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1 Introduction
Lactoferrin (LF) is an iron binding glycoprotein with a 

molecular mass of approximately 80 kDa, due to its ability of 
binding Fe3+ ions and its structural similarity with serum TF 
(Transferrin), LF belongs to the transferrin family (Iglesias-
Figueroa et al., 2019; Yang et al., 2017). It is found in milk, semen, 
mucous membrane secretions, saliva and tears (Wang  et  al., 
2019). Bovine lactoferrin (bLF) and the human lactoferrin 
(hLF), having similar 3D structures (Lönnerdal et al., 2011), 
the similarity of amino acid sequence between which reaches 
69% (Zlatina & Galuska, 2021).

In order to sterilize, milk products has to be treated at 
high temperature, thus the structure and functional properties 
of LF in changed accordingly (Xiong et al., 2021). Either LF is 
added to infant milk formula (IMF) prior to thermal processing 
(required for product safety) or LF is thermally processed alone 
for subsequent addition to IMF by dry blending, it is important 
to consider the influence of thermal processing on the LF 
physicochemical structure, digestibility and bio-functional 
properties (Goulding et al., 2021b).

Iron is an essential trace element in vivo, and the regulation 
of iron absorption largely controls the maintenance of collective 
iron homeostasis. LF plays an important role in the processes 
of iron regulation at the cellular level, preventing the body 
from being damaged by high levels of free iron ions. LF also 
has other bio-functional activities such as anti-microbial, anti-
viral, anti-oxidant, anti-cancer and anti-inflammatory activities 
(Moreno-Expósito  et  al., 2018), many of these functions are 
closely linked to the iron binding capacity of LF. Although LF has 
many biological activities, it is difficult to preserve its biological 
functions in the processed food. Of note, there is a stimulated 
increased research interest in the multiple health promoting 
functions of LF, and its wide real-life applications.

2 Structure and source of LF
2.1 Fundamental structure of LF

LF consists of two homologous structural domains, N-lobe 
and C-lobe, which are connected by a α-helix structure and a 
β-sheet structure with two structural domains on each lobe 
(Figure 1). Each lobe can be further divided into two similar-sized 
domains in the N-lobe (N1 and N2) and the C-lobe (C1 and C2), 
respectively (Rastogi et al., 2016). One LF molecule can bind two 
Fe3+ ions together with two CO3

2- ions, each lobe has the ability to 
reversibly bind a single ferric ion. bLF consists of a polypeptide 
chain composed by two sugar chains, which fold spatially into 
two similar ginkgo biloba-shaped structural domains with an 
ordered secondary structure (Dierick et al., 2021).

2.2 Iron bound structure of LF

Despite the different origins of LF, the iron binding sites are all 
roughly the same. A bLF molecule contains 40 glutamic acid and 
36 aspartic acid residues, accounting for 11% of the total number 
of residues, which may lead to its high metal ion chelating potential 
(Pomastowski et al., 2016). There is an iron binding site in each lobe 
and the metal ion is coordinated by four amino acid side chains: a 
carboxylic acid in one aspartic acid residue, two phenolic oxygen 
atoms in two tyrosine residues and an imidazole in one histidine 
residue (Figure 2). The iron ion is stabilized at the protein binding 
site by two oxygen atoms in a carbonate ion. In the N-lobe of LF, the 
iron ion is bound to Asp60, Tyr92, Tyr192 and His253. In the C-lobe 
of LF, the iron ion is bound to Asp395, Tyr433, Tyr526 and His595. 
When saturated with iron, the structure of LF is more compact; 
when iron ions are not saturated, only the C-lobe of the LF molecule 
is bound to iron ions, indicating that LF releases iron ions from the 
N-lobe first. The two lobes of holo-LF (iron-saturated lactoferrin) has 
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a compact structure and those of the apo-LF (iron-free lactoferrin) 
are more or less broadly open (Voswinkel et al., 2016). LF binds or 
releases Fe3+ by opening or releasing specific iron binding sites in 
the N- and C- lobes. Crystallographic studies have shown that the 
binding of iron to LF made the structural conformation of LF more 
compact (Baker & Baker, 2012; Rastogi et al., 2016).

