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Abstract

Structural equation modeling (SEM) is an impor-
tant statistical tool for evaluating complex rela-
tions in several research areas. In epidemiology, 
the use and discussion of SEM have been limited 
thus far. This article presents basic principles and 
concepts in SEM, including an application us-
ing epidemiological data analysis from a study 
on the determinants of cognitive development in 
young children, considering constructs related to 
organization of the child’s home environment, 
parenting style, and the child’s health status. The 
relations between the constructs and cognitive de-
velopment were measured. The results showed a 
positive association between psychosocial stimu-
lus at home and cognitive development in young 
children. The article presents the contributions by 
SEM to epidemiology, highlighting the need for 
an a priori theoretical model for improving the 
study of epidemiological questions from a new 
perspective.

Mathematical Models; Statistical Factor Analysis; 
Causality

Introduction

Recent years have witnessed growing interest in 
structural equation modeling (SEM) in various 
fields of knowledge. The popularity of SEM stems 
mainly from the fact that researchers have real-
ized the need to understand the complex inter-
relations between the multiple variables under 
study. Traditional statistical methods only apply 
to a limited number of variables, and may thus 
fail to deal with the sophisticated emerging theo-
ries. Another reason relates to the increased rec-
ognition of the validity and reliability of scores 
observed using measurement instruments, when 
SEM allows the explicit inclusion of measure-
ment errors. In addition, the availability of vari-
ous user-friendly computer programs allows the 
implementation of a wide range of models, from 
the simplest to the most sophisticated, providing 
a further reason for the widespread current use of 
these methodologies.

SEM is a generic analytical tool that has prov-
en flexible and powerful for estimating param-
eters in an extensive family of linear models 1,2. 
One important aspect of SEM is its extension for 
estimating measurement errors by using factors 
or latent variables. These models consider the 
inclusion of variables that are not measured di-
rectly, but through their effects, called indicators, 
or their observable causes. Non-measurable vari-
ables are known as latent variables or construct. 
SEM allows assessing how sets of observed vari-
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ables define constructs and how these constructs 
relate to each other 3. Such modeling also allows 
evaluating complex mediating mechanisms by 
disaggregating the effects 4,5.

Although structural equation modeling has 
traditionally been used more in research in the 
social and human sciences (particularly psychol-
ogy and econometrics), in recent years a wider 
range of applications to health has appeared in 
the scientific literature. Examples include the use 
of confirmatory factor analysis to evaluate and 
compare competing models for metabolic syn-
drome 6 or the use of SEM to develop a causal 
model for the relations between symptoms and 
quality of life in cancer patients receiving end-
of-life care 7. Comparison of the results obtained 
through the use of SEM and the multiple linear 
regression model was used to evaluate the im-
pact of breastfeeding on cognitive function in 
children 8. More recently, SEM was used in a study 
to examine the relations between blood pressure 
in adolescence, fetal development, and maternal 
characteristics 9. A literature search in PubMed 
using the key words structural equation model-
ing, confirmatory factor analysis, structural equa-
tion, and path analysis in six leading periodicals 
in the field of Epidemiology (Am J Epidemiol, Int J 
Epidemiol, Eur J Epidemiol, Ann Epidemiol, Lan-
cet, and Epidemiology) showed that 24 articles 
used SEM from 2001 to 2008, and that 62.5% of 
these had been published since 2006.

The current study thus aimed to summarize 
and illustrate fundamental concepts related to 
structural equation modeling, considering the 
most commonly described methods in the litera-
ture 1,2,10,11,12,13. The study thus includes infor-
mation on terminology, the model’s mathemati-
cal specifications, estimation procedures, and 
criteria for assessing goodness of fit. The applica-
tion of SEM to epidemiological data is presented 
through a study associated with child's health, 
emphasizing the interpretation of its results.

