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1 Introduction
Succinoglycan is an acidic, water-soluble exopolysaccharide, 

composed of galactose and glucose residues, joined by β-links 
in a molar ratio of 1:7, has some non-saccharide substituents 
such as pyruvate, succinate, and acetate (Halder et al., 2017).

Unique characteristics give the succinoglycan molecule a 
high potential for industrial application, with chemical stability 
under drastic operating conditions, such as high temperature 
and pressure, extreme salinity and pH values, or high shear rates 
(Ruiz et al., 2015). Your rheological properties are determined 
by the chemical composition, molecule size, and mainly by the 
amount and type of non-saccharide substituents (Delani et al., 
2022; Zhou et al., 2014). They have a high thickening capacity in 
aqueous solutions due to the high molar mass and the presence 
of different substituents in the chemical structure of the molecule 
(Gao et al., 2021).

Some technological properties of succinoglycan enable 
their practical application in the food industries and food 
development: thickening or viscosifying activity and emulsification 
properties (Delani et al., 2022). These properties make it possible 

for succinoglycan to be incorporated into beverages such as 
fermented milk, yogurt, dairy drinks, and sauces. An interesting 
possibility is to use succinoglycan as a fat substitute in ice cream 
and mayonnaise. Recently, research has shown that succinoglycan 
in the form of oligosaccharides was incorporated into fermented 
soy and rice-based beverages, bringing food alternatives to groups 
of individuals who have dietary restrictions (Nascimento et al., 
2022). Due to the potential applicability of exopolysaccharides 
(Moyib et al., 2019), especially succinoglycan, in recent years 
several renewable carbon sources have been investigated for the 
production of bacterial biopolymers, aiming to produce biomaterials 
with lower environmental impact, higher performance, better 
applicability and lower production cost (Andhare et al., 2017b; 
Moosavi-Nasab et al., 2012).

Aiming at the use of industrial residues and the reduction 
of production costs of exopolysaccharides, the whey, resulting 
from the manufacture of cheese, could be a promising carbon 
source. Corresponding to 90% of the milk volume and, due 
to the high carbohydrate content, it can be considered a rich 
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the viscoelastic behavior of succinoglycan and revealed the melting point and reversibility of the gel. Whey was shown to be a 
promising carbon source for the production of succinoglycan with thickening potential and viscosity modifier.
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succinoglycan biosynthesis.
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and easy to obtain culture medium (Li  et  al., 2020). World 
whey production is estimated at more than 108 tons per year 
(Húngaro  et  al., 2013). According to Embrapa, in 2020, the 
cheese industry in Brazil absorbed approximately 8.7 billion 
liters of milk (Empresa Brasileira de Pesquisa Agropecuária, 
2021). However, only 15% of the available serum is reused by the 
industries, and a large part is still discarded as wastewater into 
the environment (Húngaro et al., 2013; Trindade et al., 2019). 
In addition, Brazil produces approximately 8 billion liters of whey 
per year, which can supply the production demand (Empresa 
Brasileira de Pesquisa Agropecuária, 2019).

To the best of the authors’ knowledge, to date, there are no 
descriptions in the literature of the use of deproteinized whey 
powder for succinoglycan production and whether whey proteins 
interfere in the bioconversion process. Therefore, the purpose 
of this study was to evaluate the production of succinoglycan by 
Rhizobium radiobacter ATCC 4720 using deproteinized whey 
powder as carbon source, and the interference of nitrogen, 
potassium and magnesium ions on the bioconversion of this 
substrate. The structural characteristics and rheological properties 
of succinoglycan were also evaluated.

2 Materials and methods
2.1 Materials

Rhizobium radiobacter ATCC 4720 was acquired by Fundação 
André Tosello - Tropical Culture Collection (Campinas, SP). 
All chemical reagents used in the study were of analytical 
grade. The whey powder was donated by Alibra Ingredientes 
Ltda (Marechal Cândido Rondon, PR) and the commercial 
succinoglycan (Rheozan®) was donated by Rhodia Solvay Group 
(São Paulo, Brazil).

2.2 Microorganism and cultivation conditions

Rhizobium radiobacter ATCC 4720 was reactivated in growth 
medium according to the supplier’s specifications: meat extract 
3 g/L; polypeptone 5 g/L; pH 7.0 and incubated at 30 °C for 24 h. 
The methodology was conducted according to Ruiz et al. (2015).