2.3 The primary source of LF

LF is available from a wide range of sources, table 1 shows 
the range of LF concentrations in the milk of different mammals. 
Mammalian colostrum normally contains higher levels of LF than 
their mature milk, only Murrah buffaloes’ mature milk contains 
higher levels of LF than its colostrum (Abdel-Hamid et al., 2022; 
Kell et al., 2020).

3 Effect of thermal processing on LF
3.1 Changes of LF structure in heating process

The denaturation of LF depends on the environmental factors 
such as temperature, pH, ionic strength, and the presence of other 

proteins and polysaccharides (Li & Zhao, 2017). Thermal processing 
is a very important step in the processing of dairy products, not only 
for sterilization but also for changing the organoleptic properties 
of the product (Goncalves et al., 2022; Tadjine et al., 2021). High 
temperatures not only alter the physicochemical, organoleptic and 
nutritional properties of milk, but also damage the biologically active 
substances in it (Prestes et al., 2022). LF contains 17 intramolecular 
disulfide bonds and has low thermal stability. The pasteurization in 
human milk at 62.5 °C for 30 min, LF therefore changes its structural 
by thiol-disulfide exchange reactions, resulting in the loss or reduction 
of bioactive components (Liu et al., 2020b; Picaud & Buffin, 2017). 
The study demonstrated that thermal processing of LF resulted in 
changes to the native secondary protein structure which contains 
the reduce of α-helix domains and the increase of intermolecular 
β-sheet structures, loss in color of LF, the increases in surface 
hydrophobicity and cationic surface charge, and the formation of 
disulfide linked protein-protein aggregates (Goulding et al., 2021b). 
Besides, thermal processing induced LF to show a less compact 
protein structure in the new exposed regions of the surface, further 
to trigger the denaturation and aggregation (Goulding et al., 2021a). 
The binding of bLF to iron promotes changes in tertiary structure 
which increases its structural stability (Barros et al., 2021).

3.2 Changes in LF thermal stability

It has been reported that apo-LF denatures faster than 
holo-LF with the increasing temperature and time and with 

Figure 1. 3D crystal structure of iron saturated bLF at 2.8 A resolution 
(protein databank code: 1BLF), ferric ions are represented as spheres. 
N-lobe (N1 and N2) and C-lobe (C1 and C2) are two homologous 
structural domains of LF.

Figure 2. Cartoon representation of the overall structure of bLF (protein databank code: 1BLF), with iron ions represented as spheres. Metal ion 
coordination sites in the closed form of bLF, including residues Asp60, Tyr92, Tyr192, His253 in N lobe (A) and Asp395, Tyr433, Tyr526 and 
His595 in C lobe (B).

Table 1. Concentrations of lactoferrin (LF) in mammalian species milk.

Species LF mg/mL References
Human 1.0-7.0 (Rai et al., 2014)
Buffalo 0.03-0.81 (Giacinti et al., 2013)
Sheep 0.06-0.72 (Navarro et al., 2018)
Camel 0.02-2.1 (Azhar et al., 2020)
Equine 0.2-2.0 (Pieszka et al., 2016)
Bovine 0.03-0.2 (Liu et al., 2020a)
Goat 0.02-0.2 (Park, 2010)

Donkey 0.10-0.13 (Altomonte et al., 2019)
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their deformation temperatures after purification being around 
70 °C and 90 °C respectively, holo-LF has a denser structure, 
thus it is more stable (Franco et al., 2018; Morel et al., 2022). 
The difference of denaturation temperature between holo-LF and 
apo-LF is due to the more compact structure of holo-LF formed 
by iron binding (Rastogi et al., 2016). Therefore, iron saturation 
increases its resistance to thermally induced denaturation. 
In IMF, thermal processing promoted the formation of LF-casein 
complexes by binding LF to casein, this binding readily altered 
the thermal stability of LF, which explains the more rapid thermal 
denaturation of LF compared to a pure protein solution of LF 
(Halabi et al., 2020; Li & Zhao, 2018).

