and there were 141 channels 
in each image. The SW-NIR hyperspectral camera captured 
images with constant exposure mode, and the resolution of 
the images was 550 × 640 pixels. The spectrum interval of each 
channel was 1.7 nm, and there were 512 channels in each image.

To minimize the effects of environmental factors on 
hyperspectral images, dark and white reference images were 
captured before tests. Hence, there were two reference images 
corresponding with every hyperspectral image. A hyperspectral 
reflectivity image can be computed by the following Equation 2

( )rR (R ) / *Cd w dR R R= − −  (2)

Where R is the hyperspectral reflectivity images of the sample; 
rR  is the raw hyperspectral image of the sample; wR  is the white 

reference hyperspectral images of the standard reflectivity board 
(SRT-99-100, Labspere, USA); dR  is the dark reference image 
acquired by completely blocking the lens with an opaque cap; C 
is the standard data of the standard reflectivity board.

The region of interest (ROI) is commonly used for the 
establishment of prediction models. Nowadays, ROIs were the 
whole regions of the samples, rather than a local region on the 
surface of samples, which differs the hyperspectral imaging 
technology from the near-infrared spectrometer technology. 
There are numerous methods to acquire ROIs. In this study, 
a traditional method was implemented to separate the sample 
region from the background region. A threshold segmentation 
algorithm was used to acquire the basic ROIs. By modifying 
on the basic ROIs with the methods of image expansion and 
corrosion, the mask of the meat region can be obtained.

Selection of characteristic wavebands

Compared to the model established on the full waveband 
data acquired from the hyperspectral camera, a lower spectral 
dimension is a better choice (Shen et al., 2020). Genetic algorithm 
(GA) is a characteristic wavebands search method that simulates 
natural selection and genetic process in the Darwinian model 
(Wei et al., 2022). In this study, the spectral data were treated 
as chromosomes and the wavelengths were treated as genes. 
By minimizing the cost function with the genetic operations of 
selection, crossover, and mutation, the characteristic wavebands 
could be selected. Successive projection algorithm (SPA) is a 
forward selection algorithm, which projects the spectral data to 
a lower space to select the wavebands with the characteristics of 
small collinearity and low redundancy (Tang et al., 2021; Yang 
& Kan, 2020). Interval partial least square regression (iPLSR) 
is a method that based on PLSR, which devides the spectral 

data into equal width interval in the dimension of spectrum 
(Kiala et al., 2017). In this study, the spectral data with a step 
of specific length of wavebands were divided into the intervals 
for modeling. The characteristic wavebands could be selected 
by the values of RMSE. Meanwhile, synergy interval partial least 
square regression (siPLSR) was adopted to select characteristic 
wavebands, which can select two intervals from the spectral data.

2.4 Establishment of prediction models

In this study, partial least square regression (PLSR) was used 
to establish the prediction model for TVB-N content in chilled 
pork. PLSR is a model that combines principal component analysis, 
canonical correlation analysis, and multiple linear regression, 
which projects prediction variables and observation variables 
into a new space to find the relationship between the two. PLSR 
is a traditional method, which has been used widely and has a 
high performance. During the process of establishing prediction 
models, 5-fold cross-validation was adopted. The performance 
of each model was calculated by root mean square error (RMSE) 
and coefficient of determination (R2). A model with a higher 
R2, and a lower RMSE was considered as an optimal model.

2.5 Visualization method of TVB-N distribution and 
optimization

By computing the mean pixel value, the spectral data were 
obtained representing the sample, and the pixel in this same 
position of the image also represents the spectral information 
of this position. So, pixel spectral data were the same as the 
spectral data extracted from the image, which can be brought 
into the Formula 3 that represents the spectral model to obtain 
the prediction value of the pixel. The visualization of TVB-N 
will be generated by this way, which is defined as follows:

( )spec pixel-N   f specpixelTVB =  (3)

Where pixelspec  represents the spectral data of pixels in the ROI of 
hyperspectral images, specf  represents the formula of the TVB-N 
prediction models established on the spectral data and TVB-N 
values, -N pixelTVB  represents the TVB-N prediction values of the 
pixel in the ROI.

