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1 Introduction
Greengage, which currently grows mainly in the coastal areas 

of Southeast China, is nutritional and categorized as one of the 
strong alkaline forming foods. It is useful in neutralizing the acidity 
of blood and keeping the body fluids alkalescent. Besides, it can 
be used to alleviate the acidification of body fluids and reduce 
the risk of diseases, such as cardiovascular and cerebrovascular 
diseases, osteoporosis, kidney stones, arthritis, gout, and cancer 
(Tian et al., 2018). Greengage fruit has a long history of being used 
in traditional Chinese foods as pulp served dried or salted, or as an 
ingredient in fruit wine, as well as for traditional Chinese medicine. 
But these simple-processed products have low added values. 
Currently, the surplus supply of greengage due to its increasing 
growing area in the past decades has already saturated the market 
of conventional greengage processing industry. Therefore, there 
is an urgency to upgrade the greengage processing industry with 
new products of more added values.

Plum essence and greengage cider are such more value-adding 
non-traditional products. The former is a deep-processed and 
value-adding food supplement, and the latter is a novel alcoholic 
beverage from the health-benign fruit material, sometimes 
referred also as fermented greengage wine. These two end 

products demand different physiochemical qualities from 
greengages as raw material: plum essence prefers greengages 
high in acidity, whereas greengage cider prefers sweetness 
(Li  et  al.,  2017; Shen  et  al.,  2017a). Sorting harvest of fresh 
greengage fruit according to physiochemical attributes would 
be impossible using the conventional method, which involves 
preprocessing that is both destructive and time-consuming. 
Spectral imaging technology has gained its favor in the 
measurement of physiochemical attributes for a variety of food 
materials because of its rapidity, objectivity, and a synergy of 
both spectral and spatial dimensions in particular. Previously, 
we carried out a promising trial of spectral-imaging-based 
measurement of greengage acidity (Zhao et al., 2017). However, 
further improvement of the predictive power of spectral imaging 
approach, via modeling technology, is yet to be studied for 
multiple physiochemical attributes of greengage with fewer 
number of spectral components/wavelengths.

Better accuracy and fewer spectral components were defined 
as the two goals of this study of modeling optimization. Predictive 
models of partial least squares (PLS) and extreme learning 
machine (ELM) were first established as the base models to start 
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the optimization procedures. Optimization procedures of SPA 
and SPA-GA were adopted to serve the purpose of reducing the 
dimensionality of predictive models as well as modified-Adaboost.
RT (MAdaboost.RT) and GA, for accuracy. For repeatability, 
the same optimization procedures were carried out on the two 
distinctive physiochemical attributes: pH value for acidity and 
Brix value for sweetness.

2 Materials and methods

2.1 Samples and data acquisition

A batch of 450 greengages were purchased in May 2016 
from Fujian, China. For sample consistency, the greengages 
that had spots, were excessively over- or under-sized, or were 
already spoiled were removed from the population, leaving the 
final set of 435 subjects relatively uniform in size and shape.

The AOTF-based spectral imaging system used in this study was 
the same one in reference (Wang, 2014) that works in the range of 
550-1000 nm with bandwidth approximately 20 nm. Therefore, the 
spectral sampling interval in the data acquisition was set at 5 nm 
to take a total of 91 images for each spectral scan, thus resulting 
in swift data acquisition without too much redundancy while 
retaining as much information as possible. At each wavelength, the 
snapshot of the subject was collected with a fixed exposure of 0.08 s 
at full-frame resolution of 1392 × 1040 pixels. The spectral imaging 
of each sample only lasted for 7 s; hence, the delicate greengage 
subject did not lose too much water under strong illumination.

For each subject, the sweetness indicating Brix value (unit:°Brix) 
was measured using the Brix meter of ATAGO PAL-1 (Atago Co.Ltd, 
Tokyo, Japan), and pH value was measured using a precision pH 
meter of Raymond PHS-2F (INESA Scientific Instrument Co., 
Ltd, China) to indicate its acidity. The measurement procedure 
for the reference data collection is as follows. After spectral 
images of greengages were obtained, the skin and kernel of each 
sample were removed. The greengage juice was obtained through 
extrusion and dropped onto sensors of the two measurement 
instruments. Readings from the instruments were recorded 
when stabilized. For each physiochemical attribute, the average 
of 3 repetitions was used as the reference value for each subject.