3.3 Effect of iron binding on LF stability

LF was found to be able to maintain its iron binding capacity 
after being heated at temperatures ranging from 65 °C to 90 °C 
and ionic strength of about 0.01 or below (Sabra & Agwa, 2020). 
However, continuous thermal processing can alter the structure 
of proteins and thus lead to the loss of iron, which reduces the 
stability of LF. Fernández-Menéndez et al. (2020) synthesized 
an isotopically labelled iron-lactoferrin complex [57Fe(III)2-LF], 
which was used to fortify milk samples. After pasteurization, 
the LF levels increased higher in the iron-added samples than 
in the non-added ones, suggesting that the binding of LF to iron 
reduced the effect of the pasteurization thermal processing on 
it, thus strengthening the LF binding of iron may be a potential 
way to maintain LF stability under heating condition. Thermal 
processing forms the so-called Maillard reaction products 
(MRP) based on the interaction between protein and sugar 
or lipid. MRP decreased the extent of complex formation of 
Chrome Azurol S with iron, which reflected the MRP ability to 
efficiently chelate iron (Bhattacharjee et al., 2020, 2021). Thus, 
LF glycation may play a greater role in LF function than what 
has been recognized to date.

3.4 Effects of thermal processing on LF physiological activity

Hot pasteurization can trigger the loss or reduction of LF 
(Picaud & Buffin, 2017), thus it is important to improve the 
thermal stability of LF in order to maintain its biological activity. 
Although light heat treatment (70 °C, 10 min) prior to in vitro 
digestion did not have any significant effect on digestibility 
compared with the unheated LF samples (Wang et al., 2019), 
the protein aggregates formed at 75 °C are more resistant to 
digestion, leading to a reduced release of peptides from LF and 
thus reducing the bacteriostatic activity of bLF (Xiong et al., 
2021). In recent years, non-thermal pasteurization methods 
have been proposed as potential alternatives to pasteurization, 
such as optimal conditions of hydro-autoclaving (400 MPa for 
5 min at 25 °C) guarantee bioactive components include LF in 
breast milk samples (Zhang et al., 2022). In addition, the complex 
of soy soluble polysaccharides and LF at thermal processing is 
electrostatically generated to prevent aggregation, denaturation 
and loss of the α-helix of LF, thus preserves the antibacterial 
capacity of LF during thermal processing (Lin et al., 2022).

Of course, proper thermal denaturation sometimes favors the 
release of some biological activities in LF. Compared with natural 
bLF, heat-denatured bLF is susceptible to digestive enzymes, the 

studies of mice found denatured bLF is hydrolyzed by pepsin 
and released the neutrophil-binding peptide lactoferricin, which 
enhanced the production and proliferation of IgM, IgG and IgA 
(Bielecka et al., 2021; Godínez-Victoria et al., 2017).

4 Iron binding and release of LF in vivo
The iron binding and release of the LF is closely linked 

to its function in vivo. As shown in Figure 3, Fe3+ in food is 
converted to Fe2+ by duodenal cytochrome b (Dcytb), and Fe2+ 
enters the small intestinal epithelium via recombinant divalent 
metal transporter 1 (DMT1) or heme carrier protein 1 (HCP1). 
LF enters the small intestinal epithelium via endocytosis and 
the Fe3+ carried by LF can be converted to Fe2+ by hydrochloric 
acid in the intestine. The absorption of new iron depends on the 
total previous iron storage. In the Duodenum, there is a sensor 
transferring carrying iron - the HFE protein, transcriptional 
expression of the HFE gene can act on Dcytb and hephaestin 
(Hp) to regulate duodenal absorption of iron. There are two 
routes for Fe2+, one is to bind to ferritin, which is present in the 
cytoplasm as mucosal ferritin and subsequently shed outside 
the cell, where the normal epithelium regenerates; the other is 
that Fe2+ crosses the basement membrane of intestinal epithelial 
cells by the combined action of ferroportin 1 (FPN1) and Hp 
and is subsequently converted to Fe3+ by ceruloplasmin (CER) 
in the small intestinal epithelium.

