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1 Introduction
The industry of minimally processed fruits and vegetables, as 

well as the consumption of these foods, has grown significantly 
in recent years (Joshi et al., 2013; Rosário et al., 2017). Minimally 
processed foods, or ready-to-eat (RTE), are those that have 
undergone selection, washing, sanitizing, peeling and/or cutting, 
and subsequent appropriate packaging during processing, in order 
to obtain products ready for immediate consumption (Paula et al., 
2009; Smanioto et al., 2009). However, the increase in the market 
and consumption of RTE has been correlated with an increase in 
the incidence of foodborne disease outbreaks due to the ingestion 
of fruits and vegetables contaminated by pathogens.

Among the microorganisms most involved in the 
occurrence of foodborne outbreaks involving fresh products 
are Salmonella  spp., Escherichia coli, Listeria monocytogenes, 
and Shigella spp. Salmonella is a major foodborne bacterium 
that causes gastroenteritis and is estimated to be responsible 
for approximately 3 million cases of foodborne illness in China 
and 1 million cases in the United States of America (Guo et al., 
2016). From 2013 to 2016, several Salmonella outbreaks have been 
reported worldwide, with one outbreak per year attributed to the 
consumption of cucumbers contaminated with this pathogen 
in the USA (Angelo et al., 2015; Bottichio et al., 2016; Centers 
for Disease Control and prevention, 2016). In Brazil, from 2000 
to 2015, 11,241 outbreaks of foodborne illness were registered 
(Food Safety Brazil, 2016). According to the Epidemiological 
Surveillance of Foodborne Diseases in Brazil, the cases of 
outbreak increased by 10% from 2016 to 2017. Salmonella spp. 
accounted for the largest number of cases (35%) whose cause 
was identified (Food Safety Brazil, 2019).

The increase of new cases due to the inefficiency in the 
production and processing stages, as during sanitization, can 
result in complications in several countries (Fernandes et al., 
2014). The  efficiency of washing and sanitizing processes is 
directly related to the microbiological quality of the final product 
(Ramos et al., 2013; Rosário et al., 2017). Washing with potable 
water allows the removal of soil components and some of the 
pathogens but alone is not sufficient to significantly reduce the 
microbial load present in the food (Joshi et al., 2013; Gomes et al., 
2014). The sanitization step is a key point for the microbiological 
control of foods (Joshi et al., 2013; São José et al., 2014) in order 
to ensure microbial control and food safety.

Usually, it is common to use chlorine-based compounds, 
especially sodium hypochlorite, during the sanitization of 
vegetables. These compounds are recommended in Brazil 
(Brasil, 1988; Brasil, 2007), but several European countries such 
as Germany, Belgium, Holland, and Sweden have prohibited 
the use of these compounds in the sanitization of fruits and 
vegetables (Rico et al., 2007). A concern about use of chlorine 
compounds is their potential for negative interactions with 
organic load contributed by plant tissue or other contaminants 
encountered during pre-harvest to post-harvest handling. 
The discussion on the use of chlorinated compounds is related 
to the possibility of generating highly carcinogenic by-products, 
which is of environmental problem (São José & Vanetti, 2012). 
In addition, the washing and use of chlorinated compounds may 
not be fully effective in the disinfection step of RTE (Huang et al., 
2012; Rosário et al., 2017) because of the limited reduction of 
the contamination by 1 to 2 log CFU/g. Therefore, studies on 
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new disinfection strategies can contribute to the microbiological 
safety of the food (Huang & Chen, 2011; Sagong et al., 2011; 
Joshi et al., 2013; São José & Vanetti, 2015; Rosário et al., 2017; 
São José et al., 2018).