To make a further study in visualization of TVB-N distribution, 
unreasonable values ratio (URV) and inverse coefficient of 
variation (ICV) were used to represents the performance of 
visualization models.

For the reason that the TVB-N values represent the total 
volatile basic nitrogen content in the chilled pork, the TVB-N 
values should be larger than 0 mg/100 g. When the TVB-N 
prediction value is lower than 0 mg/100 g, it means that the 
prediction value is in the unreasonable range. Besides, the chilled 
porks were stored for 10 days, the TVB-N content would not to 
be too large, and the reasonable prediction values were set under 
300 mg/100 g. As a result, the TVB-N prediction values, which 
is in the range of 0-300 mg/100 g, were judged as reasonable 
prediction values. The Formula 4 of URV is defined as follows:

 100%ur

roi

n
URV

n
= ×  (4)
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Where urn  and roin  represent the Number of unreasonable pixels 
and the number of all pixels in ROIs, respectively. The closer the 
value of URV is to 0, the better the visualization result is; and 
the closer it is to 1, the worse the visualization result is.

ICV is usually used to describe the noise level of images 
taken in the field of hyperspectral and multispectral remote 
sensing imaging. In visualization, if the difference between 
adjacent pixels is large, the noise in the region will be large, 
thus losing the contour features that the original spectral image 
should have. This study introduced this index to evaluate the 
visualization effect to evaluate the volatility of the predicted 
values in the visualization results. The ICV can be defined as 
Formula 5 (Chen et al., 2018):

m

s

R
ICV

R
=  (5)

Where mR  and sR  are the mean and standard deviation of pixel 
values, respectively. The larger the value of ICV, the more 
consistent the predicted values in ROI, and the closer to 0, the 
greater the difference in the predicted values of ROI.

In this study, URV and ICV were used to evaluate the 
visualization effect. All data analysis procedures were performed 
using MATLAB software (Mathworks, Natick, Ma, USA).

3 Results and discussion
3.1 Measurements of TVB-N

10 samples were removed in this study, due to the abnormal 
chemical values of samples and the damage to some spectral 
data. A total of 90 samples were used for data analysis. The leave-
one-out method divided the data set into a training set and a 
test set at a ratio of 3:1, as shown in Table1. It showed that the 
TVB-N range of the training set completely encompassed the 
TVB-N range of the testing set, and the two sets had similar 

mean values and standard deviation values with the complete 
data set. Therefore, the method of dataset splitting in this way 
is reasonable and can be used to verify the reliability of the 
training set model.

3.2 Spectral characteristics and datasets

The spectra extracted from the image of the VIS-NIR camera 
and SW-NIR camera are shown in Figure 1. The wavebands of 
SW-NIR spectra ranging from 874-1023 nm and 1612-1731 nm 
were removed, because of the low pixel signal noise ratio. Hence, 
the SW-NIR ranged from 1245-1610 nm. The image quality of 
the VIS-NIR waveband was good, and the spectral range was 
still 550-970 nm. In the selected band range, the spectral data of 
pork had good consistency, which proved that the good quality 
of spectral data can be used for spectral analysis.

3.3 TVB-N prediction model

Prediction models on full wavebands

PLSR models were established on VIS-NIR, SW-NIR, VIS-NIR 
and SW-NIR fusion bands, respectively. The results are shown 
in Table 2. It could be found that the 3 models exhibited similar 
performance on both the training set and testing set. Compared 
to the model based on SW-NIR spectral data, the model based 

Table 1. Reference measurement of TVB-N content of 90 samples in 
data sets.