2.2 Feature wavelength selection

Spectral imaging technology can be subdivided into 
hyperspectral imaging technology and multispectral imaging 
technology according to the number of wavelengths and spectral 
continuity. Though hyperspectral imaging acquisition systems 
have the advantage of acquiring large number of images from 
consecutive spectral bands; however, their high costs often forbid 
them from being used in production lines. Multispectral imaging 
is a very cost-effective solution: only a few images are acquired, 
but well-selected wavelengths carry the information key to the 
target attribute(s). Multispectral imaging is suitable if required 
prediction accuracy could be achieved with fewer number of 
wavelengths, i.e., ideally no more than 10 wavelengths.

Succession projection algorithm (SPA) is a method for the 
quick selection of effective wavelengths with low redundancy 

based on the calculation of correlation (Fernandes et al., 2016). 
This paper used SPA to reduce the dimensionality of spectral 
images. Only the final 10 characteristic wavelengths of the images 
that were selected went into the prediction model as spectral input.

Genetic algorithm (GA) is an iterative optimization 
method mimicking natural evolutionary processes with random 
selection, crossover and mutation operations. The wavelength 
selection problem finds its solution when the gene or the set of 
feature wavelengths eventually converges to the most suitable 
for the environment, i.e., having the lowest cost according the 
fitness criterium (Zhang et al., 2017). In this study, the spectral 
dimension of the original hyperspectral cubes was first reduced 
from 91 to a smaller quantity through SPA, and then, the 
remaining feature wavelengths were encoded to form the pool 
of genomes. The root mean square error of PLSR was used as 
the cost function of fitness. Moreover, the best 10-genome long 
gene of the last epoch that survived the iterative processing was 
exactly the top 10 characteristic wavelengths chosen by GA. 
This method of reducing the data dimension is called SPA-GA 
(Zhang et al., 2017). It balances time complexity and prediction 
accuracy by letting SPA to first reduce the pool of genomes before 
starting GA. The population of genes in each epoch in this study 
was 100, the value of mutation probability was 0.01, the value 
of crossover probability was 0.9, and 2000 epochs of evolution 
were applied to the GA iterations. Before the GA process began, 
the spectral dimension was first reduced to 40 with SPA.

2.3 Regression models

Adaboost.RT is an algorithm for regression modeling 
(Hu  et  al.,  2017; Tian  &  Mao, 2010). By introducing a fixed 
threshold as criterion, the regression model is converted to a 
binary model. However, the classification result of the samples 
is directly affected by the fixed threshold. The updating of the 
sampling weight and the sampling method of the next iteration are 
also affected. Therefore, the selection of appropriate threshold is 
particularly crucial. When the threshold is too large or too small, 
it will have an adverse effect on weak learners and eventually 
lead to instability of the algorithm. To deal with this problem, 
Modified Adaboost.RT was adopted, in which the threshold et 
is automatically adjusted based on the root mean square error 
of the predicted values f(xi) of greengages in each iteration per 
Equation (1).

N 2
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The threshold, φi+1, decreases when et < et-1; Otherwise, the 
threshold increases, as is governed by Equation (2).
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The threshold is automatically adjusted by the rate of the 
root mean square error in each iteration, and the weight of these 
training samples that are misclassified is increased, so that the 
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subsequent weak learners pay more attention to these samples 
that are misclassified. For rapidity and efficiency, this algorithm 
is widely used (Shrestha & Solomatine, 2006). In this study, this 
algorithm was used to optimize the base models of respective PLSR 
and ELM. Because the weighted samples cannot be used to train 
models when PLSR is used for weak learners, the “resampling” 
method was used such that subsets of greengage from training 
set were resampled to create the PLSR base models. The new 
training set for the next iteration was obtained via resampling 
based on the distribution of sample weights obtained in previous 
iteration. Weak predictors are obtained through the new training 
set. According to the result of reference (Shrestha & Solomatine, 
2006), the initial threshold was set between 0 and 0.4 for a 
stable performance.

GA was also used to improve the base models that predict 
sweetness and acidity of greengage. The GA-ELM denotes the 
improvement of ELM with GA (Shen et al., 2017a). The ELM 
model is a supervised learning algorithm based on a single 
hidden layer forward feedback network (Huang et al., 2006). 
The matrix of weight and bias between the input layer and the 
hidden layer is randomly given and not modifiable. The weight 
matrix between the hidden layer and the output layer is calculated 
from the Moor–Penrose matrix of the output matrix of hidden 
layer (Huang et al., 2012; Iosifidis et al., 2016). L is the number 
of neurons in the hidden layer, and n is the dimension of a 
single sample. These n × L + L values of the weight matrix and 
bias matrix between the input layer and the hidden layer in the 
ELM are artificially coded into an individual matrix, and we 
can randomly generate multiple such individuals to form an 
initial population. After iterations with selections, crossovers, 
and mutations, one individual with the optimal weight and bias 
would be finally obtained.

