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1 Introduction
Starch is a kind of natural polymer, which has a series of 

advantages, such as wide source, renewable, low cost and so on, 
it is widely used in food, chemical industry, textile, medicine and 
other fields (Gilet et al., 2018). However, due to the limitation 
of structure, natural starch has many deficiencies, such as 
insoluble in cold water, easy aging, and not easy to react with 
other substances (Maniglia et al., 2021). Therefore, it is important 
to modify starch to provide starch with special good properties 
for food processing and industrial production (Luo et al., 2022; 
Moreira et al., 2022).

It is a research hotspot in the field of starch deep processing 
to seek new effective modification methods to meet the consistent 
application needs. As a new non-thermal processing technology, 
ultrasonic has become a hot spot in the field of food processing 
because of its advantages of green energy-saving, safety, high 
efficiency and convenient application (Araújo et al., 2022; Chew 
& Ali, 2021; Xu et al., 2022). Ultrasonic treatment is mainly used 
to modify starch by mechanical effect and cavitation effect, and 
affects the surface structure, crystal structure and amorphous 
structure of starch grains, which can degrade starch and reduce 
the gelatinization viscosity of starch. The degradation efficiency 
of amylose is more obvious, which can endow starch with some 
good properties. The application of ultrasonic technology in 
starch modification has been widely concerned, and gradually 
become a research hotspot in the field of starch modification.

This paper discusses the application of ultrasonic technology 
in starch modification, points out the key factors of the effect of 
ultrasonic on starch modification, and clarifies the mechanism 
of the effect of ultrasonic on starch modification efficiency. 

The aim of this study is to provide theoretical guidance for the 
highly efficient directional modification of starch by ultrasonic 
technology, and to promote the development of starch deep 
processing industry.

2 Effect of ultrasonic pretreatment on starch 
structure

Ultrasound is a physical modification method that utilizes 
frequencies higher than the threshold of human hearing. In the 
starch-water system, the physical effects (such as hole effect, 
mechanical effect, etc.) generated by ultrasonic treatment will 
produce strong shear force, high temperature and free radicals 
in the local area, which will change the multi-scale structure 
of starch (as shown in Table 1). The appearance of cracks and 
holes on the surface of starch particles induces changes in the 
morphology/ultrastructure of polymers (Yang et al., 2019a), thus 
changing the structure and properties of starch (Zhu, 2015).

2.1 Effect of ultrasonic pretreatment on morphology and 
crystal structure of starch granules

Ultrasonic treatment can induce cracks and pores in starch 
granules, which affect the multi-scale structure of starch and 
then affect its functional properties (Sujka & Jamroz, 2013). 
Ultrasonic treatment at T15 and T30 for 15 and 30 min on 
different sources of cereal starch (wheat, barley, rice and maize) 
resulted in the formation of depressions and pores on the 
surface of starch granules, but had little effect on their overall 
integrity (Kaur & Gill, 2019). Zuo et al. showed that low-power 
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ultrasound treatment (2.5 and 4.1 W) reduced the particle size 
of waxy rice starch, whereas there was no significant change in 
starch granule surface and starch molecular weight (Zuo et al., 
2009). However, the high-power ultrasonic treatment destroyed 
the granule morphology of kiwifruit starch, formed pores and 
cracks on its surface, and reduced the starch particle size and 
short-range molecular order (Wang et al., 2022a).

Under the ultrasonic pretreatment system, the amorphous 
area of starch particles is more easily destroyed by ultrasonic 
than the crystalline area, and cracks and pores are formed on 
the surface of starch particles, which improves the uniformity of 
starch particles, the increase of ultrasonic power can make starch 
granule smaller, granule deformation and surface roughness 
(Aijun et al., 2011). When corn starch was treated by ultrasound, 
Han  et  al. found that the amorphous region was degraded 
first, and then the crystalline region was degraded, resulting 
in the continuous decrease of relative crystallinity (Han et al., 
2019). The proportion of B1, B2 and B3 in waxy corn starch 
after ultrasonic treatment was lower, while the proportion of 
chain A was higher. The distribution of chain length, double 
helix, single helix and amorphous form of pre-treated starch, 
especially α-1, 4-glycosidic bond and α-1, 6-glycosidic bond had 
great influence (Yang et al., 2019b). Falsafi et al. reported that 
ultrasonic irradiation using a horn sonicator or an ultrasonic 
bath reduced the crystallinity of oat starch, while the crystal 
structure of A-Type remained unchanged (Falsafi et al., 2019).

