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1 Introduction
The World Health Organization (WHO) predicts that by 

2025, the number of patients with diabetes will exceed 300 million 
globally while showing a gradual growth trend (Guariguata et al., 
2014). The vast patient population has brought a heavy burden 
to society, and the United Nations Health Organization has 
listed it as a serious threat to human health. Among the ‘five 
carriages’ for the treatment of patients with diabetes, the most 
challenging and attracting the most attention is none other than 
‘diet’. Diet therapy is the most basic and effective treatment for 
all types of diabetes. The combination of diet and medication, 
through dietary regulation, can reduce the amount of medication, 
promote the stability of the disease and prevent or reduce the 
occurrence of complications. Soluble dietary fibre currently 
plays an essential role in the adjuvant treatment of diabetes 
(Sood  et  al., 2008; Chiu & Stewart, 2012). Several studies 
have confirmed that soluble dietary fibre has better effects on 
improving blood sugar (Landin et al., 1992), lowering serum 
low-density lipoprotein and improving blood lipids (Keithley & 
Swanson, 2005). Konjac is a kind of perennial herbaceous plant 
in the Araceae family (Chua et al., 2010). It is a food with low 
heat energy and high dietary fibre. It is called a ‘precious natural 
health food’ by WHO. As the earliest country to grow konjac, 
China has a record of using konjac as a ‘famine-relief ’ food and 
medicinal material to treat diseases as early as 2,000 years ago. 
It provides references and ideas for the current diabetes diet 
intervention. Modern research has proven that konjac not only 
has multiple functions, such as lowering blood sugar and blood 
lipids, regulating the gastrointestinal tract (Zhou et al., 2019), 

preventing and treating tumours (Chen et al., 2017) and enhancing 
immunity (Chen et al., 2016), it can also reduce the potential 
harm of high blood pressure (Khan et al., 2018), cardiovascular 
diseases (Vuksan et al., 2020) and diabetes (Gao et al., 2019). 
This article describes the research progress of konjac dietary 
fibre in diabetes from the aspects of active ingredients, clinical 
reports and mechanism research.

2 Active ingredients
The main active ingredient in konjac is konjac glucomannan 

(KGM), which has been extracted from its tuber. KGM is a kind 
of compound polysaccharide. The content of KGM in the grown 
konjac can reach 60% (Gómez et al., 2017). KGM also contains 
alkaloids, pectin, amino acids and trace elements, including 
potassium, phosphorus and selenium (Devaraj et al., 2019). KGM 
is a non-ionic polymer polysaccharide composed of D-glucose 
and D-mannose through a β-1,4-pyranoside bond in a molar 
ratio of 1 : 1.6 to 1 : 1.4. The average relative molecular mass 
varies between 200,000 and 2 million depending on the origin, 
variety, processing method and storage time of raw materials 
(Jian et al., 2015). There is a β-1,3 glycosidic bond branched-
chain structure at the C3 position of the main mannose chain. 
See Figure 1.

As a food with low caloric energy and high dietary fibre, 
domestic experts discovered that konjac is rich in soluble 
hemicellulose KGM as early as the 1990s (Li et al., 1996). Since then, 
it has gradually become a research hotspot at home and abroad 
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because of its wide application value and unique physiological 
activity. KGM has a variety of excellent characteristics, strong 
water-holding performance and can reach 80-100 times its 
own dry weight after swelling with water. After entering the 
human body through diet, it can hardly produce energy and its 
viscosity is relatively large. It can be mixed with other foods to 
delay digestion and absorption, forming a benign stimulus to 
the surface of the digestive tract and regulating metabolism. This 
is currently considered to be the primary mechanism of konjac 
hypoglycaemia. Diabetes diet treatment requires maintaining a 
good sense of satiety while also controlling total calories. KGM 
is a fermentable water-soluble dietary fibre. It is an excellent 
dietary fibre product. It can absorb glucose, thereby affecting the 
absorption rate and amount of nutrients such as glucose and fat. 
Its superior water absorption and swelling properties promote the 
secretion of saliva and digestive juice, and it is not easily digested 
or absorbed. Compared with easily digestible monosaccharides 
and polysaccharides, dietary fibre has a more obvious effect on 
increasing satiety (Rebello et al., 2016) and reducing high-calorie 
diet intake, which is conducive to effective weight control and can 
prevent hunger for patients with diabetic diet control, playing 
an active role in the prevention and treatment of diabetes and 
metabolic syndrome. In addition, due to its unique structure, 
KGM is widely used as an emulsifier, gelling agent, thickener, 
filler and stabilizer in medicine, environmental protection, food 
production and other fields (Anderson et al., 2009). It can be 
said that KGM is one of the better dietary fibres developed so 
far (Wang et al., 2015).