Data set Number of 
samples

Range of 
TVB-N 
content 

(mg/100 g)

Mean 
(mg/100 g)

Standard 
deviation 

(mg/100 g)

Total set 90 3.66-26.37 10.96 4.65
Training set 68 3.66-26.37 10.94 4.74

Test set 22 5.24-22.70 11.00 4.45

Figure 1. VIS-NIR and SW-NIR spectra of chilled pork. (a) VIS-NIR spectra of samples; (b) SW-NIR spectra of samples.
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on VIS-NIR had better performance, which got pRMSE  and 2
pR  

of 1.8057 mg/100 g and 0.8274, respectively. The model based 
on the spectral data of VIS-NIR and SW-NIR fusion wavebands 
demonstrated the best performance, whose pRMSE  and 2

pR  were 
1.7891 mg/100 g and 0.8305, respectively. The more spectral 
information helped the model achieve better performance.

Prediction models on characteristic wavebands

In this study, SPA, GA, iPLSR and siPLSR were used to select 
characteristic wavebands in VIS-NIR and SW-NIR wavebands, 
respectively, and TVB-N prediction models were established 
based on PLSR. The characteristic bands selected by GA and 
SPA were discretely distributed on the whole band, while iPLSR 
and siPLSR were continuously distributed on the whole band. 
In order to analyze the influence of wavelength number in the 
selected wavebands on the model, the wavelength number in 
wavebands were set from 10 to 70, and the interval was 10.

The results of GA-PLSR and SPA-PLSR are shown in the 
Figure 2, where the abscissa in each image represented the number 
of characteristic wavelengths contained in the characteristic 
wavebands, and the ordinate indicated the performance of 
the model. In the VIS-NIR wavebands, when the number of 
wavelengths was small, the model had a weaker capability for 
spectral data and TVB-N values. At this time, the performance 
of the training set was weak than that of the test set, and the 
performance of the model was unreliable. As the number of 
wavelengths increased, the performance of the model was 
gradually improved. The model with the best performance in 
this band was the one with 30 wavelengths with cRMSE  and 2

cR  
being 1.9537 mg/100 g and 0.8277, respectively, pRMSE  and 2

pR  
being 1.9914 mg/100 g and 0.7900, respectively.

In the SW-NIR spectral data, as the number of wavelengths 
increased, cRMSE   decreased and 2

cR  increased, and the relationship 
between the spectral data and TVB-N improved. pRMSE  and 

2
pR  also showed the same phenomenon, indicating that the 

prediction model was robust in the test data. When the number 
of wavelengths reached 50, the performance of the model no 
longer changed drastically. It can be speculated that when the 
wavelengths in the selected bands reached a certain number, 
the model could better predict TVB-N, and when the number 
continued to rise, it would not have more impact, the performance 
of the model did not change dramatically, and remained relatively 
stable. As a result, the best model was established on the band 
containing 50 characteristic wavelengths with the c RMSE   and 2

cR  
being 1.2765 mg/100 g and 0.9264, respectively, and pRMSE  and 

2
pR  being 1.8188 mg/100 g and 0.8248, respectively. Compared 

with the model established by SPA on the data of two bands, it 

can be found that the effect of model establishment was better 
on the SW-NIR band.

Different from SPA, GA selected characteristic wavebands 
based on both spectral data and TVB-N values. These two groups 
of models showed an increase in performance with the number 
of wavebands increasing and then decreasing. The model based 
on VIS-NIR spectral data, achieved the best performance of 
1.8770 mg/100 g and 0.9410 for cRMSE  and 2

cR , respectively, and 
1.7726 mg/100 g and 0.9184 for pRMSE  and 2

pR , respectively, and 
the number of wavelengths was 30. The model based on SW-NIR 
spectral data, achieved the best performance of 1.2919 mg/100 g 
and 0.9376 for cRMSE  and 2

cR , respectively, and 1.0073 mg/100 g 
and 0.9296 for pRMSE  and 2

pR , respectively, and the number of 
wavelengths was 30.

iPLSR and siPLSR were different from SPA-PLSR and 
GA-PLSR in the form of selected wavebands. The characteristic 
wavebands were continuous regions selected from the original 
wavebands. The results of iPLSR and siPLSR are shown in Figure 3. 
As the number of wavelengths increased, the performance of 
the model continued to improve, and then began to decline. 
The optimal model on the VIS-NIR data was established on the 
characteristic bands containing 50 wavelengths. The cRMSE  and 