Material and methods

Structural equation modeling

SEM includes multivariate data analysis tech-
niques that combine aspects from multiple re-
gression and factor analysis to simultaneously 
estimate a series of relations of dependency 
that allow defining procedures aimed at di-
rectly incorporating measurement errors into 
the model 5. The variables used in SEM can be 
observed variables or constructed variables (not 
observed), called constructs or latent variables. 
This is one of the most important differences 

between SEM and other modeling techniques, 
since the classical data analysis procedures only 
model observable measurements 14. Another 
interesting characteristic of the methodology 
is that a variable can be both a response in an 
equation and appear as an explanatory variable 
in another equation. It is also possible to specify 
a reciprocal effect, in which two variables affect 
each other through a feedback loop.

The application of SEM is based on the theory 
used by the researcher and requires a theoretical 
model specified a priori for explaining the mul-
tiple relations of dependency or causal relations 
among a set of variables. A theoretical model 
consists of a systematic set of relations that pro-
vide consistent and comprehensive explanations 
for the phenomena 12. The relations are defined 
by a series of equations that describe the hypo-
thetical structures, allowing the modeling of dif-
ferent types of correlations among observations, 
regardless of their origin (for example, causal re-
lations, multiple responses, repeated measure-
ments, and longitudinal designs) 15. The theoreti-
cal model can be expressed through both equa-
tions and graphs, called path diagrams, which 
summarize the set of hypotheses.

Application of SEM consists of various stag-
es, including the development of a theoretical-
conceptual model, specification of the math-
ematical model, determination of the model’s 
identifiability, the model’s fit and evaluation of 
its goodness of fit 16. Several of these procedures 
are described below.

• Types of variables and path diagrams

Variables in SEM can be classified in relation to 
various aspects in the model. As for their measur-
ability, they can be classified as latent, measure-
ment, and indicator variables. Variables that are 
not directly measurable are called latent variables 
or constructs and refer to theoretical concepts 
that cannot be observed directly. In SEM, the con-
structs allow the formation of relations of depen-
dency or causal relations to be estimated by the 
models, and they are measured approximately by 
a set of observed variables. Latent variables can 
also be related to measurement variables in a re-
lationship of dependency 12. The observed vari-
ables that are used to compose a latent variable 
are called indicators. The researcher must justify 
the theoretical basis for the indicator variables 
because SEM only examines its empirical char-
acteristics. For each construct that appears in the 
model, it is necessary to determine in advance 
which indicator variables are related to it. 

As for the influence that one variable exerts 
on others, variables can be classified as exoge-
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nous or endogenous 1,13. Exogenous variables are 
not influenced or do not suffer the effect of other 
variables in the model, and are also called inde-
pendent or predictive variables. As in the tradi-
tional regression model, these variables (qualita-
tive or quantitative) are assumed to be measured 
without error. Endogenous or dependent vari-
ables are influenced by other variables present 
in the model. The structural errors represent the 
aggregate omitted causes from the endogenous 
variables, together with the measurement error. 
There will be an error associated with each en-
dogenous variable in the model.

Since SEM generally includes complex mod-
els, many researchers find it more convenient to 
depict such models in diagram form. The por-
trayal called “path diagram” allows rapid visual-
ization of the relations of interdependency in the 
theoretical model 12. The path diagram is depict-
ed by a set of geometric figures and arrows show-
ing the types of variables (observed or latent) and 
the relations between them 1.

Other principles in the construction of a path 
diagram are: (i) X represents the indicator vari-
ables of the exogenous constructs and Y the indi-
cator variables of the endogenous constructs; (ii) 
constructs are normally represented by circles or 
ovals; (iii) measurement variables are represented 
by rectangles or squares; (iv) indicator variables X 
and/or Y are associated with their respective con-
structs by arrows pointing from the constructs 
towards the indicator variables (Figure 1). SEM 
conventionally assumes that the indicator vari-
ables are dependent on the constructs. When two 
variables are not connected by an arrow, it does 
not necessarily mean that one does not affect the 
other, since the relationship can occur indirectly 
and is identified by more complex paths.