3 Clinical research
The formation and development of diabetes have a great 

relationship with diet (Dong et al., 2019). Encouraging people 
with diabetes to develop a diet of eating more foods with strong 
satiety and low glycaemic index (GI) is essential for controlling 
blood sugar. As a high-quality soluble dietary fibre, konjac dietary 
fibre has attracted scholars from all over the world. As early as 
the 1990s, researchers found that patients with T2DM with the 
same caloric intake, compared with the rich KGM, the normal 
diet control group had a significant increase in blood glucose 
and C-peptide levels after eating (P < 0.01) (Melga et al., 1992). 
Vuksan et al. (2001) compared KGM with other soluble substances 
(such as xanthan gum) at a concentration of 1% (v/v). Konjac 
showed the greatest viscosity. Therefore, it is concluded that the 
use of KGM as an alternative therapy for type 2 diabetes has strong 
feasibility. A previous randomized crossover trial study by their 
team also found that a high concentration of KGM added to the 
diet (0.5 g per 100 kcal [8-13 g/d]) can reduce the hidden dangers 
of three high-risk factors (hyperglycaemia, hyperlipidaemia and 
hypertension) in patients with high-risk T2DM (Vuksan et al., 
1999). The insulin resistance (IR) syndrome can also improve 
the symptoms of hyperglycaemia (Vuksan et al., 2000). Doi et al. 
(1983) took blood samples from 11 patients with diabetes and 
found that the absorption rate of vitamin E into the intestines of 
subjects who added 3.9 g of glucomannan was reduced. Adding 
dietary fibre such as KGM to bread can effectively improve the 
postprandial blood glucose (PBG) of patients with T2DM in 
developed countries such as Southeast Asia, where carbohydrates 

Figure 1. β-1,3 glycosidic bond branched-chain structure at the C3 position of the main mannose chain.
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are the primary food source (P < 0.01); the PBG decline is greater 
than 30% (Boers et al., 2017). The statistical model of the four 
in vitro parameters (digestibility, % RDS, AUC, carbohydrate 
level) is highly predictive of PBG results (adjusted R2 = 0.89).

In clinical observations, another mechanism of konjac 
dietary fibre for reducing blood sugar is to inhibit the absorption 
of cholesterol and bile acids in the intestine. The research team 
led by Chen  et  al. (2003) conducted a randomised, double-
blind crossover clinical experimental study on diabetes with 
hyperlipidaemia. Patients in the experimental group were 
supplemented with 3.6 g KGM daily. The results showed that the 
patients’ total cholesterol (TC), low-density lipoprotein (LDL) 
to high-density lipoprotein (HDL) ratio, apolipoprotein B and 
apolipoprotein A significantly decreased. The concentration 
of neutral sterol and bile acid in the patients’ stool increased 
(18%, P = 0.004; 75.4%, P < 0.001, respectively), proving that 
KGM inhibited cholesterol and bile acid absorption. The studies 
by Kraemer et al. (2007) on overweight patients also showed 
that adding anaerobic and physical training to the KGM diet 
can significantly improve the body’s HDL content and the TC/
HDL ratio. Another randomized controlled study showed 
that (Chearskul  et  al., 2007). However, long-term dietary 
glucomannan cannot improve IR in patients with diabetes. It 
can reduce the area under the curve of the patient’s 2-hour oral 
glucose tolerance test (OGTT) and lower LDL and TC levels. 
The results of McCarty (2005) and his research team showed 
that KGM has no difference with acarbose in reducing FBG, 2h 
PBG, TC, LDL, etc. The two effects are equivalent, similar to the 
protective effect of acarbose.

Numerous clinical data show that konjac dietary fibre has 
a positive effect on the adjuvant treatment of diabetes, and it 
has a broad prospect for development. From the perspective 
of health economics, its safe and cheap advantages are more 
suitable for the majority of people with diabetes. However, we 
have also seen that clinical research is mostly simple preliminary 
research, which only involves the observation of simple blood 
sugar and blood lipids. Its internal mechanism is less involved, 
which leaves a lot of space for developing konjac health food.