Fe3+ enters the vasculature, binds to transferrin, and is transported 
to the bone and liver. Some Fe3+ reach the bone marrow via the 
blood for hemoglobin synthesis and erythropoiesis, finally iron 
is used in various tissues and organs. Some Fe3+ transported as 
TF-Fe3+, they reach the liver via the portal system, Fe3+ entering 
the liver stimulates a protein called Hepcidin (Hepc), this is a 
regulator as well as an inhibitor. When Hepc senses that there 
is too much Fe3+ coming in, Hepc acts on FPN1 to inhibit Fe2+ 
production until FPN1 is not receiving Fe2+, at which point Fe2+ 
in the cytoplasm is shed outside the cell as mucosal ferritin 
and excreted in the feces or urine. Meanwhile, HFE gene acts 
on Dcytb and Hp to inhibit their translational uptake of LF. 
If there is too little Fe3+, Hepc acts on FPN1 to increase Fe2+ 
production, and HFE gene acts on Dcytb and Hp to promote 
their translational uptake of LF. There is also a way to maintain 
iron homeostasis in the body, when there is too much Fe3+, Hepc 
acts on macrophages until macrophages stop releasing Fe3+; when 
there is too little Fe2+, Hepc does not act on macrophages and 
macrophages release Fe3+ as normal. Most of the body’s iron is 
derived from the recirculation of heme iron after senescent red 
blood cells are phagocytosed by macrophages, and another part 
comes from the absorption of iron from food, with the small 
intestine being the only site for iron absorption.

The release of iron from LF follows the reverse pathway 
of iron binding, with the structural domain of the closed iron 
binding site opening, followed by the release of iron. Three factors 
contribute to the structural changes necessary for iron release: 
the presence of a specific receptor similar to serum transferrin, 
the reduction of Fe3+ to Fe2+ and the lowering of the pH in the 
environment (Baker et al., 2002). Iron absorption occurs in the 
proximal duodenum (Cassat & Skaar, 2013). When LF with 
iron ions reaches the intestine, it binds specifically to receptors 



Food Sci. Technol, Campinas, 43, e121122, 20234

Lactoferrin: iron transport & application

on the cell surface (Figure 3), facilitating the entry of iron and 
intact LF into the enterocyte and the release of Fe3+ ions via an 
endocytosis-mediated pathway (Jiang et al., 2011; Suzuki et al., 
2005). The absorbed LF is then transported by the microsomes 
and ultimately participates in the redox reactions of the iron cycle 
(Lönnerdal, 2016). LF enhances intestinal iron absorption by 
binding to iron and improves hemoglobin and total serum iron 
levels, thereby maintaining homeostasis of iron in the body and 
in cells (Mayeur et al., 2016; Sienkiewicz et al., 2022).

5 Digestion of LF
5.1 Digestion of LF in vivo

The digestion of food starts from mouth which is mainly 
mechanical chawing, and most of the LF is ingested in liquid 
form, which makes its digestion in the oral stage even less. LF is 
initially broken down by pepsin in the gastric juice with the 
participation of gastric acid, and it is at this stage that strong 
antimicrobial peptides such as lactoferricin and lactoferrampin 
are produced.

With or without thermal processing, LF is more susceptible 
to simulated infant intestinal digestive conditions than simulated 
infant gastric digestive conditions. The effect of thermal processing 
on LF gastric digestion is negligible, as LF and its aggregates are 
highly resistant to gastric digestion. In addition, the difference 
in digestion between bLF and hLF may arise from the different 
levels of iron saturation in LF (Bokkhim et al., 2013; Sabra & 
Agwa, 2020). The iron saturation degree of LF interferes with 

its degradation, apo-LF in bovine milk are more easily digested 
than holo-LF (Troost  et  al., 2001). All the same, the gastric 
digestion may also demonstrate a positive impact on LF activity, 
because LF can form antimicrobial derivatives in the stomach 
(Lizzi et al., 2016).

5.2 Simulation digestion studies of LF in vitro

Most of the current LF studies are based on simulation 
methods in vitro. The digestion model in vitro facilitates the 
subsequent extraction and isolation of digestion products by 
simulating the physiological conditions in vitro digestion and 
then analyses the structure, composition, interactions, and 
digestibility of the digestion products, with the advantage of 
being easy to manipulate and reproduce. This allows relatively 
large numbers of samples to be measured in parallel for screening 
purposes and is well suited to mechanistic studies and hypothesis 
construction (Minekus et al., 2014). Thus, the use of adequate 
digestion tools in vitro is a priority for the optimization of IMF 
(Ménard et al., 2018).

