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1 Introduction
Human life has coexisted throughout history and around the 

world, exposed to a variety of natural hazards (Ataseven et al., 
2020). Part of these risks and accidents are caused by geological 
activities and processes (Demir et al., 2003; Ferrari et al., 2021). 
Another number of them, which are relatively more abundant 
and extensive, are due to climatic processes. These events include 
severe storms, droughts, torrential rains, and thunderstorms, 
among which drought is of considerable importance and extent 
(Wong et al., 2020). Drought is a long-term phenomenon that 
causes significant damage to human life and economic losses, 
and this phenomenon plays an important role in many human 
affairs. Drought and other risk factors such as pests and changes 
in agricultural prices, government decisions on imports and 
exports of agricultural products have made the production 
of agricultural products always associated with risk (Moreira 
& Barrufet, 1996; Bemrah  et  al., 2003; Molajou  et  al., 2021; 
Afshar et al., 2022).

Risk management is essential for optimal crisis management 
(Cruz et al., 2019). Because through it and by evaluating and 
preparing risk maps, dangerous areas are identified. Before the 
crisis occurs, the risk caused by these phenomena is minimized 
(Cronin et al., 2003; Rajkumar et al., 2003; Kovalenko et al., 
2021). Assessing the efficiency of agricultural production is 
an important issue in the implementation of the agricultural 
development process in developing countries. Because in this 
way, useful information in the field of appropriate decision-
makers for accurate management in the allocation of resources 
and regulation of agricultural policies is provided to planners 
(Cunha et al., 2020; Boubguira et al., 2021). The uncertainty 
in estimating the data of the data envelopment analysis model 
for the agricultural sector has been inevitable due to sampling 
errors or the use of centrifugal indices. The need to use patterns 
that are able to control changes due to erratic data is strongly 
felt (Jacintho et al., 2020; Galhardo et al., 2021).
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Abstract
The agricultural sector in the country has a high and growing status and importance, but the growth and development of this 
sector are not possible without proper and effective risk management. In the current study, using the Monte Carlo simulation 
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has the highest risk (Product risk index was -0.25%) and bean has the lowest risk (Product risk index was 0.17%). Overall, the 
research results indicate the significant effect of performance risk in this region. Therefore, farmers should pay special attention 
to the risk of crop performance in determining their cultivation pattern in addition to other factors and criteria such as price, 
profitability, self-consumption, etc. Meanwhile, it is suggested that products with higher risk should not be grown alone and 
should be placed next to the other products with less risk as much as possible to increase food security.
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The Monte Carlo method is a computational algorithm that 
uses random sampling to calculate the results (den Aantrekker et al., 
2003). The Monte Carlo method is commonly used to simulate 
physical, mathematical, and economic systems. Because of 
their reliance on iterative calculations and random or pseudo-
random numbers, the Monte Carlo method is often set to be 
performed by a computer (Baudry et al., 2018). The tendency 
to use this method is especially useful in the study of systems 
where there are a large number of variables related to the degree 
of freedom in pairs (Djekic et al., 2021; Hu et al., 2020). This 
method is also useful for simulating phenomena where there 
is a lot of certainty in their inputs. The Monte Carlo method 
is one of the universal accurate numerical techniques used, 
especially where random effects are important (Sanaei et al., 
2021). Questions have arisen about the uncertainty of a model in 
all fields of engineering and science. In recent years, significant 
advances have been made in the field of uncertainty analysis 
(Ewertowska et al., 2017). Scientists are trying to model and 
propagate uncertainty. In general, uncertainty analysis requires 
random modeling environments. Analysts often develop models 
based on each input variable’s unique value or estimation point, 
ignoring uncertainty. In general, this is a definite solution for 
modeling or analysis (Han et al., 2021).

2 Material and methods
One of the main factors in creating production risk is climate 

change, and these changes are not the same in the whole study 
area (Nourani et al., 2019; Nourani et al., 2020; Afshar et al., 
2021). Therefore, in addition to using the Monte Carlo simulation 
method, used the normal percentage index to classify different 
climate groups so that based on this index, the relationship 
between crop yield and the type of comparing the weather in 
each year in Plovdiv, Bulgaria between 1990 to 2017.

2.1 Drought index percentage of normal

To study the phenomenon of drought, the existence of 
appropriate and long-term data on climatic and hydrological 
parameters is essential. One of the indicators that are based 
on the use of rainfall parameter and only the factor needed 
to calculate that rainfall is the normal percentage index (PN) 
(Nicolaï & Baerdemaeker, 1999; Nourani & Molajou, 2017; 
Syed & Lawryshyn, 2020). Index (PN) is obtained by dividing 
the actual amount of precipitation by normal precipitation and 
multiplying it by 100. According to this index, the severity of 
drought is divided into very humid (Rainfall more than 160 mm), 
almost humid (Rainfall between 145 to 165 mm), wet (Rainfall 
between 130 to 145 mm), semi-humid (Rainfall between 120 to 
130 mm), normal (Rainfall between 80 to 120 mm), mild drought 
(Rainfall between 70 to 80 mm), moderate drought (Rainfall 
between 55 to 70 mm), severe drought (Rainfall between 40 to 
55 mm), and very severe drought (Rainfall less than 40 mm).