2.3 Whey deproteinization treatment

The deproteinization of the whey powder solution was 
performed to avoid possible interactions of milk proteins during 
the bioconversion process. The methodology was conducted 
according to Húngaro et al. (2013).

2.4 Determination of lactose in deproteinized whey

The lactose concentration was determined using the DNS 
(3,5 dinitrosalicylic acid) method of Miller. Deproteinized 
whey presented 49.3 ± 1.2 g/L of lactose and was used as carbon 
source. This result was used to adjust the concentration in the 
succinoglycan production medium to 5% lactose.

2.5 Succinoglycan production

The methodology for succinoglycan production was 
developed according to Moosavi-Nasab  et  al. (2012) and 

Ruiz et al. (2015). According to Table 1, eight formulations were 
developed to verify the capacity of succinoglycan production by 
the microorganism, with whole milk whey and deproteinized 
whey as carbon source, and their concentrations adjusted to a 
5% lactose solution. During the entire production process, the 
pH values of the solutions were corrected with sterile HCl or 
NaOH and kept at pH 7.0.

2.6 Extraction and evaluation of succinoglycan production

The methodology for succinoglycan production was developed 
according to Ruiz et al. (2015).

2.7 Chemical characterization

FT-IR analysis

Fourier transform infrared spectroscopy was conducted to 
elucidate the presence of major structural groups of biopolymer 
in a spectrometer with ATR accessory (Bruker, Model Vertex 
70V). The material was packed in a diamond sample holder and 
the final spectrum was an average of 256 scans, in the region 
between 400 and 4000 cm-1 with a resolution of 4 cm-1.

Determination of monosaccharide composition by Gas 
Chromatography (GC)

Monosaccharide composition analyses were performed 
as previously described (Reichembach & Petkowicz, 2020). 
The analysis was performed on a THERMO Trace GC Ultra 
chromatograph equipped with a flame ionization detector, Ross 
injector and DB-225 capillary column [30 m × 0.25 mm (i.d.)], 
with a film thickness of 0.25 µm.

Determination of the molecular weight of succinoglycan

For this analysis, it was used the technique of steric exclusion 
chromatography coupled with a multi-angle laser light scattering 
detector and a differential refractive index detector (HPSEC-
MALLS/RI). The analysis were performed on an equipment 
consisting of an HPLC pump (Waters 515), injector, 4 Ultrahydrogel 
columns - 120, 250, 500 and 2000 - with exclusion limits of 5 × 
103, 8 × 104, 4 × 105 and 7 × 106 g/mol respectively, DAWN 
DSP Light Scattering (Wyatt Technology) and a differential 
refractive index detector model 2410 (Waters). The molecular 
weight was calculated from light scattering data as previously 
described (Reichembach & Petkowicz, 2020).

Table 1. Composition of media for succinoglycan production by R. 
radiobacter ATCC 4720.

Compounds F1 F2 F3 F4
Lactose carbon source (g/L) 50.0 50.0 50.0 50.0
Monobasic potassium phosphate 
(g/L)

1.0 1.0 1.0 1.0

Magnesium sulfate (g/L) 0.25 0.25 0.25 -
Ammonium phosphate dibasic 
(g/L)

1.0 - - -

Trace elements solution (mL) 10.0 10.0 - -
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NMR analysis

Proton NMR (1H) and single heteronuclear quantum coherence 
(HSQC) spectra of the succinoglycan solution (40 mg/mL in 
D2O) were conducted at 70 °C in a Bruker DRX 400 Avance 
spectrometer (Bruker, Germany). Acetone was used as internal 
standard (δ = 30.2 for 13C and δ = 2.22 for 1H). TopSpin software 
version 4.0.9 (Bruker, Germany) was used for data analysis. 
Analysis of the substituents was performed by quantifying the 
acetyl groups of succinoglycan by the methodology described 
by Hestrin (1949). The reaction of the acetyl functional group 
with hydroxylamine was measured at 540 nm and penta-O-
acetyl-β-D-galactopyranose was used as a standard. The other 
substituents were estimated by comparing the areas of the 1H 
NMR peaks of acetyl versus succinate and pyruvate.