In simulating gastric digestion in infants, compared to the 
undigested or untreated LF samples, the gastric digest revealed 
an almost identical molecular weights profile, suggesting that LF 
undergoes little protein hydrolysis. The heat-treated LF samples 
showed a lesser resistance to gastric digestion than the unprocessed 
LF (Goulding et al., 2021b). This result is consistent with those of 
high temperature short duration pasteurization (HTSDP) on the 
dynamic digestion of human milk in a premature neonatal model 

Figure 3. The mechanism of iron binding and release in vivo.
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(Nebbia et al., 2020). LF can act biologically as an intact protein 
and possibly as a hydrolyzed form, in them LF-derived peptides 
showed a potent anti-microbial activity (Vogel, 2012). In a static 
model simulating gastrointestinal digestion in infants, LF resists 
gastric digestion, instead of intestinal digestion (Halabi et al., 
2020; Xiong et al., 2021). Although the amount of LF excreted 
intact through infant intestinal digestion is low, the protein 
hydrolysis resistance that allows LF to persist in the infant’s 
gastrointestinal tract may be the key to allowing the protein 
to affect the infant’s intestinal microbiota (Manzoni, 2016). 
Bokkhim et al. (2016) used an aerosol technique to encapsulate 
LF and then found that encapsulating apo- and native-LF with 
alginate microgel particles (composed of a mixture of apo- and 
holo-LF) protects them from the action of pepsin and allows 
their release in the intestine.

6 Active functions of LF in vivo
There are many medicinal foods in human lives that not 

only provide the body with nutrients, but also have preventive, 
palliative, or curative effects. LF is expected to bring some 
active functions to food. Table 2 summarizes the biofunctions 
and mechanism of LF that have been studied in recent years.

The anti-cancer activity of LF is reflected in the activation of 
innate and adaptive immune responses, in addition to stimulating 
the proliferation and differentiation of T-helper cells and their 
release of tumor-killing cytokines in the intestine (Zhang et al., 
2015). Virus-dependent binding is attributed to LF leaf termini 
(N- and C-) and is dependent on charge interactions, with LF 
inhibiting the entry of viral particles into host cells either by 
direct attachment to viral particles or by blocking their cellular 
receptors (Redwan et al., 2014). LF increases the cytotoxicity of 
natural killer cells in vitro while inhibiting the release of reactive 
oxygen species (ROS) from leukocytes at sites of inflammation, 
however, its antioxidant capacity decreases with decreasing 
iron saturation (Cutone et al., 2020a). LF inhibited oxidative 

stress-induced cell death and apoptosis by enhancing autophagy 
(Hsu  et  al., 2020). It is worth noting that, compare to holo-
LF, apo-LF had a more pronounced stimulatory effect on the 
proliferation of crypt cells associated with inflammation in colon 
cancer (Fan et al., 2022). The N-terminal region of LF binds to 
the bacterial cell wall and destroys the bacterial cell. It inhibits 
the growth of pathogens (especially Enterobacteriaceae) and 
stimulates the growth of bifidobacterial intestinal flora, thus 
protecting the intestinal epithelial cells (Vega-Bautista  et  al., 
2019). In addition to the more representative bio-functional 
activities mentioned above, LF has also been found to have 
anti-parasitic, osteogenic, enzymatic activity, and neurological 
modulation functions.

7 LF application in food
7.1 Food fortification

Good product acceptability is one of the biggest challenges 
for food development (Santos et al., 2022), and as people become 
more health conscious, nutritional fortification has become one of 
the reasons for product acceptance. Nutritional fortification refers 
to natural or synthetic nutrients or other nutritional ingredients 
added to foods to increase their nutritional value. bLF has 
been approved as a generally recognized safe compound by the 
United States Food and Drug Administration and as a dietary 
supplement by European Food Safety Authority (Cutone et al., 
2020b; Superti, 2020). LF can be used as a nutritional fortification 
in IMF, milk mixes, flavored fermented milk and dairy drinks. 
Figure 4 shows different applications of LF in the food industry.