In this study, 16 weak predictors were used in the MAdboost.
RT optimization with the initial threshold of 0.2 for ELM and 
200 resampling for PLSR in the model optimization. For the GA 
optimization, the population of 50 individuals was created, with 
mutation probability at 0.1, crossover probability at 0.8, and a 
total of 200 epochs for the optimization process.

The root square error (RMSEc) of training set, the correlation 
coefficient (Rc) of training set, the root mean squared error 
(RMSEp) of prediction set, and the correlation coefficient (Rp) of 
prediction set were used to evaluate the performance of a model 
(Monteiro et al., 2018; Shen et al., 2017b; Yousefi et al., 2018). 
The values of Rc and RMSEc were used to represent the robustness 
of a model. A robust and accurate model is not indicated when 
Rc is close to 1 and RMSEc is small, but when Rp is close to 1 
and RMSEp is small at the same time.

3 Data pre-processing

3.1 Reflectance calibration and characteristic spectra

At the time of collecting hyperspectral images, factors such 
as uneven illumination, dark current noise of the sensor, uneven 
distribution of diffraction efficiency in the AOTF space, and 
different transmittance at different positions of the lens may affect 
the results. Therefore, the original spectral images in terms of 

CCD counts need to be calibrated into spectral images in terms 
of reflectance values (Wang et al., 2013).

These spectral images of greengages were collected along 
with dark images and a 99% standard reflectance calibration 
plate. The calibration formula is as follows:

A B
R

w B

I II 100%
I I

−
= ×

−
	 (3)

where IR is the calibrated reflectance spectral images, IA is the 
captured spectral images of a greengage to be calibrated, IW is 
the spectral images of the 99% reflectance standard plate, and 
IB is the dark images that acquired when the lens is completely 
covered up (Wang et al., 2013). When the calculation encounters 
a denominator value of 0, the average of the difference between 
the spectral image of the standard plate and the dark image of 
the current wavelength was used instead.

A 5-point Savitzky–Golay smooth-filtering (Zhao et al., 2017) 
was applied to the calibrated reflectance hyperspectral images 
to eliminate random noise, while retaining as much useful 
information as possible. The characteristic spectra that were 
deemed as the average of the spectra extracted from each 
greengage subject, before and after the spectral preprocessing, 
are compared in Figure 1.

3.2 Training set and prediction set

The data on 435 greengage subjects were divided into a training 
set of 350 subjects and a prediction set of 85 subjects using an 
equal-probability sampling according to the physicochemical 
values. The range, average value, and standard deviation of 
physicochemical indices (pH and Brix values) are listed in Table 1.

4 Results and analysis

4.1 Chosen sets of wavelengths

Sets of feature wavelengths were chosen from the original 
hyperspectral range of 550–1000  nm for the multispectral 
modeling procedures. A total of four feature sets, each containing 
10 wavelengths, were selected using SPA and SPA+GA, i.e., 2 
for Brix value and the other 2 for pH value.

Using SPA, the set of 10 wavelengths for the modeling of 
Brix value for sweetness was centered at 740, 640, 550, 965, 725, 
685, 720, 665, 805, and 880 nm. Another set for pH value, or 
acidity, was centered at 885, 640, 550, 725, 685, 720, 960, 665, 800, 
and 750 nm. Both sets are in descending order of importance. 
Similarly, using SPA-GA, the top 10 spectral bands for sweetness 
modeling comprised 550, 590, 685, 760, 830, 860, 865, 890, 930, 
and 965 nm, while the top 10 acidity wavelengths were 565, 600, 
610, 805, 840, 885, 905, 945, 955, and 975 nm.

As shown in Figure 2a and b, all feature wavelengths are 
plotted along the first derivative of the characteristic spectrum 
of greengages or the average of their spectral curves.