2.8 Rheological properties

Rheological studies were performed in an advanced rheometer 
HAAKE MARS II with stress and strain control (Thermo Fisher 
Scientific, Waltham, USA), by using rotational and oscillatory 
tests. The geometry used was cone and plate (diameter 35 mm 
and cone angle 2°). In this configuration the minimum spacing 
between cone and plate is 100 μm.

In the rotational tests concerning the rheological behavior, 
the apparent viscosity of the samples ( )apη  was determined by 
progressively increasing the shear rate ( )γ  in the range between 
0.01 1s−  and 11000 s−  at 25.0 ℃ . All viscosity curves were modeled 
using the Williamson equation (Equation 1),
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1

o
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η
η

γ
=
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Where k is the consistency index and η is the flow index, and oη  
is the zero shear viscosity.

Before each dynamic oscillatory experiment, the linear 
viscoelastic region was evaluated at 1Hz  by strain sweep 
experiments, with 8% strain within the linear region for all 
samples. The viscoelastic properties, elastic recovery modulus (G′) 
and viscous dissipation modulus ( "G ) were determined by using 
small amplitude oscillatory sweeps with frequency control, in 
the range between 0.01 Hz and 10 Hz at 25.0 ℃ . All rheological tests 
were conducted in triplicate. Dynamic temperature sweeps were 
performed at 0.1 Hz between 5.0 °C and 75.0 °C in the heating 
and subsequent cooling cycle, at a rate of ± 2.0 °C. A thin layer 
of low-viscosity mineral oil was used to cover the sample and 
prevent evaporation during the thermal tests. All rheological 
tests were conducted in triplicate.

2.9 Statistical analysis

All tests were performed in triplicate and the results were 
submitted to analysis of variance (ANOVA) and Scott-knott test 
at 5% significance using the SISVAR 5.6 program. For rheological 
and structural analysis, the Origin Pro 8 software was used.

3 Results and discussion
3.1 Evaluation of culture medium for succinoglycan 
production

Since whey is rich in nutrients and already has proteins in 
its composition (Smithers, 2008; Trindade et al., 2019), in this 
study we investigated whether whey proteins could prevent or 
decrease the bioconversion of this substrate into succinoglycan. 
In addition, it was also evaluated whether the presence of nitrogen, 
potassium, magnesium ions could influence the production of 
succinoglycan in the formulations with whole and deproteinized 
whey. Thus, to evaluate the production of succinoglycan, eight 
formulations of culture medium were prepared using whole 
whey and deproteinized whey as carbon sources. The results of 
succinoglycan production from these formulations are shown 
in Figure 1.

Figure 1. Succinoglycan production (g/L) by Rhizobium radiobacter ATCC 4720 for 8 consecutive days at pH 7 from deproteinized whey (A) and 
whole whey (B) substrate in different media formulations F1; F2; F3 and F4. The letters and letters * represent statistical comparisons between 
the eight formulations on the different production days with statistical difference (p < 0.05) by ANOVA test followed by the Scott-Knott test.
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Among the different culture media studied, the highest 
bioconversion was found in the deproteinized whey substrate in 
formulation F3, which produced 13.7 g/L of succinoglycan on 
the eighth day, with statistically significant difference (p < 0.05) 
from the other formulations (Figure 1A). Formulation F4 had a 
succinoglycan yield of 10.9 g/L, followed by formulations F1 and 
F2, which showed no statistical differences (p < 0.05).

For whole whey powder (Figure 1B), formulations F1, F2, 
F4 did not show statistical differences. Formulation F3, for whole 
whey, was also the one that showed the best production, with 
biosynthesis of 10.8 g/L of succinoglycan, when compared with 
the other formulations using whole whey.

According to the results obtained with the eight formulations 
it was possible to observe that whey proteins interfere in the 
production of succinoglycan, since the best production occurred 
in the fermentative medium composed only of deproteinized 
whey, magnesium and potassium (F3) followed by the formulation 
of deproteinized whey and potassium ion (F4).