LF has been reported to be a very important addition to 
IMF due to its antibacterial, anti-inflammatory, anti-cancer, 
immunomodulatory, enzyme activity and many other bioactive 
functions (Giansanti et al., 2016; Niaz et al., 2019; Yan et al., 2022). 
bLF is usually added to IMF to improve its functional properties 
based on its high homology with hLF and easy availability 

Figure 4. LF application in food.
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Table 2. Research on lactoferrin (LF) in vivo

Functions Categories Mechanism/Results References
Anti-cancer Glioblastoma bLF blocked the migration of human glioblastoma cell lines by 

reversing epithelial-to-mesenchymal transition-like processes and 
inhibiting the IL-6/STAT3 axis.

(Cutone et al., 2020a)

Lung Adenocarcinoma A novel human recombinant LF inhibited lung adenocarcinoma cell 
growth and migration with no cytotoxic effect on normal human 
epithelial cells.

(Olszewska et al., 2021)

Breast Cancer Lactoferricin B triggered mitochondrial membrane depolarization and 
elevated cytoplasmic calcium levels in MCF-7 cells.

(Guerra et al., 2019)

Prostate Adenocarcinoma 
Cell

bLF inhibited proliferation, induced apoptosis, intracellular 
acidification and disrupted lysosomal acidification only in highly 
metastatic cancer cell lines, whereas BJ-5ta cells were insensitive to bLF.

(Guedes et al., 2018)

Colon Cancer bLF played a role in the protective mucus barrier that covers the 
intestinal epithelium.

(Tanaka et al., 2021)

Anti-viral COVID-19 The binding of bLF to heparan sulfate proteoglycans blocked the 
attachment of the virus to the host cell, while HSPG mimetic heparin 
to antagonize the anti-viral activity of bLF.

(Hu et al., 2021)

SARS-CoV-2 bLF interacts with pepsin during digestion and releases LF B17-41 with 
moderate anti-SARS-CoV-2 viral activity

(Wotring et al., 2022)

Anti-
inflammatory

Acute Kidney Injury Camel milk LF protected the kidney from 5-fluorouracil-induced 
inflammation and oxidative damage, while scavenging ROS, inhibiting 
MAPKs and NF-κB and activating the PI3K/Akt/eNOS pathway.

(Arab et al., 2018)

Enteritis In mouse model, by regulating the expression of PPAR-γ, PFKFB3 
and NF-κB genes and proteins, apo-LF suppressed colonic mucosal 
inflammation and repaired mucosal damage.

(Fan et al., 2022)

Arthritis and Air Pouch 
Edema

After internalization of LF into monocytes, LF in camel milk inhibited 
the activation of NF-κB, thereby inhibiting the production of pro-
inflammatory cytokines.

(Arab et al., 2017)

Anti-bacterial Burkholderia A construct combining two antimicrobial structural domains of bLF 
lactoferrampin265-284 and lactoferricin17-30 resulted in disruption of 
the bacterial plasma membrane and subsequent leakage of intracellular 
nucleotides leading to cell death.

(Kanthawong et al., 2014)

Vibrio Cholerae bLF interacts directly with the negatively charged components of 
the microbial membrane, inducing changes in their permeability by 
dispersing them.

(Acosta-Smith et al., 
2018)

Neisseria Meningitidis The C-lobe of hLF interacts with the bilobed outer membrane of Gram-
negative bacteria at two different sites of lipoprotein, where binding of 
hLF prevents iron uptake or disrupts the protective membrane-bound 
lipoprotein against the cationic antimicrobial peptide.

(Ostan et al., 2017)

Aflatoxin M1 LF resulted in a reduction in afm1-induced intestinal permeability, 
increased expression of claudin-3, ocludin and ZO-1 proteins, and 
repair of the damaged intestinal barrier.

(Gao et al., 2021)

Cronobacter and 
Pseudomonas spp.

bLF inhibited the growth of sepsis-causing microorganisms in 
recombinant IMF and bacteria.