2
cR  were 1.8861 mg/100 g and 0.8395, respectively, and pRMSE  and 
2
pR  were 1.7707 mg/100 g and 0.8340, respectively. The optimal 

model on the SW-NIR data was established on the characteristic 
bands containing 60 wavelengths with the cRMSE  and 2

cR  being 
1.7078 mg/100 g and 0.8684, respectively, and pRMSE  and 2

pR  
being 1.7868 mg/100 g and 0.8309, respectively.

Different from iPLSR, siPLSR get two continuous characteristic 
bands, so the number of wavelength selected by siPLSR was 
twice that of the other three methods. Due to that, the minimum 
wavelength number of characteristic bands selected by siPLSR 
is 20. In the VIS-NIR band, when the number of wavelengths 
was 40, the model performed similarly on the test set and the 
training set and was also the best model. The cRMSE  and 2

cR  are 
1.6190 mg/100 g and 0.9827, respectively, and pRMSE  and 2

pR  
are 1.5963 mg/100 g and 0.8651, respectively. In the SW-NIR 
band, the optimal model was established on the characteristic 
band containing 30 wavelengths, with the cRMSE  and 2

cR  being 
1.0979 mg/100 g and 0.9456, respectively, and pRMSE  and 2

pR  
being 1.4965 mg/100 g and 0.8814, respectively.

Selection of spectral bands for freshness prediction

Compared with the prediction model established by full-band 
data, four characteristic wavebands prediction models worked 
better, and GA-PLSR and siPLSR showed the best performance. 
It was feasible to use the characteristic wavelengths selected by 

Table 2. PLSR model results for each indicator.

Wavebands Number of 
wavelength

Range of 
wavebands (nm) cRMSE (mg/100 g) 2

cR pRMSE (mg/100 g) 2
pR

VIS-NIR 141 550-970 1.2340 0.8748 1.8057 0.8274
SW-NIR 350 1024-1610 1.6366 0.8791 1.856 0.8176

VIS-NIR&
SW-NIR 491 550-970

1024-1610 1.7891 0.8556 1.7891 0.8305
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Figure 2. Results of SPA-PLSR and GA-PLSR models on characteristic wavebands with different number of wavelengths. 
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Figure 3. Results of iPLSR and siPLSR models on characteristic wavebands with different number of wavelengths.
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those four characteristic band selection methods to establish 
TVB-N prediction model, which used less data than the model 
established by full band data, and was more suitable for establishing 
a rapid TVB-N content detection system for chilled meat. When 
the number of characteristic wavelengths was samll, the model 
was not able to predict the TVB-N content well. When the 
number of wavelengths increased, the performance of the model 
gradually increased. Among them, GA-PLSR was superior to 
other methods in prediction performance. GA-PLSR could better 
derive the correlation between TVB-N and spectral data, but the 
search time for characteristic bands was longer. Compared with 
GA-PLSR, SPA-PLSR had little improvement in performance, 
but it took the least time in feature band selection. iPLSR and 
siPLSR also showed good performance, especially with siPLSR. 
Through those two methods, it was found that the characteristic 
bands were concentrated in a specific interval, which was very 
different from the bands selected by SPA and GA.

The characteristic bands selected by iPLSR and siPLSR were 
distributed in continuous intervals, which could be used to analyze 
the relationship between spectral information in continuous 
bands and TVB-N content in chilled pork. The characteristic 
bands selected by SPA and GA were discretely distributed in the 
whole band range, which were not able to form a complete and 
continuous band for establishing a prediction model. Therefore, 
this study mainly analyzed the characteristic bands selected by 
iPLSR and siPLSR, and the results are shown in Figure 4, where 
the abscissa represents the band range, and the left and right 
represent the visible near-infrared VIS-NIR and short-wave 
near-infrared SW-NIR bands, respectively. When selecting the 
characteristic bands, iPLSR selected two sets of characteristic bands 
for the characteristic bands containing different characteristic 
wavelengths for comparison with siPLSR.