The efficiency of ultrasonic treatment is affected by many 
factors, such as ultrasonic treatment power and frequency, 
treatment time and temperature, and the properties of starch 
suspension, i. e. starch concentration and source (Falsafi et al., 
2019; Sujka, 2017). The starch granules of potato, wheat, corn 
and rice were suspended in water or ethanol and treated by 
ultrasonic (170 W, 30 min), especially in potatoes and wheat 
starches (Sujka & Jamroz, 2013). In recent years, it has been 
found that starch treated by dual-frequency ultrasound has 

more obvious damage than starch treated by single-frequency 
ultrasound (Hu et al., 2015).

2.2 Effect of ultrasonic pretreatment on molecular weight of 
starch

Molecular weight is one of the important basic parameters 
for studying the molecular structure of starch, which directly 
affects the physicochemical properties of starch. When Sonication 
in starch, the molecular structure and rheological properties 
of starch were significantly affected. Ultrasonic irradiation is a 
novel method for degrading polymer compounds, particularly 
in view of the reduced molecular weight, which is achieved by 
splitting the most susceptible chemical bonds without causing 
any change in chemical property (Gogate & Prajapat, 2015). 
The reduction of molecular weight due to ultrasound-induced 
chain breakage is attributed to the cavitation of local high pressure, 
high temperature and shear stress, which leads to starch chain 
breakage, the resulting starch dextrin has a smaller molecular 
size and narrower molecular weight distribution (Zhu, 2015).
The degree of decrease in molecular weight decreases with time. 
The molecular weight of ultrasonically degraded starch has a 
certain limit. When the molecular weight of the starch sample 
is close to the limit, the ultrasonic effect is weakened.

The higher the ultrasonic intensity, the faster the rate of 
molecular weight change. The higher the temperature of starch 
paste, the higher the movement ability of the molecule, the 
molecular resistance of potato starch paste was reduced, and the 
change of molecular weight of potato starch paste in ultrasonic 
field was restrained (Li et al., 2017a). After ultrasonic treatment, 
the relative molecular weight (Mn, Mw, Mp) of potato starch paste 
decreased to a certain extent, and increased with the extension 
of the treatment time (Li et al., 2017b). In summary, ultrasonic 
degradation of starch, resulting in starch surface holes, molecular 
weight distribution tends to reduce, viscosity and other properties 

Table 1. Effects of ultrasonic wave on starch modification.

Starch type Modification conditions Main results Reference
arrowhead tuber starch tri-frequency power 

ultrasound (20/40/60 kHz)
The solubility, water-holding and oil-holding capacity are 
significantly increased

(Raza et al., 2021a)

Starch-lipid complex mono: 20 kHz, 40 kHz, 60 kHz; 
dual: 20/40 kHz, 40/60 kHz, 
20/60 kHz, and tri: 20/40/60 
kHz)

Ultrasonic treatment may contribute to the formation of 
the complex and present a dense network structure

(Raza et al., 2021b)

rice starch 150, 300, 450 and 600 W, 20 
min

Changed the morphology and physical properties of rice 
starch, rather than fine structure

(Yang et al., 2019c)

potato starch 60, 105 and 155 W, 30 min, 
20 kHz

Ultrasonic treatment can form grooves on the surface 
of starch grains, and has a great effect on the cluster 
structure, especially on the crystalline region

(Zhu et al., 2012)

corn and cassava starch High power ultrasound with 
short time

Grooves and notches appeared on the surface of starch 
granules with crystallinity and calorific value decreased.

(Rahaman et al., 2021)

maize starch and potato 
starch

500 W, 60 min, 20 kHz The cavitation effect of ultrasonic makes the inner space 
of starch granules loose, the structure destroyed and the 
content of damaged starch increased

(Wang et al., 2022b)

plantain (large granule 
size) and taro (small 
granule size) starches

25 kHz, 80 W (20, 50 min) Ultrasonic treatment had little effect on the particle size 
distribution of starch, but it had more effect on the larger 
particle size of starch

(Carmona-García et al., 
2016)
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of change, to enhance the subsequent process of saccharifying 
enzyme degradation of starch (Haiming et al., 2011).