4 Mechanism research

4.1 Inhibit the α-glycosidase activity

As a soluble dietary fibre with high viscosity, high swelling 
and strong satiety, KGM’s hypoglycaemic mechanism mainly 
lies in its flow characteristics. After KGM absorbs water, it can 
quickly swell in the stomach to form a highly viscous konjac 
gum solution, which cannot be digested by the stomach in a 
short time. This feature delays the emptying of the stomach, 
prolongs the time for food to enter the small intestine from the 
stomach and forms an immobile water layer on the surface of the 
intestinal mucosa (Devaraj et al., 2019). This blocks the digestion 
and absorption of most carbohydrates and monosaccharides and 
reduces the rate of glucose absorption by the intestines, thereby 
lowering blood sugar levels. Research has shown that a KGM 
soluble fibre diet can limit the absorption of carbohydrates and 
improve blood glucose parameters (McCarty, 2005). Research 
has also shown that some natural foods, including KGM, 

can mimic the protective effects of acarbose, slow down the 
absorption of fat, protein and carbohydrates, and increase the 
glycaemic index (Jenkins et al., 2018). Chinese scholars, through 
experiments, have also shown that KGM can significantly 
inhibit the activity of α-glycosidase and inhibit the absorption 
of sucrose (Wang et al., 2005), but its inhibitory strength is not 
as good as that of voglibose. This suggests that glucomannan 
may have the properties and pharmacodynamic mechanism of 
inhibiting α-glycosidase. However, the above experiments have 
limitations. They have not been verified in vitro and in vivo. The 
effect of konjac dietary fibre in inhibiting α-glycosidase activity 
needs further verification.

4.2 Inhibition of inflammation

In 1993, an article in Science magazine first introduced 
the relationship between tumour necrosis factor (TNF) and 
obesity, as well as the relationship between inflammation and IR 
(Hotamisligil et al., 1993). At present, the concept that diabetes 
is a chronic low-concentration inflammatory disease has gained 
more recognition in the industry. Inflammation is closely related 
to IR in T2DM, and T2DM is even regarded as an inflammatory, 
metabolic disease (Donath & Shoelson, 2011). Studies have 
found that inflammatory factors such as interleukin-6 (IL-6), 
interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) 
inhibit the insulin signalling pathway and lead to IR and induce 
T2DM (Jager et al., 2007; Stienstra et al., 2010). It can be seen 
that long-term infiltration of inflammatory factors can lead 
to impaired β-cell function (Cerf, 2013), and inflammation 
plays a vital role in the occurrence and development of IR in 
T2DM. Supplementing the KGM diet can significantly inhibit 
the overproduction of IL-10, IL-4 and TNF-α (Dai et al., 2021). 
Zhao et al. (2020) demonstrated in in vitro experiments that low 
and high concentrations of KGM can promote the proliferation 
of lymphocytes in immunosuppressed mice induced by 
cyclophosphamide (CTX) and also significantly increase the 
levels of TNF-α, IgG and IL-2 in mouse serum, compared with 
the model group, which was significant (P < 0.01). It reflects the 
mutual restriction between KGM regulation of anti-inflammatory 
and pro-inflammatory cytokines and shows a certain concentration 
and time dependence. Researchers in China have studied T2DM 
rats induced by a high-fat diet combined with STZ and found 
that after a medium dose of KGM (80 mg/kg b.w.) treatment, 
the pathway of nuclear factor-κB (NF-κB) was improved and 
positively regulated (Rehman & Akash, 2017). This indirectly 
indicates that the hypoglycaemic mechanism of KGM is related 
to the inhibition of the expression of inflammatory factors.

4.3 Antioxidant stress response

By detecting oxidative stress markers in patients with diabetes 
and experimental animals, much experimental evidence shows a 
direct link between oxidative stress and diabetes. Eriksson (2007) 
studied the levels of 8-hydroxydeoxyribonucleic acid-modified 
protein in GK rats and showed that hyperglycaemia is the main 
potential factor of oxidative stress in pancreatic β-cells. Oxidative 
stress caused by glucose explains the mechanism behind sugar 
toxicity. IR caused by chronic hyperglycaemia is also believed 
to be related to the induction of oxidative stress (Chen et al., 
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2019). The polysaccharides in konjac are a scavenger of ROS, 
which can effectively remove hydroxyl, superoxide and metal-
inducing genes, thereby preventing lipid peroxidation damage 
to cells caused by oxidative stress.