Lactic, acetic and citric acids are examples of organic acids 
that can be applied in the sanitization process. These substances 
are considered as generally recognized as safe (GRAS) and 
are acknowledged for their ability to act on a broad spectrum 
of bacteria with rapid inhibition of microbial cells present in 
food (Akbas & Ölmez, 2007; Huang & Chen, 2011; In et al., 
2013; Sagong  et  al., 2011). Another alternative sanitizer is 
hydrogen peroxide due to its high oxidation power and highly 
bacteriostatic and bactericidal properties, including bacterial 
spore reduction. In addition, it does not react with organic 
components and does not form toxic waste. For these reasons, 
it has been gaining prominence in the minimum processing 
industry (Ölmez & Kretzschmar, 2009). These sanitizers can be 
used in the processing of RTE and can thus assist processers in 
adapting to new market trends. This work aimed to evaluate the 
application of organic acids and hydrogen peroxide in removing 
the natural contaminants microbiota and Salmonella enterica 
Enteritidis intentionally inoculated on the surface of strawberries, 
cucumbers, and rocket leaves.

2 Materials and methods
2.1 Obtaining the samples and sanitizers treatments

Samples of strawberries (Fragaria x ananassa Duch), 
cucumbers (Cucumis sativus L. var Aodai) and rocket leaves 
(Eruca sativa L.) were acquired from the local market of Vitória 
(Espírito Santo State, Brazil) and stored at 7 °C for a maximum of 
24 h before processing. Before the analyses, the vegetables were 
selected and damaged or rotten ones were discarded. The stems 
were removed from yellowing rocket leaves. They were then 
washed in water to remove dirt that had adhered to the surface 
and were then drained for 10 minutes. The sanitization step 
consisted of the isolated immersion of approximately 200 g of 
strawberries, a unit of cucumber (approximately 250 g) and 
50 g of rocket leaves in 1 L of sanitizing solution to analyze 
the efficiency against natural microbial contamination. In the 
analysis of Salmonella Enteritidis cell contamination, immersion 
occurred with approximately 100 g of strawberries, a unit of 
cucumber (approximately 250 g) and 25 g of rocket leaves in 
500 mL of solution.

Sanitizing solutions were prepared immediately prior to use, 
and immersion occurred for 5 min at 20 ± 1 °C. The concentrations 
and time of exposure were based on previous experiments and 
scientific literature. The effects of the following sanitizing agents 
were evaluated: 1% and 2% lactic acid (Neon, Suzano, São Paulo, 
Brazil), 1% and 2% acetic acid (Fmaia, Belo Horizonte, Minas 
Gerais, Brazil) and 3% hydrogen peroxide (Scientific Exodus, 
Hortolândia, São Paulo, Brazil). Sanitization treatments with 
chlorinated compounds (200 mg/L sodium dichloroisocyanurate 
(Nippoclor, Indaiatuba, São Paulo, Brazil) and 200 mg/L sodium 
hypochlorite (Hidrosteril, Itapevi, São Paulo, Brazil)) were 
carried out to compare the efficiency of the proposed sanitizers. 

The control was the sample only washed in running water and 
did not undergo the sanitation stage.

The pH value of each sanitizer was measured in 50 mL of 
each prepared solution using a digital potentiometer (Tecnopon, 
mPA210, Piracicaba, São Paulo, Brazil).

2.2 Evaluation of sanitation procedures to removal natural 
microbial contamination

This step was carried out in accordance with the American 
Public Health Association (APHA), as described in the 
Compendium of Methods for the Microbiological Examination 
of Foods (Downes & Ito, 2001).

After each treatment, 25 g of each sample were rinsed 
and homogenized in 225 mL of 0.1% peptone water using a 
stomacher (Seward Medical Co., London, United Kingdom). 
Appropriate serial dilutions were prepared for inoculation in 
standard plate count agar (PCA) (Difco) that was incubated for 
48 h at 35 ± 1 °C to determine the number of aerobic mesophilic 
bacteria. Mold and yeast aliquots were inoculated on potato 
dextrose agar (PDA) (Oxoid) at a pH of 3.5 and incubated at 
25 ± 2 °C for 5 to 7 days. For both analyses, plots of the two 
dilutions were made in duplicate. The result was expressed in 
log of colony forming units per gram (log CFU/g).