In the VIS-NIR band, the band range selected by iPLSR was 
mainly concentrated on the first half, and when the wavelength 

Figure 4. The wavebands selected by iPLSR and siPLSR on VIS-NIR and SW-NIR wavebands. (a) iPLSR on VIS-NIR wavebands; (b) iPLSR on 
SW-NIR wavebands; (c) siPLSR on VIS-NIR wavebands; (d) siPLSR on SW-NIR wavebands.
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was 70, the selected characteristic band was approximately the 
full band because the number of wave fields in the full band 
was 141. When the wavelength number was 10, the selected 
characteristic band was within 600-650 nm. As the number of 
characteristic wavelengths continued to increase, the characteristic 
bands were still similar to the bands with a wavelength of 10, 
mainly covered the range of 600 nm-750 nm. When siPLSR 
was used to select feature bands, two completely disjoint bands 
were selected each time, so they were more dispersed. Even 
that, there are still plenty of selected wavelengths in the 600-
750 nm range, except the model established on the bands with 
40 wavelengths. Therefore, it can be concluded that the spectral 
data in the 600-750 nm band range were closely related to the 
TVB-N content of chilled meat.

In the SW-NIR band, the characteristic bands selected by 
iPLSR were mainly concentrated on the range of 1020-1120 nm and 
1450-1570 nm. Only when the number of wavelengths was 40 and 
50, each group of data was not in this range. The characteristic 
bands selected by siPLSR were also similar to those selected by 
iPLSR, which were mainly concentrated on the head and tail 
intervals of the full band, and the spectral ranges were very 
close. Through iPLSR and siPLSR on VIS-NIR and SW-NIR 
spectral data, it was found that the TVB-N content of chilled 
pork had a good correlation with the information in a specific 
spectral range, which is 600-750 nm, 1020-1120 nm and 1450-
1570 nm, respectively. To meet the test speed, a multispectral 
camera system usually contained several bands. This finding 
could provide a strong theoretical basis for the establishment 
of multispectral pork TVB-N online detection system.

3.4 Evaluation of TVB-N distributing map

The models with the strongest performance in PLSR, 
SPA-PLSR, GA-PLSR, iPLSR and siPLSR prediction models were 
used for the visualization of TVB-N content spatial distribution. 
As shown in Figure 5, the upper and lower lines in the figure 
showed the prediction of TVB-N content distribution of a 
slice of pork on the first day of VIS-NIR and SW-NIR bands, 

respectively. The TVB-N content was represented in pseudo-color, 
0 mg/100 g in blue and 20 mg/100 g in red. And the background 
was settd to 0 in the distribution maps. Since the Chinese national 
standard uses 15 mg/100 g to measure whether pork is edible, 
20 mg/100 g was set to a maximum value that highlights the 
difference between pixels.

As seen from Figure 5, in the SW-NIR band, there were 
a large number of pure blue and pure red areas in the TVB-N 
distribution map, indicating that the predicted value of TVB-N 
was outside the range of 0-20 mg/100 mg, and the contour 
of pork completely disappeared with a large error, which is 
different from the TVB-N distribution maps generated on the 
hyperspectral images of VIS-NIR wavebands. As shown in 
Figure 6, the PLSR, SPA-PLSR and iPLSR visualization models 
with better sensory effects in the VIS-NIR band were further 
analyzed,. It can be found from the distribution maps that 
the TVB-N predicted value of chilled pork increased with the 
increase of storage days, which was consistent with the reality 
of pork decay. Pork began to rot from the edge until it finally 
rotted to the middle. The prediction results of the three models 
were basically consistent.

All visualization results in the VIS-NIR band were evaluated 
by URV and ICV. The evaluation results are shown in Table 3. 
The first five lines indicated the evaluation results of those five 
models. PLSR was a linear regression model, which means that 

Figure 5. Distributing maps of TVB-N predict values of the five models on VIS-NIR and SWNIR wavebands.