Relations of dependency and correlations, 
represented by bidirectional curves, can be 
demonstrated by the path diagram and illustrate 
the importance of SEM as a methodology to si-
multaneously estimate a large set of equations. 
Importantly, the construction of a path diagram 
involves two assumptions 1. The first is that all 
the causal relations are shown in the diagram, 
and that the choice of these relations is consis-
tent with the underlying SEM theory. According 
to this assumption, the objective of SEM is to 
model the relations with the smallest number 
of causal paths or correlations between the vari-
ables that can be justified theoretically. A second 
assumption regards the nature of the relations 
between the variables (latent or observed), as-
sumed to be linear or which can be linearized by 
transformation.

• Specification of the general structural   
 equation model

General SEM consists of measurement and struc-
tural sub-models, introduced by Jorëskog 17. The 
structural sub-model can be shown as:

h = Bh+Gx+z,

where h represents a vector mx1 of latent en-
dogenous variables; x represents a vector kx1 
of latent exogenus variables; B is a matrix mxm 
of coefficients relating the latent endogenous 
variables to each other; G is a matrix mxk of co-
efficients relating the endogenous variables to 
the exogenous variables; and z is a vector mx1 
of structural disturbances. In the notation, B 
displays zeros on its main diagonal 8. The latent 
variables are related to the observed variables 
through the measurement sub-model, which is 
defined separately for endogenous and exog-
enous variables by:

y = Lyh+ e   and   x = Lxx+ d,

where Ly and Lx are matrices pxm and qxk, re-
spectively, of factor loadings, and e and d are vec-
tors px1 and qx1, respectively, of measurement 
errors in y and x. Each column in the L matri-
ces generally contains a value which is set at 1 to 
establish the scale for the corresponding latent 
variable. Alternatively, this can be done by set-
ting at zero the variances in the latent exogenous 
variables in the F matrix, which represents the 
covariance matrix of the exogenous variables 1. 
The measurement model’s fit corresponds to the 
application of confirmatory factor analysis (CFA) 
for definition of latent variables/constructs.

The model assumes that measurement er-
rors e and d have expectation zero, each one with 
multivariate normal distribution, independent of 
each other and independent of the latent exog-
enous variables (x), latent endogenous variables 
(h), and disturbances (z). In addition, it assumes 
that the observations are sampled independently 
and that the latent exogenous variables (x) have 
a multivariate normal distribution. This latter as-
sumption is unnecessary for exogenous variables 
that are measured without error. The structural 
disturbances (z) have expectation zero and mul-
tivariate normal distribution and are indepen-
dent of the latent exogenous variables (x). Under 
these assumptions, the observed indicators, x 
and y, have a multivariate normal distribution:
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where S represents the indicators’ population 
covariance matrix. This matrix is a function of 
the model’s parameters W = (B,G,Lx,Ly,Y,Qd,Qe e 
F) , and can be expressed by:

,

where F is the covariance matrix kxk of the latent 
exogenous variables, Y is the covariance matrix 
mxm of disturbance terms, and

 
Qe and

 
Qd are co-

variance matrices of measurement errors e and d, 
respectively.

Classical path analysis can be viewed as a sub-
model in the more overall structure, considering 
Lx = I, Qd = 0, Ly = I, Qe = 0. Likewise, to obtain 
matrix S associated with the confirmatory factor 
analysis, one considers B = 0, G = 0, Y = 0, Ly = 0 
and Qe = 0 5. In any given model, restrictions will 
be necessary in some elements of matrix S. Most 
frequently, the restrictions include setting some 
of these parameters at zero. If the restrictions to 
the model are sufficient, estimates of maximum 
likelihood can be obtained for their parameters. 
The log-likelihood associated with this model 
can be defined as a function of the model’s pa-
rameters, of S and S, the sampling covariance 
matrix between the observed variables. 

Figure 1

Conventions used in the path diagrams for displaying measurement and structural sub-models.