Research has found that the fasting blood glucose concentration 
and blood lipids of rats in the KGM intervention group were 
significantly reduced (P < 0.05, P < 0.01, respectively) (Wang et al., 
2002). The total antioxidant capacity and insulin secretion levels 
were significantly increased (P < 0.05), and the oxidative stress-
related genes Hmox1 and epidermal growth factor receptor genes 
were significantly upregulated (P < 0.05). It has been proven 
that KGM can inhibit the body’s oxidative stress damage caused 
by diabetes and enhance its antioxidant capacity. High-fat-fed 
obese SD rats given six weeks of quantified konjac powder can 
significantly increase SOD activity and reduce lipid peroxide 
(LPO) content. This effect can last for one week after drug 
withdrawal (Aydin et al., 2018). Continuous research on konjac 
dietary fibre foods undoubtedly provides a broad research and 
development space for clinical adjuvant replacement therapy 
to delay the chronic damage and complications of diabetic 
pancreatic islet β-cells.

4.4 Improve intestinal prebiotic activity

The balance of intestinal flora and T2DM have also been 
current research hotspots. There have been many domestic and 
foreign studies focusing on the correlation between intestinal 
flora and the pathogenesis of diabetes (He et al., 2015; Mejía-
León & Barca, 2015). Researchers have found that compared with 
healthy people, the structure of the intestinal flora in patients 
with diabetes that are obese changes significantly, and the species 
richness is also reduced (Liu et al., 2016). KGM can selectively 
stimulate the growth of lactobacillus and bifidobacteria in the 
intestine after hydrolysis (Al-Ghazzewi et al., 2007) and, at the 
same time, inhibit the growth of pathogenic bacteria such as 
Bacteroides and Escherichia coli in the intestine (Behera & Ray, 
2016). Through the observation and analysis of the flora in people 
who added KGM and undigested plant fibre to their diet, the 
beneficial bacteria such as lactobacillus and bifidobacteria also 
increased significantly (Tan et al., 2016). An animal experiment 
on sows with gestational diabetes showed that feeding sows a 
konjac flour diet increased the insulin sensitivity index (P < 0.05) 
and significantly increased the abundance of Firmicutes and 
Bacteroides (P < 0.01), reducing the abundance of protein bacteria 
(P < 0.01) (Al-Ghazzewi & Tester, 2012). Ghazzewi et al. added 
hydrolysed KGM to MRS agar medium. Higher colony growth 
was observed in the agar, and the growth rate was accelerated 
under a high-temperature environment, which directly proved 
the development potential of KGM as a prebiotic (Bindels et al., 
2015). One of the latest strategies for the clinical treatment of 
diabetes is probiotics, which usually refers to ‘selectively fermented 
indigestible food ingredients or substances that specialize in the 
gastrointestinal tract to support the growth and/or activity of 
health-promoting bacteria’ (Gómez et al., 2017). Konjac extract, 
konjac glucomannan and konjac oligosaccharides are also believed 
to act as prebiotics by inducing beneficial physiological effects 
(Gibson et al., 1995). Konjac glucomannan and oligosaccharides 
have a highly selective effect on the human intestinal microbiota. 

The main reason is to increase the number of bifidobacteria 
and lactobacillus while reducing Bacteroides, Clostridium and 
Fusobacterium (Holscher et al., 2015). In contrast, most dietary 
fibres cannot induce selective changes in the gut microbiota 
(Akın & Bölük, 2020). Therefore, konjac dietary fibre can be 
used as a new type of prebiotic that can be added to food. This 
provides the experimental basis for further developing konjac 
dietary fibre composition as a food supplement for people at 
high risk of diabetes or diabetes.

4.5 Inhibit intestinal absorption

Diabetes combined with hyperlipidaemia and obesity 
accounts for 20 to 90% of patients with diabetes (McGarry, 
2002). Most of the root causes of type 2 diabetes and its 
complications are lipid metabolism disorders (Gallaher et al., 
2000). The hypoglycaemic and lipid-lowering effects of konjac 
dietary fibre are almost synchronized. Animal experiments 
speculate that the dual effects of konjac in reducing blood 
sugar and lipids are achieved by increasing sterols or bile acids 
in excretion (Jenkins et al., 1993). The other mechanism may 
be to reduce the Na+/K+-ATPase activity of the small intestinal 
mucosa and inhibit the absorption of cholesterol and bile acids 
(Pencek et al., 2002). Na+/K+-ATP is also called the ‘sodium-
potassium pump’, which provides conditions for the secondary 
active and transmembrane transports of glucose and amino acids. 
The level of its activity indicates the ability of the small intestine 
to absorb nutrients. When the enzyme activity decreases, the 
intestinal absorption of glucose, amino acids and other nutrients 
will decrease. The excessive storage of Na+ in the cells will also 
cause the intestinal osmotic pressure to increase, increasing the 
water content, stimulating intestinal peristalsis and promoting 
excretion (Han et al., 2016).