2.3 Challenge test to evaluate the efficiency of sanitizers in 
the removal of Salmonella enterica Enteritidis ATCC 13076

This test evaluated the potential of the different sanitizers for 
the inactivation of Salmonella enterica Enteritidis (ATCC 13076) 
intentionally inoculated on the samples. Vegetables were selected, 
cleaned and rinsed with sterile distilled water. A suspension of 
Salmonella enterica serovar Enteritidis (ATCC 13076) vegetative 
cells was utilized. From a pure culture of bacteria maintained 
at -80 °C in Eppendorf tubes containing Brain Heart Infusion 
(BHI) and glycerol (80:20, v:v), we prepared suspensions 
containing approximately 1.0 × 107 CFU/mL of bacteria. For use 
in trials, suspensions of vegetative cells were produced in two 
consecutive subcultures in BHI broth by incubation at 35 °C for 
24 h. The culture was preserved in 1 mL microtubes containing 
BHI (Himedia), activated by two consecutive BHI replications, 
and incubated at 37 °C for 24 h until reaching a population 
of 106 to 107 CFU/mL. The number of microorganisms in the 
suspensions was determined by plating on Salmonella-Shigella 
agar (Himedia, Brazil) and incubating the plates at 35 °C for 24 h.

Inoculation procedures were conducted according to São 
José (2013) with approximately 100 g of strawberries, 250 g of 
cucumbers and 25 g of rocket leaves that were placed separately 
in a previously sterilized plastic bags. The inoculum (10 mL) 
was added along with 500 mL of 0.1% peptone water. The bag 
containing the inoculum and the vegetable was gently shaken 
for 5 minutes. The samples were kept in contact with the cell 
suspension for 60 minutes at 25 ± 1 °C. The cell suspension was 
drained, and the strawberries and cucumbers contaminated with 
Salmonella were placed in sterile plastic bags and incubated 
at 25 °C for 24 h to allow for better adherence of the bacteria. 
Nevertheless, the rocket leaves were kept at the same temperature 
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for 1 hour, due to the characteristic of the sample. Afterward, 
contaminated samples were immersed in 500 mL of sanitizing 
solution for 5 minutes at 7 ± 1°C.

After each treatment, 10 g samples of each vegetable were 
transferred to sterilized plastic bags containing 90 mL of 0.1% 
peptone water and were then homogenized in a stomacher 
(Marconi, MA440/CF, Piracicaba, São Paulo, Brazil) for 2 min 
at normal speed. Then, 1 mL of the sample was used to prepare 
decimal dilutions plated on the surface of Salmonella-Shigella 
agar (Himedia, Brazil). After incubation for 18 to 24 h at 37 °C, 
the colonies were counted, and the results were expressed as 
log CFU/g.

2.4 Statistical analyses

Three experimental repetitions were conducted for each 
sanitizing treatment. The results were analyzed with the InfoStat 
Statistical Software (version 2012, Cordoba National University, 
Argentina). The analysis of variance (ANOVA) was applied. 
The average logarithms of the number of colonies forming units 
per gram (log10 CFU/g) for each treatment were compared 
using Tukey’s test at a 5% probability.

3 Results and discussion
3.1 Ph evaluation of sanitizing solutions

The 2% acetic acid solution had the lowest pH value among 
the sanitizers evaluated (Table 1). pH control in the sanitization 
solution is fundamental to the efficiency of the operation because 
can contributed to bactericidal effect.

3.2 Evaluation of the efficiency of sanitizers to removal 
natural microbial contamination

Strawberries

All evaluated treatments significantly reduced the initial 
strawberry contamination (p ≤ 0.05). The reduction of aerobic 
mesophilic bacteria contamination ranged from 1.67 to 2.73 log CFU/g. 
There was no significant difference (p > 0.05) between the proposed 
treatments and the chlorinated compounds (Table 2). The results 
indicate that the treatments with organic acids and hydrogen 
peroxide were compatible with treatments with chlorinated 
compounds and could be an alternative. The reduction values 
for aerobic mesophilic bacteria by acetic acid at 1% and 2% were 
equal to 2.59 and 2.73 log CFU/g, respectively.