The feature wavelengths that were selected by SPA was usually 
centered at the local peaks of the first derivative spectrum, and almost 
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no wavelengths were selected in flat portions. These phenomena 
indicate the low redundancy of these wavelengths selected by 
the SPA. Simultaneously, it was found that these characteristic 
wavelengths used to predict sweetness and acidity of greengages 
were remarkably close to each other. The reason the chosen sets by 
SPA were not identical for both Brix and pH is simply because the 
divisions of dataset for Brix values were different from those for pH 
values, in order to keep training sets and test sets from the same 

distributions for each physiochemical target attribute. Otherwise, if 
the same data partition were used for both target attributes, the SPA 
feature wavelengths for both target attributes would be the same, 
since the SPA algorithm takes only the spectral data, and no input 
is taken from the measurement of target physiochemical attribute.

In contrast, the sets of wavelengths chosen with SPA-GA 
were much more different for the two target attributes. And the 
feature sets for different physiochemical attributes have much few 

Figure 1. Spectral data of greengages.

Figure 2. Feature wavelengths chosen for sweetness and acidity with two methods for dimensionality reduction.

Table 1. Physicochemical distributions of data partition.

Index Data set size (/1) Range (/°Brix, or 1) Mean (/°Brix, or 1) Standard Deviation (/°Brix, or 1)

Brix
Calibration 350 5.1-11.8/°Brix 7.4500/°Brix 1.1923/°Brix

Prediction 85 5.6-10.3/°Brix 7.3871/°Brix 1.0793/°Brix

pH
Calibration 350 2.06-2.62 2.3017 0.1035

Prediction 85 0.08-2.55 2.3020 0.0953
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wavelengths in common. It seems that the second stage of the GA 
process drew information well from the reference data of target 
attribute and tailored resulting feature sets accordingly. However, it 
is yet unknown whether the feature sets tailored to the GA criteria 
of PLS error apply to other modeling algorithms; this needs to 
be analyzed in Section 4.2 on multispectral regression modeling.

4.2 Regression modeling

Configuration

After data dimensionality reduction, the four sets of feature 
wavelengths were fed to the multispectral modeling, which followed 
two different branches of base modeling algorithms, i.e., PLSR 
and ELM. Each branch of the multispectral modeling consists 
of three different models, starting from the base model in its 
original sense, then another standalone model as modified form 
of this base model, and ending in the optimized ensemble of such 
base models combined under the framework of MAdaboost.RT.

To furnish the framework of MAdaboost.RT, a group of 
base models need to be created. For the best use of the base 
modeling algorithm with given target attributes, parameters 

of the number of principal components of the PLSR and the 
number of hidden-layer neurons of the ELM were fine-tuned 
with a 10-fold cross validation on the training dataset. Figure 3 
shows the cross-validation results in root-mean-square errors 
of the physiochemical indices, where (a) and (b) show the Brix 
values for sweetness, and (c) and (d) show pH values for acidity.

As shown by the results of PLSR modeling in Figure 3a and c, 
the RMSEc of both sweetness and acidity gradually decreased 
with the increase in the number of principal components until 
passing a certain point; then, the error values stopped dropping 
or even rose again as an indication of overfitting. Considering 
the compatibility with the set chosen with SPA as well as that 
with SPA+GA, eight principal components were chosen for 
the PLSR base models to be used in the further MAdaboost.
RT optimization of Brix values (or sweetness), whereas six PLS 
principal components were chosen for pH values (or acidity).

As shown by the results of ELM modeling in Figure 3b 
and d, the initial dropping of R.M.S. error with the increase 
in number of hidden-layer neurons of both Brix values for 
sweetness or pH values for acidity was soon replaced with a 
rising trend as a result of overfitting. For similar consideration 
of the compatibility with both the set chosen with SPA and that 

Figure 3. Selection of base model parameters.
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chosen with SPA+GA, the number of hidden-layer neurons 
of ELMs in sequent MAdaboost.RT optimization was 15 for 
Brix values (or sweetness), whereas the number was 13 for pH 
values (or acidity).

In addition, the set of wavelengths chosen with SPA+GA 
exhibited better performance over that with SPA for both Brix 
values and pH values while working with PLSR, as shown in 
Figure 3a and c, whereas no such difference between these two 
sets of feature wavelengths were exhibited while working with 
ELM, as shown in Figure 3b and d. The apparent superiority of 
SPA-GA with PLSR in RMSEc of the training data was a bias, thus 
to be ignored, because the same data and performance indices 
had already been used in the wavelength selection process. 
Therefore, no comparison was done at this stage between the 
SPA-GA and the SPA, in terms of accuracy; this comparison 
was left to the following Section Accuracy that compares all 
modeling methods with test datasets.

Accuracy

The performance of all the multispectral models on the test 
dataset, in terms of the respective sets of feature wavelengths 
chosen with SPA and SPA-GA, is shown in Table 2. Both Rp and 
RMSEp were used as gaging indices.