4.6 Suppress gluconeogenesis

Gluconeogenesis is the process by which mammals convert 
nutrients (lactic acid, amino acids, glycerol, etc.) into glucose or 
glycogen in the body and is one of the source channels of blood 
sugar (Guasch-Ferré et al., 2020). Gluconeogenesis is closely related 
to diabetes. The more obvious the effect of gluconeogenesis, the 
higher the fasting blood sugar. One of the functions of insulin is 
to synthesize liver glycogen, promote the conversion of glucose 
into fat, transport it to adipose tissue for storage and inhibit 
gluconeogenesis (Hatting et al., 2018). It has been established that 
insulin acts by activating the PI3K/Akt signalling pathway, and 
the loss of PI3K and Akt may be involved in the occurrence of IR 
and T2 (Garofalo et al., 2003). FOXO1 is a sensor for the liver to 
regulate blood insulin levels and glucose and lipid metabolism 
(Guo, 2014). Overexpression of FOXO1 can damage the ability of 
insulin to regulate liver glucose and lipid metabolism (Qu et al., 
2006). Blocking FOXO1 can improve liver glucose and lipid 
metabolism in patients with IR (Cheng et al., 2009). The 8-week 
ladder training combined with the low-fat konjac diet can activate 
the high-fat diet to induce the PI3K/Akt pathway in IR rats. The 
FOXO1 content is significantly reduced (P < 0.05), showing that 
aerobic exercise combined with KGM supplementation can 
improve the liver PI3K/FOXO1 signalling pathways to inhibit 
the liver’s gluconeogenesis, reduce the production of glycogen, 
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effectively prevent the occurrence of liver IR and maintain the 
stability of fasting blood glucose (Tang et al., 2014). Therefore, 
the decrease of blood glucose concentration in rats may also 
be related to the regulation of Konjac’s promotion of glycogen 
synthesis and inhibition of gluconeogenesis.

4.7 Improve immune function

Under normal circumstances, the body, with the removal 
of risk factors disappear, the immune response is temporary. 
However, if obesity, IR or persistent hyperglycaemia and other 
damaging factors exist for a long time, a pathological chronic 
inflammatory process will occur, which is involved in the 
occurrence of many diseases (Hotamisligil, 2006). Studies have 
shown that T2DM is an autoimmune disease (Stadhouders et al., 
2018). The accumulation of a large number of metabolites may 
trigger the body’s immune dysfunction, and abnormal immune 
responses can aggravate the progression of the patient’s condition. 
It has been reported that KGM can reduce the symptoms of 
diabetes by enhancing the body’s immune regulatory function 
and antioxidant capacity (Jiang et al., 2018). The results of in 
vitro experiments also confirmed that konjac oligosaccharides 
could directly act on monocytes derived from human dendritic 
cells to regulate immune function (Lehmann et al., 2015). The 
active ingredients of konjac, glucomannan and oligosaccharides 
are also beneficial intestinal probiotics, regulating glucose and 
lipid metabolism and improving the body’s immune function 
(Tester & Al-Ghazzewi, 2016). Chinese scholars used microbial 
enzymatic hydrolysis to degrade KGM molecules and found 
that the decomposition products have a good hypoglycaemic 
effect (Li et al., 2004). The study found that mouse macrophage 
phagocytic red blood cell percentage and phagocytic index increased 
significantly after administration (P < 0.01), which can enhance 
the phagocytic function of mouse peritoneal macrophages and 
the delayed allergic reaction caused by 2,4-dinitrofluorobenzene 
(DNFB). It is speculated that the goal of reducing blood sugar 
is achieved through autoimmunity. However, there are still few 
related studies, and further discussion is needed.