Nascimento & Silva (2010) found that 2% acetic acid reduced 
1.90 log CFU/g for aerobic mesophilic bacteria in strawberries. 
However, sodium dichloroisocyanurate and sodium hypochlorite, 
sanitizers based on chlorine, reduced 1.55 and 1.25 log CFU/g, 
respectively. Moreover, the authors verified that 4% acetic acid 
sanitization reduced 2.43 log CFU/g, which indicates that despite 
the use of a higher concentration of active ingredient there was 
no further reduction in the count of aerobic mesophilic bacteria. 
This result may occur due to factors that indirectly interfere 
with the effectiveness of sanitizers, such as the anatomy, contact 
area, and structure of plant tissues (São José & Vanetti, 2015).

The treatment with hydrogen peroxide reduced 1.85 log CFU/g, 
and the result is similar to that found by Alexandre et al. (2012), 
who sanitized strawberry samples with the same sanitizer at 
a concentration of 1% and 5% for 2 minutes and obtained a 
reduction of 1.46 log CFU/g and 2.25 log CFU/g, respectively. 
The efficiency of sanitization involves other factors in addition 
to concentration and time of exposition, such as the surface 
characteristics of the food, formation of resistant biofilms, 
temperature, and pH (São José et al., 2014).

Treatments with 1% and 2% lactic acid, 2% acetic acid 
and with hydrogen peroxide promoted a reduction of aerobic 
mesophilic bacteria as well as the molds and yeasts statistically 
equal to chlorinated compounds (p > 0.05). In this study, both 
concentrations of organic acids applied were able to reduce 
the natural contamination of aerobic mesophilic bacteria and 
yeasts and molds in a similar proportion, which suggests the 
possibility of using the lowest concentration. Some factors 

Table 1. Values of pH averages of sanitization treatments at a temperature 
of 24 ± 1 °C.

Treatments pH
1% Lactic Acid 2.51d ± 0.05
2% Lactic Acid 2.33d ± 0.06
1% Acetic Acid 1.89e ± 0.04
2% Acetic Acid 1.72f ± 0.05
3% Hydrogen Peroxide 3.98b ± 0.16
200 mg/L Sodium Dichloroisocyanurate 6.55a ± 0.06
200mg/L Sodium Hypochlorite 6.50a ± 0.22
Different letters in the same column indicate statistically significantly different at p ≤ 0.05 
by Tukey Test.

Table 2. Averages (log CFU/g) of the counts of the contaminating natural microbiota and Salmonella Enteritidis cells adhered to strawberries 
without sanitizing and submitted to different sanitization treatments for 5 minutes.

Treatments
Log CFU/g ± Standard Deviation

Aerobic mesophiles Molds and Yeats Salmonella Enteritidis
No Sanitizer 5.88a ± 0.20 6.04a ± 0.23 5.13a ± 0.41
1% Lactic Acid 3.87b ± 1.41 4.73c ± 0.32 3.22c ± 0.39
2% Lactic Acid 3.57b ± 1.18 4.64c ± 0.18 3.05c ± 0.04
1% Acetic Acid 3.29b ± 1.07 5.43b ± 0.38 4.38b ± 0.11
2% Acetic Acid 3.15b ± 0.85 4.58c ± 0.40 4.24b ± 0.10
3% Hydrogen Peroxide 4.03b ± 0.76 4.74c ± 0.23 4.38b ± 0.10
200 mg/L Sodium Dichloroisocyanurate 4.21b ± 0.76 4.64c ± 0.37 4.23b ± 0.14
200mg/L Sodium Hypochlorite 4.01b ± 0.71 4.65c ± 0.50 4.59b ± 0.12
Different letters in the same column indicate statistically significantly different at p ≤ 0.05 by Tukey Test.



Lepaus; Rocha; São José

Food Sci. Technol, Campinas, 40(Suppl. 1): 242-249, June 2020 245/249   245

should be evaluated when considering a sanitizer as ideal, 
such as being able to destroy microorganisms quickly and 
having a broad spectrum of antimicrobial action, in addition to 
presenting low toxicity and corrosivity and being stable under 
several conditions of use (Andrade et al., 2008). Nascimento 
& Silva (2010) subjected strawberries to sanitizing procedures 
with 2% and 4% of acetic acid, and 50% vinegar solutions and 
obtained results that demonstrated that the use of this sanitizer 
was effective under various conditions of use, thus fulfilling one 
of the aforementioned criteria.