Table 3. Evaluation indexes of visualization models.

Methods 
of 

modeling

Number 
of main 

component
URV ICV RMSE 

(mg/100 g) R2

PLSR 4 6.49% 1.9420 1.8057 0.8274
SPA-PLSR 4 6.71% 1.5897 1.8655 0.8157
GA-PLSR 9 31.64% 0.5576 1.1530 0.9296

iPLSR 5 9.43% 1.3941 1.9776 0.7929
siPLSR 9 28.52% 0.6124 1.7729 0.8335
siPLSR 7 9.44% 1.3675 1.8568 0.8174
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the visualization results established by VIS-NIR full-band data were 
the best, with a URV value of 6.49% and an ICV value of 1.9420.

The huge difference in Table  3 means that models for 
visualization could not be selected based on the results of spectral 
data alone. Spectral data were derived from the average of pixels 
values in the ROIs, not exactly the same as the pixel spectral data. 
During the establishment of models, especially GA-PLSR could 
fit spectral data with TVB-N values to obtain better spectral 
prediction performance, but failed to guarantee visualization 

the predicted value of the spectral model is the same as the 
average predicted value of the pixels in the TVB-N distribution. 
Therefore, although those two indexes were not related to the 
distribution of TVB-N, they helped measure the accuracy of 
TVB-N performance. Compared with the other three models, 
GA-PLSR and siPLSR had a higher UVR greater than 40%. This 
means that the predicted value of the pixel was not in the range 
of 0-300 mg/100 g. And the ICV values of those two models were 
still lower than other models, even less than 1, indicating that the 
predicted values of TVB-N were scattered. It could be found that 

Figure 6. Distribution of TVB-N values of PLSR, SPA-PLSR, and iPLSR during the storage.
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components was reduced, the RMSE of the model increased 
upward, and R2 decreased, but the overall performance did not 
decrease much, and did not have much impact on the overall 
prediction accuracy. In the visual evaluation results, it can be 
found that the original 28% URV value was reduced to 9.44%, 
and the ICV value was also increased to 1.3675. By comparing 
the siPLSR results of Figure 7a and Figure 5, it can be found that 
the overall color on the optimized visualization map was bluer 
and the distribution trend was similar to the full-band PLSR 
results. Therefore, it was feasible to use this method of reducing 
principal components to enhance the effect of visualization.

The same method was used to optimize the visualization 
results of SW-NIR band data. The results are shown in Figure 7b 
and the statistical results are shown in the Table 4. In Table 4, 
the principal components of PLSR were selected as 6, 7, 8, 9, 
10, 11, and 12, respectively, and the best principal component 
selected by spectral model performance was 11. When the 
principal component score increased to 12, it means that the 
model tended to be more over-fitting. At this time, RMSE 
increased and R2 decreased, that is, the prediction performance 
of the model decreased, and the URV value increased and the 
ICV value decreased. The unreasonable prediction pixels in the 
TVB-N content distribution maps increased and the correlation 

performance. It could be found that the principal component 
factors of GA-PLSR and siPLSR were both 9, which was much 
larger than the principal component factors of PLSR, SPA-PLSR 
and iPLSR. When the number of principal components was 
larger, the PLSR model fitted better on the training set. At the 
same time, there would be over-fitting, namely, the model 
could fully fit the spectral information and the TVB-N content 
of chilled meat on the training set, but it performed poorly 
on the test set. The number of principal components selected 
here corresponded to the model that performs best on the test 
set and the performance of the training set was not weak with 
the test set, which ensured that the selected model had better 
performance on the test set and the training set. However, this 
method could not guarantee the good performance of the model 
on the TVB-N content distribution maps, and the inconsistency 
between the pixel spectrum and the mean spectrum made the 
model unable to accurately predict TVB-N values. Similar to 
the over-fitting of spectral models, when the performance of 
the spectral model was excellent but the visualization results 
were poor, the prediction model was over-fitted on the spectral 
data. Therefore, the number of principal components of the 
siPLSR model was reduced to generate a new TVB-N content 
distribution map. The results are shown in Figure  7a and 
the sixth row of the Table 3. When the number of principal 

Figure 7. The modified distribution maps of TVB-N. (a) The modified distribution map of siPLSR on VIS-NIR; (b) The modified distribution 
maps on SW-NIR.