3 Effect of ultrasonic pretreatment on 
physicochemical properties of starch

The change of multi-scale structure of ultrasonic pretreatment 
starch will inevitably lead to the change of swelling, gelatinization, 
rheology and other physical and chemical properties (Zhu, 2015). 
Ultrasonic technology can create and improve the functionality 
and stability of starch-based products, and improve the swelling 
and solubility of starch from different grains. Moreover, rapid 
digestible starch (RDS) and resistant starch (RS) significantly 
increase with time, after ultrasonic treatment, the in vitro 
digestibility and the content of resistant starch increased, which 
was related to the changes of starch particle size, crystallinity, 
physicochemical properties and starch structure (Kaur & Gill, 
2019). Starch granules of potato, wheat, maize and rice were 
suspended in water or ethanol and treated with ultrasound 
(20 kHZ, 170 W, 30 min), the starch treated by ultrasonic has 
higher liposuction and water absorption capacity, lower viscosity 
and higher solubility and expansion. In addition, ultrasonic 
treatment of potato starch shows a high degree of pasty clarity, 
which is a desirable property in many food applications. 
The results also showed that water was better than ethanol as 
the medium for ultrasonic treatment of starch (Sujka & Jamroz, 
2013). Similarly, Sujka et al. found that ultrasonic treatment of 
potato, wheat, corn and rice starch in water and ethanol causes 
changes in particle porosity, and that ultrasonic treatment in 
water-based reaction systems, all starches showed significant 
changes in specific surface area, but only potato starches showed 
significant increases in specific surface area in the ethanol system 
(Sujka, 2017).

The solubility, swelling degree, peak viscosity, final viscosity 
and retrogradation value of wheat starch increased with the 
increase of ultrasonic treatment time because of the destruction 
of the aggregation structure of starch, however, the gel strength of 
starch paste decreased with the decrease of disintegration value 
(Ying, 2019). Monroy et  al. ultrasonic-treated tapioca starch 
changed at the molecular level, reflecting the stability of starch 
paste under freezing conditions (Monroy et al., 2018). The peak 
viscosity and gel properties of corn starch treated by ultrasonic 
wave with different frequencies (20 kHz, 25 kHz and 20 kHz + 
25 kHz) were significantly decreased, and its thermal stability 
and retrogradation were enhanced, while its cold stability was 
unchanged, the peak viscosity decreased with the increase of 
ultrasonic frequency (Hu  et  al., 2015). Ultrasonic treatment 
reduced the peak viscosity of potato, Xiaomi and waxy corn 
starches, and the lower viscosity may be attributed to physical 
damage to the starch granules, increasing the water permeability 
of hydration (Han et al., 2019; Yang et al., 2019b). Mechanical 
oscillation and cavitation during ultrasonic treatment can lead to 
long chain breakage and decrease the interaction force between 
starch particles, thus resulting in the decrease of viscosity 
(Wang et al., 2022c). In addition, ultrasonic-assisted enzymatic 
treatment is more effective in improving the solubility of starch, 
mainly because it degrades the structure of loose starch granules 
and makes it easier for water to enter the reticular structure. 

Enzyme treatment and ultrasonic treatment can effectively reduce 
the molecular weight of starch, thus improving the solubility of 
starch in water.