(Sawale et al., 2022)

Salmonella enterica and E. 
coli O157:H7

The growth of E. coli O157:H7 was significantly reduced at LF 
concentrations greater than 14.05 mg/mL and the growth of S. 
enterica was reduced at LF concentrations equal to or greater than 
112.5 mg/mL.

(Biernbaum et al., 2021)

Anti-parasitic Amoebiasis bLF-derived peptides were effective in resolving murine intestinal 
amoebiasis in vitro.

(Díaz-Godínez et al., 
2019)

Osteogenesis Osteogenic Factor By activating Smad2/3 and p38 MAPK, bLF enhanced osteoblast 
differentiation from MSCs, resulting in increased transcriptional 
activity of Runx2. bLF treatment enhanced osteoblast differentiation 
and mineralized nodule formation, as well as the repair of bone defects 
in vitro.

(Inubushi et al., 2020)

Enzyme activity DNA Binding LF has a sequence similar to ribonuclease A and has DNA-binding 
properties that allow it to act in the transcriptional activation of specific 
DNA sequences and also as a mediator of signal transduction.

(Brandl et al., 2010; García-
Montoya et al., 2012)

Nerve Function 
Regulation

Neural Development and 
Cognition

LF improved neurodevelopment, cognition, and memory in piglets 
through upregulation of brain-derived neurotrophic factor signaling 
pathways.

(Chen et al., 2015)
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(Artym & Zimecki, 2013; Cornish et al., 2004). By participating 
in the transport of iron in the body, LF can directly or indirectly 
chelate iron, thus regulating the amount of iron absorbed by 
the intestine (Hao et al., 2019). Infants are prone to nutritional 
iron deficiency anaemia and direct iron supplementation can 
cause irritation to their gastrointestinal tract. The addition of 
LF to IMF ensures the absorption and utilization of iron and 
prevents nausea, vomiting and disruption of feeding due to the 
irritation of the gastrointestinal tract in infants. Moreover, bLF 
is added to reconstituted IMF and HTSDP retained bLF in IMF 
with high quality, together with the binding capacity and storage 
stability of iron, this retention confirmed the possibility of adding 
bLF to HTSDP products (Wazed  et  al., 2020). LF combined 
with whey protein hydrolysate maintains the stability of IMF 
emulsions and the yield, encapsulation and hygroscopicity of 
IMF containing LF are improved (Figueiredo Furtado  et  al., 
2021). The iron binding bLF found in colostrum was effective 
in treating diarrhea in calves, suggesting that bLF may have a 
potential therapeutic role in infant diarrhea.

As mentioned in above, LF has many beneficial biological 
activities and therefore direct consumption of LF powder is a 
good option, but the daily dose per person should be strictly 
controlled. LF can be powdered and turned into drink, however, 
due to its instability, storage conditions and limited shelf life, 
the processing and packaging of beverages still needs to be 
improved. LF is mainly added to milk as a nutritional fortifier, 
as milk is pasteurized and sterilized, packaged tightly and mostly 
in small individual packs, and is not stored for long periods of 
time like milk powder, thus the antibacterial properties of LF 
are less represented in milk.

It has been reported that beneficial microorganisms need 
protein to proliferate, and most proteins do not reach the gut, 
and there are no protein-containing prebiotics on the market 
(Peled & Livney, 2021). LF is able to improve intestinal flora, 
strengthens the body’s immunity and has a regulatory effect on iron 
absorption in mammals, thereby maintaining iron homeostasis in 
the body (Li et al., 2017). Chen et al. (2013) combined apo-bLF 
or bLF hydrolysis products with specific supernatants produced 
by different probiotic bacteria and observed that they inhibited 
foodborne pathogens. Therefore, LF can be added to yogurt and 
probiotic drinks. However, the high addition of LF can lead 
to a decrease in the quality of the probiotic, when developing 
probiotic products with LF, the amount of probiotic added 
should be increased to ensure enough live bacteria. Besides, the 
zinc-bLF complex was reported to be used as a food additive or 
as a wound healing agent (Pryshchepa et al., 2022).