Whey proteins are direct sources of nitrogen, an essential 
physiological supplement for the multiplication of bacteria. 
However, to obtain a good microbial growth curve it is essential 
that the culture medium provides carbon as a source of energy 
and nitrogen for cell multiplication and protein synthesis. Still, 
the production of exopolysaccharides only occurs when there 
is exhaustion of the nitrogen source (Li et al., 2020; Liang et al., 
2017). Since in this study a reactivation of the bacteria in growth 
medium is first performed for 24 h, the second step consisting 
of the carbon source, demonstrated that whey proteins interfere 
with production and are not necessary for bioconversion into 
succinoglycan.

Nitschke et al. (2001) using the microorganism Xanthomonas 
campestris C7L, demonstrated that the capacity of whey 
bioconversion into xanthan gum was also dependent on the 
carbon/nitrogen ratio in the culture medium, and thus proposed 
a two-step combined fermentative system, using whole whey in 
the first step and filtered (deproteinized) whey in the second. 
In the combined fermentative system, the whole whey presented 
0.35% protein and the filtered whey (deproteinized) showed 0.18% 
protein. This strategy increased the yield and final concentration 
of xanthan, with 13 g/kg of xanthan being obtained in the first 
phase and 28 g/kg of xanthan after 30 hours of production in 
the second phase.

In formulation F3, composed of deproteinized whey, potassium 
and magnesium, an improved succinoglycan production was 
obtained when compared to the absence of magnesium in the 
fermentation medium. Thus, in addition to the influence of 
carbon and nitrogen supplementation on the bioconversion of 
whey into succinoglycan, it is suggested that the production yield 
is affected when there are changes in the supply of some ions.

Pedroso et al. (2019) evaluated the ability of R. radiobacter 
ATCC 4720 to use sugars from rice husk hydrolysis as carbon 
source in the synthesis of exopolysaccharide. From the experimental 
design with different formulations, they found that besides the 
carbon source, only supplementation with yeast extract and 
KH2PO4 were necessary.

Important changes in the structure and chemical composition 
of an exopolysaccharide can also be caused by cultivation 
conditions. Therefore, knowing the physiological needs of the 
microorganism used can ensure the successful production of an 
exopolysaccharide, resulting in good yield and attractive rheological 
characteristics for industrial application (Delani et al., 2022).

Reducing production cost by replacing sucrose from 
the conventional fermentation process with agroindustrial 
residues is a viable alternative to stimulate the synthesis of new 
exopolysaccharides and increase their applicability. Furthermore, 
the use of reusable sources contributes to a better destination 
of this waste, reflecting in care for the environment (Angelin 
& Kavitha, 2020; Li et al., 2020). Evaluating the results already 
obtained by other research groups, it can be emphasized that, 
according to the carbon source and the strain used, there is a 
variation in the yield of the exopolysaccharide produced. However, 
in the present research, using deproteinized whey powder 
containing 5% of lactose in the composition as carbon source, 
it was possible to obtain a yield of 13.7 g/L of succinoglycan 
on the eighth day of production. Thus, the exopolysaccharide 
obtained from the formulation with the best yield was selected to 
perform the chemical and rheological characterization studies.

3.2 Chemical characterization

In order to confirm the presence of succinoglycan, your 
chemical structure has been investigated. The polysaccharide 
extracted was analysed by FT-IR spectroscopy (Figure 2A).

The spectra show that the commercial sample and the 
succinoglycan produced with deproteinized whey powder substrate 
are similar, both showed the bands related to the identification 
of the exopolysaccharide succinoglycan in the bonding regions 
of the OH groups, to the bands referring to the vibrations and 
deformations of the CH structures of the carbohydrates, as 
reported in studies by Andhare et al. (2017a) and Bakhtiyari et al. 
(2015). As observed in the spectrum, some characteristic bands 
were assigned. The band at 3286 cm-1 was clearly attributed to the 
hydroxyl group (O-H) stretching vibration of polysaccharides. 
The bands near 2900 cm-1 are assigned to the axial deformation 
of the CH bond in the carbohydrate structure. The bands near 
1400 cm-1 can be associated with symmetric COO- stretching 
(Najbjerg  et  al., 2011; Ruiz  et  al., 2015; Wiercigroch  et  al., 
2017). whereas the band at 1035 cm-1, present in the standard 
sample, can be related to C-O-C bonding of the glucose ring 
(Mangolim et al., 2017). The band at 1018 and 1022 cm-1 indicate 
the presence of ester (C-O) bands (Ruiz et al., 2015). The bands 
at 894 and 892 cm-1 for standard and succinoglycan, respectively, 
may indicate the presence of β-type glycosidic bonds in both 
samples (Monteiro et al., 2012).