4 Enzymatic hydrolysis of starch enhanced by 
ultrasonic pretreatment

Ultrasound can accelerate enzyme reactions by acting 
on different targets. It can modify enzymes and substrate 
macromolecules, which helps to improve enzyme activity and 
product yield, the synergistic effect of ultrasound and enzymes has 
been widely reported to improve the catalytic rate (Wang et al., 
2018). For many years, ultrasound has been used as a method to 
inactivate enzymes, and some work has shown that under mild 
conditions, ultrasound does not inactivate all enzymes, but has 
a positive effect on enzyme activity, can be used to speed up the 
enzyme reaction (Nguyen & Le, 2013). Ultrasonic pretreatment of 
starch shortened the time of liquefaction, significantly increased 
the dextrose equivalent (DE) value of saccharification process, 
and increased the rate constant of amylase hydrolysis (Li et al., 
2018). Therefore, the suitable ultrasonic pretreatment conditions 
can create better conditions for enzymatic hydrolysis of corn 
starch. An evaluation of the kinetics of enzyme kinetics and 
starch degradation showed an increase in reaction rate and 
enzyme-substrate affinity. According to the thermodynamic 
results, ultrasonic enzymatic hydrolysis requires less energy than 
enzymatic hydrolysis (Wang et al., 2017). Ultrasonic irradiation 
(0.5 W/cm2, 40 kHz) did not affect the optimum temperature 
and pH value of the enzyme, and improved the thermal stability 
of the enzyme, and increased the activity of alliinase by about 
47.1% (Wang  et  al., 2011). Wang et  al. studied the effect of 
ultrasonic treatment on the activity of glucoamylase. The activity 
of glucoamylase increased by 21.07% and the value of Vmax and 
Km increased after ultrasonic treatment at 60 °C (420 W, 10 min), 
Ea, ΔG, ΔH decreased. The results showed that the content of 
tryptophan and tyrosine on the surface of saccharifying enzyme 
increased by 17.8% and 12.41%, respectively (Meng et al., 2018). 
The results showed that ultrasonic treatment could change the 
activity of glucoamylase, mainly by changing the conformation 
of glucoamylase.

Collectively, low intensity ultrasound has positive effect 
on enzyme, while high intensity ultrasound has negative effect 
on enzyme. When enzymes and substrates are exposed to an 
ultrasonic field, structural changes occur and the aggregation 
of enzymes and substrates is destroyed, making them easier to 
connect. At the same time, the binding site of the enzyme can 
be better exposed to the substrate (Wang et al., 2018).

5 Ultrasonic coupled with other methods to 
synergistically modify starch

In order to improve the properties and uses of starch, double 
modification was introduced to optimize the function of single 
modified starch (Table 2). Double modification method, also 
known as synergistic treatment, is modified natural starch by 
two methods. The combination of ultrasonic and high-pressure 
treatment had great effects on the structure and physicochemical 
properties of pea starch, which could increase the content of 
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resistant starch and reduce the blood Glycemic index of food to 
a certain extent, at the same time, the heat processing stability 
of modified starch was improved (Zhou et al., 2019). Ultrasonic 
treatment alone had no effect on the physical properties of 
corn starch, while ozone treatment alone or in combination 
with ultrasonic treatment was proved to be an effective starch 
modification technique, and the ultrasonic treatment before 
the ozone action will improve the subsequent ozone action 
(Castanha et al., 2019). The starch prepared by electrostatic field 
followed by ultrasound has good functional properties and can 
obviously improve the degree of substitution of acetylated starch 
(Cao & Gao, 2020). The effects of ultrasonic and microwave 
treatment alone and in combination on the physicochemical 
and functional properties of chestnut starch were studied. 
The surface damage of ultrasonic and microwave (UM) and 
microwave-ultrasonic (MU) composite modified starch was more 
serious, and the relative crystallinity and heat of gelatinization 
were lower. The UM sample showed the highest oil absorption 
capacity and MU sample showed the highest water absorption 
capacity, which provided reference starch for potential industrial 
applications of ultrasonic and microwave treatment of chestnut 
starch (Wang et al., 2020a). Dual physical modification is more 
effective than single physical treatment. For example, compared 
with single ultrasonic treatment or freeze-thaw cycle treatment, 
potato starch has higher oil absorption capacity after dual ultrasonic 
treatment and freeze-thaw cycle treatment (Wang et al., 2020b).

In recent years, some emerging processing technologies 
coupled with ultrasonic technology have made progress in starch 
processing modification. However, the most achievements are 
still in the laboratory or pilot stage, which requires the research 
and development of relevant equipment for industrial production 
scale. In addition, the integration of artificial intelligence and 

ultrasonic is helpful to boost the innovative application of 
ultrasonic technology in starch processing.

6 Perspectives
Ultrasonic has the characteristics of green energy-saving 

and high mass transfer efficiency, which can change the multi-
scale results of starch and affect its physicochemical properties. 
It was also found that low intensity ultrasound had a positive 
effect on the enzymatic hydrolysis of starch, while high intensity 
ultrasound had a negative effect on the enzyme. In addition, in 
order to meet the needs of industrial starch processing diversity, 
ultrasonic modification with other methods is also emerging, 
but the coupling mechanism of different modification methods 
need to be further explained.
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