Table 4. The evaluation of the performance of TVB-N distribution maps on SW-NIR.

Methods of modeling Number of main 
component URV ICV RMSE

mg/100 g R2

PLSR 12 16.63% 1.0603 2.1176 0.7626
11 12.33% 1.3189 1.8572 0.8173
10 8.46% 1.4278 2.1666 0.7514
9 5.49% 1.5933 2.1020 0.7530
8 4.93% 1.6002 2.1427 0.7569
7 4.04% 1.5843 2.4490 0.6824
6 3.44% 1.5652 2.4950 0.6704

SPA-PLSR 8 8.91% 1.326419 2.1994 0.7438
9 30% 0.9204 1.8083 0.8268

GA-PLSR 8 15.31% 1.172808 2.0103 0.786
15 58.43% 0.3039 1.3624 0.9017

iPLSR 7 18.88% 1.044917 2.0658 0.7741
10 51.24% 0.4406 1.7868 0.8309

siPLSR 4 13.68% 1.08658 2.4172 0.6906
16 44.85% 0.1321 1.4965 0.8814
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In terms of prediction models established on the mean 
spectral data, VIS-NIR and SW-NIR have similar performance. 
However, in terms of visualization results, VIS-NIR waveband 
data performed better. Therefore, the performance of the 
spectral model was not consistent with the visualization effect. 
After adjustment, although the visualization effect of SW-NIR 
was improved, there was still a significant gap compared with 
VIS-NIR. Numerically, the URV value of VIS-NIR was basically 
below 10%, and the ICV value was also greater than 1.3. Most 
importantly, only siPLSR and GA-PLSR based on VIS-NIR 
wavebands needed to be adjusted, and the adjusted R2 was 
still greater than 0.8, and RMSE was less than 2 mg/100 g.This 
indicated that the accuracy of the model established using 
VIS-NIR data was higher than that of SW-NIR.

In summary, a higher performance of the spectral model 
did not mean a better performance of the visualization model. 
In order to generate a TVB-N distribution map with high imaging 
quality and high prediction performance, it was necessary to 
select a model that can fit the TVB-N values in both the spectral 
model and the visualization model.

4 Conclusions
In this study, hyperspectral imaging technology and 

chemometrics methods were used to predict the freshness of 
chilled pork. URV and ICV were employed to evaluate the effect 
of TVB-N distribution maps, and a method was designed to 
modify the visualization results. The following conclusions can be 
drawn: 1) VIS-NIR camera with a spectral range of 550-970 nm 
and SW-NIR camera with a spectral range of 900-1700 nm had 
the ability to predict TVB-N content in chilled pork; 2) The 
prediction models established by the characteristic wavelengths 
selected by SPA, GA, iPLSR and siPLSR all had good prediction 
performance, among which GA and siPLSR had better prediction 
performance. 3) The spectral range of 600-750 nm, 1020-1120 nm, 
1450-1570 nm had better correlation with TVB-N value, which 
could be used to establish a multi-spectral system for pork 
freshness. 4) The performance of the visualization model was 
inconsistent with that of the spectral model, and the TVB-N 
content distribution maps generated by the spectral model with 
similar performance had a huge difference. 5) Visualization 
could be greatly improved by reducing the number of principal 
component factors of PLSR and finding a balance between visual 
evaluation parameters and spectral model performance. This 
work could lay a theoretical foundation for the establishment 
of a multi-spectral imaging system suitable for agricultural 
product detection, and provide a new method for evaluating 
and optimizing the visualization effect.
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