The determination of the monosaccharide composition 
was performed by gas chromatography analysis after total 
acid hydrolysis followed by derivatization to alditol acetates. 
The polysaccharide had glucose and galactose in an average 
ratio of 6.6:1.0. Similar values were found by Gao et al. (2021) 
for succinoglycans produced by a high-yielding mutant strain 
(glucose:galactose molar ratio of 6.65:1.00 and 6.86:1.00). Thus, 
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the results confirmed that exopolysaccharide isolated in the 
present study is a succinoglycan.

The elution profile of the succinoglycan sample obtained 
by HPSEC using multi angle laser light scattering (MALLS) 
and refractive index (RI) detectors are shown in Figure  2B. 
The polysaccharide eluted in a single peak, detected by both 
the light scattering detector and the refractive index detector, 

indicating the presence of a high molar mass polymer. The molar 
mass was calculated to be 9.033 × 105 g/mol. The polydispersity 
index, which is related with the homogeneity of the sample, was 
low, similar to the value (1.06) reported by Kavitake et al. (2019).

The polysaccharide was qualitatively analysed by 1H NMR 
spectroscopies have shown specific carbohydrate signals 
(Figure 2C). The 1H NMR spectrum revealed the presence of 

Figure 2. FT-IR/ATR spectra of succinoglycan samples. (i) Succinoglycan produced from deproteinized whey and (ii) commercial succinoglycan 
(A). Elution profile of the succinoglycan sample by (HPSEC-MALLS) (B). Spectrogram obtained by 1H NMR with identification of succinate, 
acetyl and pyruvate substituents of succinoglycan obtained with deproteinated whey (C).
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main characteristic signals from succinate and acetate group by 
the methyl protons resonances with chemical shifts of 2.5 ppm 
and 2.0 ppm respectively. The acetyl content of succinoglycan 
obtained by the colorimetric method was 1.2% ± 0.1%. 
By integration of the succinate and pyruvate peaks obtained by 
1H NMR and in comparison with the acetyl peak area, it was 
possible to estimate the total amount of succinate and pyruvate 
substituents in succinoglycan, being respectively 3.0% and 8.1%.

3.3 Rheological analysis

Figure  3 illustrates the effect of shear rate on apparent 
viscosity at the different concentrations of succinoglycan solutions 
studied at 25 °C. The results showed that the apparent viscosity 
was directly proportional to the concentration of succinoglycan, 
and the solution showed pseudoplastic behavior with increasing 
shear rate. Ruiz et al. (2015) and Moosavi-Nasab et al. (2012) 
also observed the same behavior. Despite the lower molar mass, 
at the same concentration the succinoglycan isolated in the 
present study had much higher viscosity than those obtained 
by Gao et al. (2021).

The apparent viscosity of all solutions evaluated decreased 
significantly with increasing shear rate (up to 1000 1 s− ). This shear 
thinning is caused by the stretching of succinoglycan molecules 
during the shear. It is an important rheological characteristic, and 
is related to several applications involving industrial processing.

The results indicate that solutions containing succinoglycan 
will flow easily when poured from a container or during various 
operations, such as pumping, spray drying, and agitation, despite 
their high initial viscosity (zero shear viscosity - oη ) (Andhare et al., 
2017a). Table  2 shows the rheological parameters related to 
the concentration of the succinoglycan solutions obtained by 
numerical fitting of the data in Figure 3 and from Equation 1. 
The flow behavior (n) was lower than 1.00 for all succinoglycan 
concentrations, ranging from 0.603 to 0.858. This result confirms 
the pseudoplastic flow behavior shown by the solutions.

The results of the dynamic frequency sweep tests for the 
different concentrations of succinoglycan solutions (w/v) are 
illustrated in Figure 4.