1a) Measurement sub-model 1b) Measurement and structural sub-models

In SEM, the procedure aims to estimate W so 
as to minimize the discrepancy function F(S; S), 
a scalar that measures the distance between the 
sampling covariance matrix (S) and the adjusted 
covariance matrix . The two most widely used 
estimation methods are maximum likelihood 
and generalized least squares 2,13. The likelihood 
logarithm can be thought of as a measurement of 
proximity between S and S. Thus, the estimates 
of maximum likelihood for the parameters are 
defined such that the two matrices are as close 
as possible. The asymptotic standard errors for 
the estimates of the parameters can be obtained 
from the square root of the diagonals in the infor-
mation matrix. In the estimation, as stated previ-
ously, it is assumed that the structural relations 
between the latent exogenous and endogenous 
variables are linear, as are the relations between 
the indicator variables and the constructs associ-
ated with them.

A fundamental step in SEM is the verification 
models’ identifiability of the latent variables, a 
complex problem without a simple solution. A 
model is said to be non-identifiable when it is 
not possible to find a single solution for the 
equation system. A necessary general condition 
for identifiability is the number of free parame-
ters in the model, which cannot be greater than 
the number of variances and covariances be-
tween the observable variables, shown by 

, known as the counting rule, 
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where p stands for the number of endogenous 
variables and q the number of exogenous vari-
ables in the model 13. However, this condition is 
not sufficient, since it is easy to meet and still 
result in a non-identifiable model. Situations 
that facilitate the model’s identifiability include: 
(i) the measurement errors are not correlated; 
(ii) at least two exclusive indicators exist for each 
latent variable; or when there is only one single 
indicator for a latent variable, it is measured 
without error; (iii) the structural model contains 
only observed variables 18. The statistical soft-
ware packages generally detect the attempts to 
adjust an under-identified model. In this case, 
the information matrix will be unique. Another 
way of verifying problems with the model’s iden-
tifiability is to observe whether the estimates of 
the variances are very large.

A minimum number of observations are re-
quired in order for the structural equation mod-
els to be adjusted. It is recommended that the 
ratio between the sample size and the number of 
parameters to be estimated by the model be 10:1 
or even 20:1, if statistical significance tests are of 
interest 19. In general, SEM is less stable in small 
samples (60-120), thus requiring relatively large 
samples. The minimum sample size depends, 
among other things, on the model’s complexity, 
the effect size, and the degrees of freedom 18,20.

Interpretation of the coefficients estimated 
by regression models is crucial for the research-
er’s understanding of the target relations. When 
the observed variables come from different ar-
bitrary scales, it is generally necessary to use 
standardized coefficients to help interpret the 
results. The literature includes descriptions of 
various methods for obtaining standardized co-
efficients for linear regression models, includ-
ing methods using measurements of variability, 
correlations, and standardized variables 1,21. In 
the context of SEM, standardized coefficients are 
widely used, and are made available by all the 
statistical packages.

Another interesting aspect of SEM, particu-
larly in the context of analyzing epidemiologi-
cal data, is the possibility of modeling complex 
relations between variables, including indirect or 
mediated effects 22. The simplified idea of me-
diation is that a third variable transmits the effect 
of one variable to another. Estimation of medi-
ated effects in structural equation models and in 
path analysis is commonly referred to as effect 
decomposition and is used to explicitly identify 
the direct effects and the mediated effects 5. In 
the health field, the intermediate variable can be 
called a surrogate 23.

Determination of the model’s fit is compli-
cated in this context because various goodness of 

fit criteria have been developed to evaluate struc-
tural equation models under different assump-
tions 1. Verification of goodness of fit in SEM is 
not as direct as in other multivariate procedures 
because it is traditionally assumed that the ob-
served variables are measured without error, and 
statistical tests with known distributions exist 3. 
Meanwhile, the fit indices in SEM do not have 
a statistical significance test that identifies the 
correct model considering the sample data. Chi-
square is the only statistical test used to evaluate 
the theoretical model. A statistically non-signifi-
cant result for chi-square indicates that the sam-
ple’s covariance matrix and the covariance matrix 
estimated by the model are similar. However, use 
of the chi-square test is known to be problematic 
13,24 since it is sensitive to the sample size. It thus 
becomes difficult to reject the null hypothesis in 
studies with large samples. 