7.2 Foam agents

Foaming agent is a kind of substance that makes the target 
substance pore, which can be divided into three categories: 
chemical foaming agent, physical foaming agent and surfactant, 
LF belongs to surfactant. Protein is the main foaming agent 
in food industry (Murray, 2020), but its foam is not easy to 
produce and control. Due to the foaming and emulsifying 
properties, the proteins in milk are a good choice for surface 
active molecules and bLF is a globular protein found in milk 
whey protein (Liu et al., 2018). Rather than using the foaming 

properties of LF alone, there is now a preference for using LF in 
combination with other substances to form complexes, which 
retain the foaming properties of LF and increase the biological 
functionality of the complex.

At present, LF is widely used to be foam agents, but this 
function is not yet perfect. Therefore, it is necessary to further 
modify the foam agent to make a compound foam agent with better 
performance. Covalent modification of LF with epigallocatechin 
gallate, chlorogenic acid and gallic acid resulted in significant 
changes in the solubility and emulsification of LF, as well as 
enhanced thermal stability of the LF-polyphenol conjugate 
(Liu et al., 2015). It is reported that a stable complex was formed 
by hydrophobic interaction between LF and procyanidin and the 
foaming properties of the complex were also improved (Li et al., 
2021). Dai et al. (2022) used bLF and tannins to form a complex 
to improve foam performance, although poor foam compared 
to bLF alone, but with good foam stability. Although rosmarinic 
acid interacts to a lesser extent with bLF, the complexes formed 
are more stable than the protein alone and also have more 
freedom of movement and heat capacity (Ferraro et al., 2015). 
The conjugation of polyphenols to LF increases the ζ-potential 
of the complex and decreases the surface hydrophobicity, leading 
to a reduction in turbidity during thermal processing, and this 
change in physicochemical properties can also affect the foaming 
properties of LF (Liu et al., 2016). These complexes are able to fully 
perform the dual role of the ingredients, suitable for functional 
food foams, with nutritional and technical benefits. LF offers new 
resource ideas for purely natural foaming agents and a viable 
strategy for enhancing the use of functional molecules in food 
stabilization and industry.

As a pure natural additive, LF can be widely used in food 
industries such as bread and biscuits. In addition to increasing 
protein nutrients, it also has the functions of foaming, loosening, 
and whitening food. Thus, it is widely used in cold drinks such 
as soft drinks and ice cream.

7.3 Chewable tablets and capsules

Other products of LF included health food products with 
both nutritional functions and medical efficacy. Subjects took 
bLF chewable tablets twice daily for 8 weeks and the result 
showed that bLF was well tolerated in mild and moderate acne 
vulgaris (Mueller et al., 2011). Wotring et al. (2022) found that 
custom chewable LF tablets formulated with glucose or sorbitol 
had anti-SARS-CoV-2 activity. New capsules loaded with LF 
have been reported using polyelectrolyte complexes, which can 
be used as anti-colon cancer protein products (Wu et al., 2013)

8 Conclusion
This review illustrates the foodstuffs into which LF may be 

made, but the processes by which LF can be incorporated into 
foodstuffs are still to be discovered, and this provides a wider 
range of ideas for the application of LF in foodstuffs. As LF is 
easily inactivated during thermal processing, it is particularly 
important to find out how to obtain highly active bLF in an 
efficient isolation method. The high extraction cost and high 
price of bLF set currently in the market have severely limited 
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the development and application of lactoferrin health products. 
In order for LF to pass through the stomach in its intact structural 
form, many protection measures have been proposed one after 
another and that microencapsulation and PEGylation are the 
most effective methods used to deliver LF to the site of intestinal 
absorption, which holds promise for future research. Despite 
these findings, the kinetics of thermal processing on LF digestion 
and the biological activity of LF digestion require further 
study. In addition, the physiological functions of LF need to be 
studied in depth in order to solve the technical problems of food 
industry. This is also of great importance for a more rational 
use of bLF, such as the simulation of breast milk nutrition and 
the development of breast milk substitute food and IMF. Due to 
the special status and role of iron in many physiological and 
pathological processes in the body, further systematic studies 
will have good application prospects.
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