5 Adverse reactions and effective doses
As a soluble dietary fibre with high viscosity and high 

swelling properties, konjac will form a highly viscous sol after 
being dissolved in water, which can also cause some adverse 
reactions to the gastrointestinal tract while reducing blood 
sugar and fat, such as bloating, anorexia and diarrhoea. It is 
generally believed that excessive intake of konjac may cause 
flatulence and even lead to an imbalance of essential nutrients, 
which is counterproductive (Liu et al., 2016). At present, there 
are still some controversies about the dosage of KGM causing 
gastrointestinal adverse reactions in clinical practice, and the 
safety of konjac is still worth studying. Research has shown 
that KGM up to 2.5 g/kg has neither maternal toxicity nor 
teratogenicity in pregnant rats (Jiang et al., 2016). There is also 
the view that a small dose of 3.6 g of glucomannan per day does 
not change intestinal function (Arvill & Bodin, 1995). With the 
gradual increase of research, the safe dose of konjac reported 
in the literature is between 3.6 and 13.0 g per day, and it has a 
clear hypoglycaemic and lipid-lowering effect (Arvill & Bodin, 

1995). However, various studies have different sample sizes, 
different races, dietary habits and inclusion criteria. Therefore, 
there is currently no consensus on the side effects and safe doses 
of konjac dietary fibre.

6 Konjac and food
KGM is a neutral plant polysaccharide. As a thickening 

and gelling agent, KGM is more and more widely used in the 
food industry (Ye  et  al., 2022). KGM hydrogel has good gel 
forming ability, but its poor swelling ability and poor controlled 
release performance limit its application. Oxidized hyaluronic 
acid (OHA) can effectively improve the performance of KGM 
hydrogels (Wu et al., 2022a). KGM and κ-carrageenan (CAR) 
showed a synergistic effect, thus forming a composite hydrophilic 
gel (if frozen) with great prospects in the field of food. It was 
found that appropriate addition of MD (0.4%) and deacetylated 
KGM could change the tensile properties of KGM/CAR blend 
gels, which might meet the needs of consumers and further 
design innovative tensile gel products in the soft gel industry 
(Wu et al., 2021). KGM can be used as additive to improve the 
properties of wheat products. KGM with high viscosity can 
improve the quality of steamed bread (Guo et al., 2022). KGM 
hydrolysate can be used as a low heat health gel enhancer in 
surimi processing (Wu et al., 2022b).

7 Discussion and outlook
China’s konjac production is abundant, and the price is 

low. With the enhancement of people’s health awareness and 
recognition of the benefits of dietary fibre in the 21st century, 
konjac products have a huge market development potential. At 
present, the development of various konjac dietary fibre foods 
on the market is also gradually prospering.

In summary, konjac dietary fibre is beneficial to patients with 
diabetes and has attracted the attention of researchers. It can 
achieve the effect of reducing blood sugar from many aspects. 
Its strong water absorption, swelling and viscosity can delay the 
absorption of food, which is considered the main mechanism 
for lowering blood sugar. More studies have shown that konjac 
dietary fibre can act in the gastrointestinal tract, so whether the 
secretion and release of related hormones and enzymes, such as 
GLP-1, DDP-4, etc. can be regulated by the endocrine system in 
the intestine, the research contents will be significant. However, 
in recent years, there has been little research on the mechanism 
of konjac in reducing blood sugar and lipids. Some studies have 
only shown that the administration of konjac glucomannan 
significantly decreased the levels of type 2 diabetic rats’ fasting 
blood glucose, serum insulin, glucagon-like peptide 1 and glycated 
serum protein (Gamboa-Gómez et al., 2020). Whether there is 
an undiscovered mechanism of action will be the direction we 
need to study next.

At the same time, safe and effective health foods have brought 
good news to patients with diabetes and obesity. However, 
through our observations, there is still room for improvement in 
clinical research and food development. 1. Unify the production 
process and evaluation standards to ensure the uniformity 
and comparability of the edible effect of health foods in the 
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market. 2. As far as possible, the processing of konjac is refined 
and nano-sized, which is more conducive to absorption and 
metabolism and reduces adverse reactions, such as abdominal 
distension and diarrhoea after consumption of traditional konjac 
foods. Consumers should be fully informed in the manual and 
in promotion to alleviate their panic. 3. Konjac is difficult to 
promote clinically because of its poor taste. It should be mixed 
with other foods to improve the taste as much as possible to 
ensure the synergistic effect and enhance patient compliance. 4. 
Because konjac has a strong hypoglycaemic effect, and different 
patients have different tolerance levels, further research should 
be done on the dosage and rheological biological effects of 
dietary fibre and, at the same time, prevent the occurrence of 
hypoglycaemia after use.

We believe that there are safer and more reliable methods 
to prevent and treat diabetes, and the treatment of diabetes 
based on the regulation of konjac dietary fibre could provide 
an innovative and critical idea for its prevention and treatment.
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