2.2 Monte Carlo simulation method

Simulation implies the creation of a virtual model of a real 
system for studying and understanding the system. Monte Carlo 
is a method of analysis based on recreating and virtualization 

using a random process that has been performed many times, 
and the results are directly visible. In this method, it is not 
necessary to assume that the efficiency distribution is normal 
but to predict future changes using random processes and the 
use of many computer-generated simulated samples. In this 
research, to assess the risk of products, first, the possible processes 
and process parameters for the variable are determined (Oscar, 
2021). Hypothetical simulation for the variables used (based on 
the process of creating random numbers) values is performed 
for that variable. The value of the expected variable is calculated 
and determined from the simulated variable (Varga et al., 2000). 
Finally, the last two steps are repeated for scenario building, 
and the values obtained from the previous steps are compared 
with the actual values, and the risk of the products is examined 
(Öksüz & Buzrul, 2020).

3 Results and discussion
First, the climatic conditions were classified based on the 

obtained indicators. According to the performance changes of 
the products based on their climatic conditions, the normal 
average performance of each product was obtained, and using 
random numbers and simulations were performed to compare 
the expected performance with the actual. In addition, by making 
scenarios the weather conditions, the expected performance was 
compared with the real conditions, and the performance risk of 
the products in each of the different scenarios was investigated.

3.1 Climatic conditions

Using rainfall statistics, the total annual rainfall for the 
years 1990 to 2017 was obtained. Then, the annual long-term 
average and the normal percentage index for the desired years 
were calculated. Based on the value obtained from this index, 
the severity of drought in these years was classified (Table 1).

3.2 Normal average performance and change in product 
performance

The average normal yield of products was calculated 
according to the performance data in each year and according 
to the type of weather phenomenon in that year. Thus, according 
to the number of normal climates available for the product, the 
performance of the product in this type of climate was averaged. 
Product performance change was calculated using Equation 1. 
Table 2 shows the calculation of the average performance in 
different weather conditions.

  Change in product performance 1
    

Annual performance
Annual normalized average performance

= −  (1)

3.3 Grading of weather conditions according to the 
frequency percentage

The relative frequency criterion has been used to grade the 
weather conditions. According to Table 3, the frequencies for 
each type of weather phenomenon are specified. Based on this 
table, a specific range was determined for each type of weather 
phenomenon based on their intensity from the worst case to 
the best case.
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3.4 Product performance simulation results

In this study, 10000 random numbers have been created using 
real product performance data, which is related to the product 
statistics available in different years. According to the percentage of 
changes in climate fluctuations that cause a decrease or increase in 
crop yield (percentage of probability of damage to yield in the long 
run), the change in yield for each crop was simulated separately 
and compared with its normal value. Table 4 shows the expected 
performance results of products after climate change simulation.

According to the results in the table, the percentage change 
in the mean yield of the simulated wheat for -0.14% is obtained. 
This number shows that due to the weather phenomena in this 
region and performance fluctuations for this product, the expected 
value for the performance of this product is 0.14% less than the 
average normal performance of this product. This decrease in 
yield is due to the impact of production risk on the yield of this 
product in this region. Figure 1 indicates the severity of product 
risk. In other words, it shows the degree of risk of products, which 
is an indicator in risk management. Among the available products, 
Lentils has the highest risk. However, the bean has the lowest risk.

Table 1. Calculation of normal rainfall percentage index and its 
classification based on the type of climate.

Descriptive index Year

Normal 1990

Moderate drought 1991

Normal 1992

Moderate drought 1993

Normal 1994

Mild drought 1995

Mild drought 1996

Normal 1997

Normal 1998

Mild drought 1999

Normal 2000

Normal 2001

Mild drought 2002

Normal 2003

Mild drought 2004

Normal 2005

Mild drought 2006

Mild drought 2007

Normal 2008

Normal 2009

Very wet 2010

Normal 2011

Normal 2012

Moderate drought 2013

Very wet 2014

Normal 2015

Moderate drought 2016

Very wet 2017

Table 2. Average performance in different weather conditions.

Product Average normal 
performance (kg/h)

Average drought 
performance (kg/h)

Mean mild drought 
performance (kg/h)

Average wet performance 
(kg/h)

Wheat 2178 1940 1710 1153
Barley 1752 1402 1003 1057

Soybean 1502 1200 910 1000
Watermelon 11806 10311 7931 6146

Clover 15887 23010 15574 23000
Pea 956 700 1168 717

Bean 1035 674 900 734
Tomato 15928 14562 12256 15717
Lentils 750 533 420 955
Potato 11883 4843 8097 1058

Cucumber 11172 19400 15166 14840
Melon 9057 7851 7016 9379
Cotton 1239 1129 1262 1382
Onion 10934 11577 9033 8027

Figure 1. Product risk index.
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4 Conclusion
In the present study, the effect of increasing or decreasing 

rainfall on crop yield in Plovdiv, Bulgaria, has been evaluated. 
According to the results, climate and rainfall fluctuations can 
cause significant fluctuations in performance and thus create 
performance risk in the region’s products. Therefore, more 
attention can be paid to the rainfall variable as one of the 
important parameters in predicting crop performance.

The results showed that Lentils has the highest risk (Product 
risk index -0.25%) and bean has the lowest risk (Product risk 
index 0.17%). Therefore, farmers should pay special attention 
to the risk of crop performance in determining their cultivation 
pattern in addition to other factors and criteria such as price, 
profitability, self-consumption, etc. Based on the results of the 
high risk of crops, it is suggested that higher risk crops should 
not be grown alone as much as possible.

Using the Monte Carlo simulation method to measure risk 
showed that this method can be used to determine and prioritize 
the risk of different products. Therefore, it is suggested to use this 
method on a larger scale and different products in the country.
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