It is recommended that various goodness of 
fit criteria be used together with the overall fit 
measurement 3,12 in SEM. Some of these mea-
surements constitute indices that generally vary 
from 0 (inadequate fit) to 1 (perfect fit). The 
most widely used criteria include: (i) goodness 
of fit index (GFI): 1 indicates perfect fit; (ii) root 
mean square error of approximation (RMSEA), in 
which values less than 0.05 indicate the model’s 
good fit; and (iii) comparative fit index (CFI), in 
which values greater than 0.9 are expected. Vari-
ous other indices are available in the statistical 
packages, including the adjusted goodness of fit 
index (AGFI), Tucker-Lewis index (TLI) or non-
normed fit index (NNFI), standardized root mean 
square residual (SRMR), and Hoelter’s n 12. More 
detailed information on goodness of fit criteria 
can be found in the literature 3,12.

The final stage in the procedure involves 
examining results that indicate the need for po-
tential modification of the model, in order to 
maximize the goodness of fit. Modification indi-
ces are diagnostic tools that indicate a possible 
reduction in the chi-square statistic in the over-
all goodness of fit. These indices can contribute 
to the evaluation of assumptions adopted in the 
model. However, the decision to modify it de-
pends mainly on the theoretical implications of 
such a modification. One of the caveats to the use 
of these indices is that modified models do not 
maintain the status of having hypotheses defined 
a priori, thus implying analyses that are no longer 
confirmatory, especially if the model is altered 
substantially 20. The validity of a model coming 
from such analyses needs to be confirmed by 
replication in other data 25.

Structural equation models can be imple-
mented in various statistical packages. These 
include, among others, AMOS (Analysis of Mo-
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ment Structures) 13, an extension module of SPSS 
(SPSS Inc., Chicago, USA); LISREL (Linear Struc-
tural Relationships. Jöreskog K, Sörbom D. Scien-
tific Software International, Lincolnwood, USA), 
a program developed specifically for the use of 
SEM, and a pioneer in its application 2,13; EQS 
(Multivariate Software Inc., Encino, USA), which 
incorporates numerous applications related to 
SEM 2; MPLUS (Muthén & Muthén, Los Angeles, 
USA), developed 10 years ago for implementa-
tion of SEM; and R (The R Foundation for Statis-
tical Computing, Vienna, Austria; http://www.r-
project.org), a statistical program with a specific 
library for SEM fit 26.

• Epidemiological study: cognitive develop- 
 ment in children under 42 months of age

Precarious socioeconomic conditions and weak 
family ties have been identified in the literature 
as risks for the child’s development, thus moti-
vating epidemiological studies on cognitive per-
formance and its relations with the environment 
and health. Thus, a study was performed to de-
scribe the relationship between nutritional sta-
tus, socioeconomic conditions, quality of home 
stimulation, and cognitive development in 320 
children from 20 to 42 months of age living in the 
city of Salvador, Bahia State, Brazil 27.

The cognitive development index (CDI) 
was measured using the Bayley Scales for In-
fant Development 28. The scale consists of three 
complementary subscales (mental, motor, and 
behavioral), but this study only considered in-
formation referring to the mental subscale index, 
which includes items that evaluate memory, ha-
bituation, problem-solving, numerical concepts, 
generalization, vocalization, language, and social 
strategies. The characteristics of the home en-
vironment and parenting style were measured 
with Home Observation for Measurement of the 
Environment (HOME) inventory 29. Nutritional 
status was evaluated using the anthropometric 
scores (z-scores) height/age, weight/age, and 
birth weight. The procedures for definition of the 
sample, application of the questionnaires, and 
description of the measurement scales are de-
scribed in the literature 27.

The analyses performed previously have 
used linear regression models 27. In this study, 
the data are reanalyzed with structural equation 
modeling. SEM was used to: (i) define constructs 
representing characteristics of the environment 
in which the child lives, parenting style, and the 
child’s nutritional characteristics; and (ii) evalu-
ate the impact of these constructs on the child’s 
cognitive development. The theoretical model 
for illustrating the use of SEM and explaining the 

CDI was defined by the researchers in charge of 
the original study. The path diagram shown in 
Figure 2 captures the set of causal relations hy-
pothesized by the researchers. 