With Rp as the gaging index, the performance data of all 
the modeling methods using the selected sets of wavelengths for 
SPA or SPA-GA from Table 2 are plotted in Figure 4.

The superiority of SPA+GA over SPA for feature-wavelength 
selection was evident in both physiochemical attributes of the 
Brix value in Figure 4a and the pH value in (b); the columns from 
the SPA+GA group were taller than their counterparts from the 
SPA group. This pattern of increased modelling accuracy was 
repeated over all the six versions of the ELM models; this strongly 
indicates that although the wavelengths were chosen based on 
the PLS error in the GA process, the chosen sets were specific 

to the target attribute and did not depend on the gaging index 
used for the GA criteria. The specificity to the target attribute 
makes it possible to delineate the data dimensionality reduction 
and the modelling process, because it allows the wavelength set 
chosen with SPA+GA to operate effectively on the modelling 
methods based on algorithms other than its internal GA criteria.

The superiority of MAdaboost.RT as an effective modelling 
optimization framework was apparent as its application with 
ELM, i.e. MAdaboost.RT-ELM, topped the prediction of both 
target attributes regardless of the feature wavelength selection 
method; moreover, better accuracy was achieved with MAdaboost.
RT-PLSR in comparison with the base PLSR models, although 
MAdaboost.RT performed better with ELM than PLSR did. 
The difference in the accuracy improvement over the corresponding 
base models, ELM or PLSR, may be due to the different methods 
used for generating the base models. The PLSR base models in 
MAdaboost.RT-PLSR were created by resampling the training 
set. Thus, the models had a stronger correlation and were less 
different from each other, leaving less room for improvement 
for MAdaboost.RT by optimizing the thresholds of these weak 
predictors. In contrast, the ELM-based weak models in the 
MAdaboost.RT framework were produced with random matrices 
and were thus considerably more dissimilar. By adjusting the 
thresholds according to the performance of weak predictors, 
focusing specifically on the misclassified samples in the previous 
round, the learning iterations significantly improved the more 
diverse weak predictors by maximizing their advantages with 
the weak predictors being optimally weighted.

GA-ELM modeling also showed a considerable improvement 
in prediction accuracy over the base ELM model on both target 
attributes, with feature wavelength sets chosen using both 
methods. GA appeared to improve the seeking of the weights 
and biases between the input-layer and hidden-layer neurons 
in the ELM. Through the internal crossovers and mutations 
of GA, the guided evolution yielded better performance than 
that achieved by generating matrices out to pure randomness. 

Table 2. Prediction accuracy of different models.

Wavelength 
selection Modeling

Brix pH

RP RMSEP/°Brix RP RMSEP

SPA PLSR 0.7938 0.6864 0.6467 0.0743

ELM 0.7986 0.6832 0.6734 0.0719

GA-PLSR 0.8017 0.6802 0.6489 0.0732

GA-ELM 0.8277 0.6247 0.6944 0.0699

MAdaboost.RT -PLSR 0.8103 0.6654 0.6549 0.0739

MAdaboost.RT -ELM 0.8372 0.5986 0.7113 0.0678

SPA+GA PLSR 0.8297 0.6228 0.6724 0.0721

ELM 0.8187 0.6541 0.6994 0.0695

GA-PLSR 0.8278 0.6294 0.6820 0.0704

GA-ELM 0.8291 0.6373 0.7151 0.0704

MAdaboost.RT -PLSR 0.8342 0.6029 0.6790 0.0710

MAdaboost.RT -ELM 0.8498 0.5892 0.7254 0.0645

Rp: gaging index.
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ELM, a consistent improvement in prediction accuracy could be 
achieved, as discussed in Section 4.2. Thus MAdaboost.RT was 
the best option for multispectral modeling for the prediction of 
greengage physiochemical attributes.

4.4 Best practices

(1) The supervised feature wavelength selection of SPA+GA 
for data dimensionality reduction is recommended when moderate 
computational resources are available. The additional time required 
for the second stage of the GA selection of wavelengths always 
yielded an improvement in accuracy of the Brix and pH values 
in every type of multispectral modelling. This is because, after 
the initial stage of redundancy removal in SPA, the evolutional 
process guides the selection of wavelengths toward the target 
attribute and yields tailored final sets of feature wavelengths 
with a moderate time overhead;

(2) MAdaboost.RT-ELM is the preferred type of multispectral 
modelling. It consistently provided a reliably high accuracy at a low 
computational expense, on both the Brix and pH values, and for 

Nevertheless, the final model out of the GA-ELM process would 
still be a single ELM model, and according to the results, its 
performance was not comparable to that of the combination 
of the ELM base models of MAdaboost.RT-ELM.