Cucumbers

All treatments significantly reduced the initial contamination 
(p ≤ 0.05). However, there was no significant difference (p > 0.05) 
for the contaminating natural microbiota among the evaluated 
treatments. The reduction of aerobic mesophilic bacteria 
contamination ranged from 1.10 to 2.08 log CFU/g (Table 3).

As with the strawberry samples, the reductions of molds and 
yeasts by 1% and 2% acetic acid had similar values, 1.32 log CFU/g, 
and 1.33 log CFU/g, respectively, which demonstrates that 
the lowest concentration is feasible. Ukuku (2006) obtained 
better results in the sanitation of melons using 2.5% hydrogen 
peroxide and 200 mg/L sodium hypochlorite. The difficulty in 
promoting the reduction of microorganisms of some foods can 
be explained by the characteristic repellency of their surface due 
to the presence of hydrophobic multilayers (São José et al., 2014).

3.2.3 Rocket leaves

All treatments were able to significantly reduce the initial 
contamination (p ≤ 0.05) (Table 4). The reduction of aerobic 
mesophilic bacteria contamination in rocket leaves ranged from 
1.27 to 2.19 log CFU/g. In addition, for aerobic mesophilic 
bacteria, all alternative treatments proposed were statistically 
the same as the chlorinated compounds (p > 0.05). The present 
study showed that both concentrations of acetic acid tested 
were effective in removing aerobic mesophiles. High initial 
counts of microorganisms may be related to the way the plants 
are produced; for example, in the case of leaves, growing near 
the soil makes them prone to contamination. The presence of 
microorganisms on the leaves at the time of harvesting is one 
of the main challenges in the post-harvest handling of fresh 
products because that can initiate the process of deterioration 
during storage (Wieczyńska et al., 2016).

Zhang & Yang (2017), when evaluating potential sanitizers in 
organic and conventional lettuce, found that aerobic mesophilic 
populations in samples treated with 0.6% citric acid and 1% 
hydrogen peroxide had counts equal to 5.58 and 4.61 log CFU/g, 
respectively, while the population of molds and yeast were 
4.74 and 3.78 log CFU/g, respectively. Fantuzzi et al. (2004) found 
no significant difference in the reduction of the contaminant 
microbiota in cabbage samples treated with 1% acetic acid 
when compared to the microbiota reduction with the water 
wash process only.

Table 3. Averages (log CFU/g) of the counts of the contaminating natural microbiota and Salmonella Enteritidis cells adhered to cucumbers 
without sanitizing and submitted to different sanitization treatments for 5 minutes.

Treatments
Log CFU/g ± Standard Deviation

Aerobic mesophiles Molds and Yeats Salmonella Enteritidis
No Sanitizer 6.19a ± 0.16 6.54a ± 0.20 5.07a ± 0.04
1% Lactic Acid 4.47b ± 0.73 4.96b ± 1.06 3.66b ± 0.14
2% Lactic Acid 4.11b ± 0.81 5.09b ± 0.53 2.72de ± 0.36
1% Acetic Acid 4.45b ± 1.11 5.22b ± 0.12 3.69b ± 0.31
2% Acetic Acid 4.35b ± 0.38 5.21b ± 0.15 2.99cd ± 0.24
3% Hydrogen Peroxide 5.09b ± 0.29 5.13b ± 0.15 2.36e ± 0.22
200 mg/L Sodium Dichloroisocyanurate 4.81b ± 0.69 5.66b ± 0.49 3.47bc ± 0.51
200mg/L Sodium Hypochlorite 5.13b ± 0.35 5.51b ± 0.48 3.45bc ± 0.16
Different letters in the same column indicate statistically significantly different at p ≤ 0.05 by Tukey Test.

Table 4. Averages (log CFU / g) of the counts of the contaminating natural microbiota and Salmonella Enteritidis cells adhered to rocket leaves 
without sanitizing and submitted to different sanitization treatments for 5 minutes.