In these analyses, the following variables 
were used: emotional and verbal responsive-
ness (homei), lack of punishment and restric-
tion (homeii), organization of the physical and 
temporal environment (homeiii), availability of 
appropriate toys and materials for the child’s age 
(homeiv), maternal involvement with the child 
(homev), opportunity for variation in the stim-
ulation (homevi), height/age anthropometric 
score (height/age), weight/age anthropometric 
score (weight/age), birth weight in kg, sex (1 = fe-
male, 0 = male), age in months, and child cogni-
tive development index (CDI). Table 1 shows the 
description of the CDI and the scores from the 
HOME Inventory.

As specified in Figure 2, the construct parent-
ing style was formed by the scores for the moth-
er’s emotional and verbal responsiveness, lack 
of punishment and restrictions, and maternal 
involvement with the child. The physical-envi-
ronmental construct was formed by the scores 
for organization of the physical and temporal en-
vironment, availability of toys, and opportunity 
for variation in stimulation, while the nutritional 
construct was formed by the variables height/
age score, weight/age score, and birth weight. 
The analyses were performed with the R package, 
version 10.1, and MPlus version 5.21.

Results and discussion

Cognitive development in children under
42 months of age

An assumption associated with use of the maxi-
mum likelihood estimation method is the pres-
ence of multivariate normality between the ob-
served variables. Preliminary diagnoses for the 
evaluation of univariate normality did not point 
to evidence against this assumption. However, 
evaluation of multivariate normality through the 
Mardia normality test 30, which evaluates kurtosis 
and multivariate asymmetry of the distribution, 
did not support such an assumption. Therefore, 
the structural equation models fitted to the data 
considered the use of the maximum likelihood 
estimator with robust standard errors.

According to the results of the measurement 
sub-model (Figure 3), one notes that the variable 
referring to maternal involvement with the child 
– homev – (standardized factor loading = 0.76) 
exerts a greater contribution to the formation of 
the construct parenting style. The variable refer-
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Figure 2

Structural equation model for studying childhood cognitive development.

ring to availability of toys – homeiv – (standard-
ized factor loading = 0.79) exerts the greatest 
contribution to the formation of the construct 
related to the child’s environment, while in the 
nutritional construct the variable with the great-
est contribution is the weight/age score (stan-
dardized factor loading = 0.90). The standardized 
factor loadings in the measurement sub-model 
can be interpreted as correlations between the 
indicators and the corresponding constructs. 
The score for absence of punishment and restric-
tion – homeii – was the only indicator that was 
not significantly correlated with the construct 
parenting style (standardized factor loading = 
0.10; p-value = 0.187). The factor loadings for 
the other indicators showed moderate to strong 
magnitude (varying from 0.38 to 0.90).

According to the standardized estimates for 
the sub-structural model, the physical-environ-
mental indicator is the one that most heavily in-
fluences the CDI (standardized estimate = 0.50). 
In addition to the physical-environmental factor, 

the nutritional factor (standardized estimate = 
0.16) was significantly associated with CDI (Fig-
ure 3). The latent variable parenting style was 
not directly associated with CDI (p-value = 0.64), 
neither were the child’s sex and age (respectively, 
p-values = 0.10 and 0.60).

The chi-square for the overall goodness of fit 
test was significant (p-value = 0.002), suggest-
ing that the data are not well fitted by the model. 
However, evaluation using other criteria (RM-
SEA = 0.049; RMSEA 90%CI = 0.030-0.067); CFI = 
0.935; TLI = 0.906; SRMR = 0.041) indicates that 
the model fits the data reasonably well. The 0.067 
value at the upper limit of the 90% confidence in-
terval for RMSEA indicates that the model can be 
improved if modifications are made. The modifi-
cation indices suggest the inclusion of a relation 
between the homei and homev indicators and the 
physical-environmental construct.

The proposed modifications were performed, 
but resulted in problems of identifiability or in-
adequate values for the models’ goodness of fit 
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Figure 3

Estimates from the structural equation model for studying childhood cognitive development.

Table 1

Description of the cognitive development index and the scores from the HOME inventory used in the example of application.