Unlike MAdaboost.RT or GA-ELM, GA-PLSR modeling did 
not guarantee an improvement in prediction accuracy. It  did not 
outperform the base PLSR model in all cases, yielding inferior 
PLSR Brix values on the SPA+GA set of wavelengths. Nevertheless, 
it did outperform MAdaboost.RT-PLSR in some cases, as in 
the pH prediction on the SPA+GA set of feature wavelengths. 
This uncertainty in the performance may due to the mechanism 
of GA-PLSR modeling. It further dropped wavelengths from 
the top 10s provided by the feature selection process, and the 
final GA-PLSR model utilized only a subset from the top 10 
wavelengths. In essence, eliminating redundancy may improve 
the prediction accuracy in some cases; however, modeling on 
fewer wavelengths may also incur a greater risk of missing key 
information and may sometimes result in worse accuracy.

4.3 Computational expense

Figure 5 shows the time required to build prediction models 
using different optimization methods, based on the greengage 
data. The dimensionality reduction method based on SPA+GA 
required a considerably longer time than based on only the SPA, 
because a large portion of time was required for the GA iterations 
for selecting feature wavelengths. Considering the significant 
improvement in the modeling accuracy, as mentioned in Section 
4.2, the additional computational resources required by the GA 
process for feature wavelength selection were justified.

The computational expense differs negligibly, by less than 
1  min, between modelling methods of PLSR, ELM, or their 
enhancement using MAdaboost.RT or GA. GA-PLSR and GA-ELM 
required the longest time for the evolving iterations. Considering 
the uncertainty in the prediction accuracy improvement, as 
mentioned in Section 3.2, the time invested in the GA process 
for the modelling did not yield favorable results in all cases. 
On the contrary, with only a small additional computational 
overhead for MAdaboost.RT over its base models, PLSR or 

Figure 4. Comparison of multispectral modeling methods grouped in feature-wavelength selection methods.

Figure 5. Time complexity of different models.
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feature wavelength sets chosen with both supervised SPA+GA and 
unsupervised SPA. Unlike the PLSR base models in MAdaboost.
RT-PLSR, the ELM base models are more diverse and provided 
greater accuracy improvements by appropriately configuring the 
thresholds and weights. Compared with the individual models of 
PLSR, ELM, GA-ELM, or GA-PLSR, the fine-tuned combination of 
base models in MAdaboost.RT-ELM showed an overall superiority;

(3) MAdaboost.RT-ELM with feature wavelengths selected 
using SPA was the best quick model for multispectral modelling 
as it consistently provided the highest accuracy among the quick 
modelling methods, in the prediction of both Brix and pH values, 
with a negligible computational overhead.

5 Conclusion
In this study, exemplified by two target physiochemical 

attributes—Brix and pH values—multispectral modeling procedures 
were repeatedly performed on sets of feature wavelengths selected 
with supervised or unsupervised algorithms, and the following 
conclusions were drawn:

(1) Supervised feature wavelength selection is preferred over 
unsupervised selection for better accuracy. SPA+GA improves 
the accuracy of all types of multispectral modelling when its 
GA part guides the selection toward the target attribute, with a 
moderate computational overhead. The wavelengths chosen with 
SPA+GA are specific to the target attribute and are compatible 
with different modelling algorithms;

(2) MAdaboost.RT-ELM is the preferred type of multispectral 
modelling with a consistently high accuracy at a low computational 
expense, in terms of both the Brix and pH values and feature 
wavelength sets chosen with both supervised SPA+GA and 
unsupervised SPA. Overall, MAdaboost.RT is superior to 
the individual PLSR, ELM, GA-ELM, and GA-PLSR models. 
Since the ELM base models generated from random matrices 
in MAdaboost.RT-ELM are more diverse than the PLSR base 
models from resampled training data in MAdaboost.RT-PLSR, 
the former allow for greater improvement by appropriately 
configuring their thresholds and weights;

(3) MAdaboost.RT-ELM with SPA-based selection of feature 
wavelengths represents the most accurate quick type of multispectral 
modelling, at a negligible additional computational cost over 
the quickest approaches of PLSR or ELM on SPA, with reliable 
top accuracy among the quick modelling methods.
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