At low concentrations of succinoglycan (0.25%) the rheological 
behavior of the solutions exhibited properties typical of a viscous 
fluid with the viscous dissipation modulus ( "G ) greater than 
the elastic recovery modulus ( 'G ) throughout the frequency 
spectrum explored (Figure 4). For higher concentrations (0.50%, 
0.75%, 1.00% and 1.50% w/v), both the "G  and 'G modulus grew 
with increasing frequency (Figure 4a-4e), but the 'G  modulus 
grew faster than the "G  modulus. As a result, the 'G  modulus 
curve intersects the "G  modulus curve at the crossover point 
( ) ccrossover point f− . From this frequency on, the values of the 'G  
modulus are predominantly larger than those of the modulus 

"G . Succinoglycan solutions transitioned from a fluid-like to a 
gel-like structure. For concentrations of 2.0% /w v (Figure 4f), 
the 'G  values exceeded the " G  values throughout the explored 
frequency spectrum, and a frequency dependence was observed, 
which indicated the presence of an apparent gel network in the 
system. The heating/cooling curves of moduli G’ and G” of 
the 2.0% w/v aqueous solution of succinoglycan are illustrated 
in Figure 5. They were obtained at a heating/cooling rate of ± 
2.0 °C/min at a constant frequency of 0.1 Hz.

At the beginning of the heating cycle, in the range from 
5.0 °C to 60.0 °C, moduli G’ and G” exhibited little dependence 
with temperature (Figure 5a). In this domain, the prevalence 
of G’ over G” was observed (Figure 5a). Between 64.0 °C and 
66.0 °C both moduli decreased dramatically, and the two curves 
intersected, indicating that the gel system began to melt. Therefore, 
the melting point of the gel was reached at 65.0 °C. The moduli 
remained practically constant between 66.0 °C and 75.0 °C, with 
G” prevailing over G’. In the cooling cycle (Figure 5b), the G’ 
and G” curves were approximately reversible compared to the 
heating curves, with the gelling point occurring at approximately 
60.0 °C. This result indicates a thermal hysteresis regarding 
the melting point around 5.0 °C. At the end of the procedure, 

Figure 3. Viscosity curves of succinoglycan solutions at 25.0 °C. The 
symbols represent the concentrations (w/v).

Table 2. Rheological parameters ( oη , k e n) of succinoglycan solutions as a function of concentration in distilled water at a room temperature of 25 °C.

Concentration (%) ( ).o mPa sη  ( ). nk Pa s n 2R

0.25 83.5 0.266 0.603 0.996
0.50 530.9 0.359 0.794 0.998
0.75 1977.0 0.905 0.845 0.997
1.00 5246.4 1.779 0.858 0.998
1.50 5966.7 1.78 0.757 0.999
2.00 9913.9 1.95 0.759 0.999
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characterization tests showed that the monosaccharide composition 
of glucose and galactose for the produced succinoglycan was 
6.6:1.0 and revealed the content of non-saccharide substituents 
for acetate, succinate and pyruvate of 1.2%, 3.0% and 8.1%. 
The advanced rheological studies of the succinoglycan solutions 
revealed non-Newtonian and pseudoplastic behavior. The apparent 
viscosity of the evaluated solutions decreased significantly with 
increasing shear rate, an important rheological characteristic, as 
it demonstrates that the obtained succinoglycan can be applied 
in industrial processing. Temperature influenced the viscoelastic 

both moduli almost returned to the original levels, indicating 
that heating and cooling did not influence the gelling ability of 
succinoglycan, and that the gel formed is thermally reversible.

4 Conclusion
Agroindustrial whey waste was bioconverted into succinoglycan 

by Rhizobium radiobacter ATCC 4720. A better production of 
succinoglycan occurred in the absence of whey proteins and in 
the presence of magnesium and potassium ions. The chemical 

Figure 4. Mechanical spectrum of succinoglycan solutions at different concentrations at 25.0 C° : (a) 0.25%, (b) 0.50%, (c) 0.75%, (d) 1.00%, (e) 
1.50% and (f) ( )2.00% /w v .

Figure 5. Changes in elastic recovery modulus G' and viscous loss modulus G" during the heating cycle (a) if subsequent cooling cycle (b) in the 
range from 5.0 °C to 75.0 °C at a rate of 2.0 / min± ℃  exhibited by the ( )2.0 % w / v  succinoglycan solution.
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