Treatments
Log CFU/g ± Standard Deviation

Aerobic mesophiles Molds and Yeats Salmonella Enteritidis
No Sanitizer 7.01a ± 0.35 6.43a ± 0.06 5.26a ± 0.09
1% Lactic Acid 5.74b ± 0.47 5.43b ± 0.17 3.55d ± 0.12
2% Lactic Acid 4.97b ± 0.50 4.42c ± 0.22 2.15e ± 0.21
1% Acetic Acid 5.53b ± 0.89 5.41b ± 0.11 4.04c ± 0.04
2% Acetic Acid 5.21b ± 1.09 4.63c ± 0.62 3.37d ± 0.12
3% Hydrogen Peroxide 4.82b ± 0.36 4.53c ± 0.02 2.36e ± 0.26
200 mg/L Sodium Dichloroisocyanurate 5.03b ± 0.97 5.44b ± 0.40 3.22d ± 0.11
200mg/L Sodium Hypochlorite 5.36b ± 0.84 5.29b ± 0.52 4.50b ± 0.02
Different letters in the same column indicate statistically significantly different at p ≤ 0.05 by Tukey Test.
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However, it is worth mentioning that each plant has different 
roughness and hydrophobicity, which may influence the sanitizing 
antimicrobial efficiency (Data not shown). The increase in the 
mean roughness value of the surfaces may favor higher retention 
of microorganisms on the surface (Lima et al., 2013).

According to Yuk  et  al. (2006), the microstructures of 
plant tissues, grooves, cracks, cavities and other irregularities 
of the vegetable surface can affect the contact of the sanitizing 
solution with the target microorganisms and, consequently, the 
efficiency of the process.

When evaluating the use of sanitizers in the present study 
against molds and yeasts, it was verified that 2% acetic acid, 2% 
lactic acid and hydrogen peroxide were statistically better than 
the other treatments, reducing 1.80, 2.01 and 1.90 log CFU/g, 
respectively. It is noteworthy that sodium dichloroisocyanurate 
obtained a smaller reduction than these procedures, reducing 
less than 1 log CFU/g.

Evaluation of the efficiency of sanitizers in Salmonella enterica 
Enteritidis cells ATCC 13076

The sanitization treatments that showed the greatest effect 
on the reduction of Salmonella Enteritidis cells in strawberries 
were 1% and 2% lactic acid, with a reduction of 1.91 log CFU/g 
and 2.08 log CFU/g, respectively (Table  2). These results 
are similar to the findings of Park et al. (2011), in which 1% 
lactic acid reduced 1.78 log CFU/g and 2% lactic acid reduced 
2.53 log CFU/g in apple samples contaminated with Salmonella 
Typhimurium. Fernandes (2013) confirmed that solutions of 1% 
and 2% lactic acid promoted a higher reduction, compared to 
other treatments in strawberries contaminated with E. coli cells. 
Gurtler et al.(2014) evaluated different sanitizers for 2 minutes 
to remove four serovars of Salmonella enterica from strawberries 
and found higher reductions from treatment with 3% hydrogen 
peroxide compared to lactic and acetic acids, both 1%.

The cucumber samples had initial contamination of 
Salmonella Enteritidis cells of 5.07 ± 0.04 log CFU/g and after the 
treatments with hydrogen peroxide and 2% lactic acid reductions 
of 2.71 log CFU/g and 2.34 log CFU/g, respectively, were achieved 
(Table 3). Different from the results of natural microbial counts 
after sanitization treatments, the reduction of the pathogen in 
the cucumber samples was higher when the concentration of 
organic acids increased. Guo et al. (2016) evaluated the action 
of hydrogen peroxide at 2.5 and 5% for one minute on slices 
of cucumber intentionally contaminated with Salmonella 
Choleraesuis and observed a reduction of 0.9 and 1.6 log CFU/g, 
respectively. Amrutha et al. (2017) obtained a lower reduction 
(0.17 log CFU/g) of Salmonella spp. when compared to the 
present study after sanitizing cucumber with 2% lactic acid. 
Ukuku (2004) investigated the action of the hydrogen peroxide 
at 2.5% and 5% in the reduction of Salmonella spp. cells on 
the surface of cantaloupe and honeydew melons. In the first 
melon variety, the lowest concentration promoted a reduction 
of 2.56 log CFU/g. However, an increase in concentration did 
not enhance the reduction. In honeydew melons, both hydrogen 
peroxide concentrations reduced 3.00 log CFU/g from initial 
contamination. The increase of the concentration of hydrogen 

peroxide (0.5, 1, and 2%) also did not cause statistical differences 
in the counts of E. coli ATCC 25922 and Salmonella Enteritidis 
after sanitization of fresh-cut snap bean (Palharini et al., 2017). 
In a study on the sanitization of melons and green peppers 
contaminated with Salmonella Enteritidis, São José et al. (2014) 
applied the same sanitizer at 1% concentration and obtained 
reduction of 1.80 log CFU/g and 2.00 log CFU/g, respectively.

The reductions in rocket leaves varied from 0.76 to 3.11 log CFU/g. 
All evaluated treatments significantly decreased the counts of 
S. enterica Enteritidis (p ≤ 0.05). The highest reductions were 
from sanitization with 2% lactic acid and hydrogen peroxide, 
which reduced the counts by 3.11 and 2.90 log CFU/g, respectively 
(Table 4). Similar to the cucumber results, the increase of the 
organic acids concentration enhanced the reduction of Salmonella 
Enteritidis cells in the rocket leaves. Lactic acid is an organic 
acid considered as GRAS and can be used for the removal of 
surface contamination or as a preservative and flavoring agent 
in foods (Poimenidou et al., 2016). Neal et al. (2012) obtained 
a reduction of 2.3 log CFU/g of Salmonella spp. when using 
lactic acid at 2% in spinach leaves. Zhang et al. (2015) used 3% 
hydrogen peroxide and found a smaller reduction to that found 
in this study, 1.5 log CFU/g of Salmonella Typhimurium cells in 
spinach leaves. Poimenidou et al. (2016) found that the addition 
of 300 mg/L of active chlorine in the treatment solution promoted 
a reduction of 1.7 log CFU/g of E. coli O157:H7 in spinach leaves. 
Valiolahi et al. (2019) tested different treatments with 2% of organic 
acids (acetic, lactic, and citric), and found that basil leaves samples 
treated with acetic acid presented the highest inhibition effects 
of Escherichia coli O157:H7 growth at the first day of storage. 
An antimicrobial formulation (3% hydrogen peroxide, 0.02 mM 
ethylenediaminetetraacetic acid (EDTA), and 20 mg/ml Nisin) 
tested by Mukhopadhyay et al. (2019) reduced 1.8 log CFU/g 
the count of E. coli O157:H7 of spinach leaves.

The microbial inactivation of organic acids can occur 
due to the damage and break in the function of the cell wall. 
The undissociated form of organic acid diffuses through freely 
the microbial membrane and inhibits enzymatic reactions as 
well as modifies proteins and DNA structure (Mani-López et al., 
2012; Wang et al., 2015). The efficiency of hydrogen peroxide is 
related to damages caused in DNA of the microorganisms due 
to its high oxidation power (Linley et al., 2012).

4 Conclusion
Based on their antimicrobial action, the proposed sanitizers 

were as efficient as the chlorinated compounds in reducing the 
contamination of aerobic mesophilic bacteria in strawberries, 
cucumbers and rocket leaves. In the cucumber samples, there 
was a higher reduction in the contamination of molds and yeasts 
when 1% and 2% lactic acid was applied. The treatments that 
demonstrated the greatest effect on the reduction of Salmonella 
enterica Enteritidis cells in intentionally contaminated strawberries 
were 1% and 2% lactic acid. However, in the cucumber and 
rocket samples, 2% lactic acid and 3% hydrogen peroxide 
treatments promoted a greater reduction of the pathogen. All the 
evaluated treatments had a similar or better performance than 
the chlorinated compounds; therefore, they have a potential 
for use as alternatives in the sanitization of fresh fruits and 
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vegetables. Nevertheless, complementary studies are needed 
to evaluate the impact of these sanitizers on sensory qualities 
and economic viability.
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