Name Description Range Interpretation

CDI Cognitive development index 70-120 Higher levels indicate higher level of development

Homei Emotional and verbal responsiveness score 2-11 Higher values indicate higher level 

of responsiveness

Homeii Score for absence of punishment 

and restriction

0-8 Higher values indicate less punishment 

and restriction

Homeiii Score for organization of physical 

and temporal environment

0-6 Higher values indicate higher level of organization 

in the child’s routine

Homeiv Score for availability of adequate toys 

and materials for the child’s age

0-9 Higher values indicate greater availability of 

adequate toys and materials for the child’s age

Homev Maternal involvement score 0-6 Higher values indicate greater maternal 

involvement with child

Homevi Score on opportunity for variation 

in stimulation

0-5 Higher values indicate more opportunities for 

variation in the child’s daily stimulation

* p-valor < 0.05.
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evaluation indices. However, removal of the vari-
ables sex and age from the sub-structural model 
resulted in an appropriate model, displaying the 
following goodness of fit statistics: chi-square = 
37.6 with 31 degrees of freedom (p-value = 0.19); 
RMSEA = 0.026 (90%CI: 0.000-0.053); CFI = 0.986; 
TLI = 0.980; and SRMR = 0.036.

Figure 4 shows the estimates for the final 
model. No substantial changes were verified in 
the estimates presented in the previous model. 
The R2 statistic associated with the model varied 
from 0.01 (for the variable homeii) to 0.76 (for 
the weight/age score), describing the amount of 
variance explained by the corresponding con-
struct. Except for the variable homeii, the R2 val-
ues indicate that the model is capturing the vari-
ances of the observed variables reasonably well. 
In addition to the positive relationship observed 
between the nutritional and physical-environ-
mental constructs with CDI, the total estimated 
effect for the construct parenting style in the CDI 
was also positive and significant (standardized 
estimate = 0.259; standard error = 0.072; p-value 
= 0.000). The adjusted model allowed the break-
down of the total effect of parenting style into di-
rect effect (standardized estimate = -0.065; stan-
dard error = 0.141; p-value = 0.650) and indirect 
effect (standardized estimate = 0.323; standard 
error = 0.103; p-value = 0.002), suggesting an im-
portant mediating role by the physical-environ-
mental construct in this relationship.

Considering the results obtained in the analy-
ses, the positive impact of the quality of psycho-
social stimulation existing in the home environ-
ment on cognitive performance shows that part 
of the effect of stimulation on CDI is due to the 
parenting style of interaction with the child and 
to the physical-environmental characteristics of 
the family context. This finding is consistent with 
other studies in the area 27,31,32. However, the cur-
rent study did not consider broader social char-
acteristics like maternal occupation and school-
ing, which are known to influence the acquisition 
of cognitive skills in childhood 27,31.

Applying a different analytical model from 
that used previously for the same data, one iden-
tifies more accurately the specific components of 
home stimulation on cognitive development in 
early childhood. Parenting style, a fundamental 
element in the child’s emotional development 
and personality 33,34, showed a relatively smaller 
influence on CDI than the availability of toys and 
variation in the home routine on CDI. However, 
the use of SEM favored the understanding that 
parenting style can exert an influence on cogni-
tion through organization of the child’s environ-
ment, variation in daily stimulation, and avail-
ability of adequate toys. Mothers that are more 

responsive and involved in their children’s devel-
opment may be the ones that offer greater oppor-
tunities for interaction and complexification of 
the child’s environment, thereby favoring child-
hood cognitive development.

Another gain with the use of SEM in this epi-
demiological study was the identification of two 
theoretical constructs (parenting style and qual-
ity of the child’s physical home setting) based on 
the subscales in the HOME inventory. This pro-
cedure allowed a theoretical and analytical ad-
justment of the established relations and greater 
precision in the estimates, with evaluation of 
each construct’s contribution to explanation of 
the CDI. In addition, use of the nutritional con-
struct in SEM was able to identify an associa-
tion between nutritional aspects and cognitive 
development in early childhood, which was not 
observed in the analysis with more traditional 
methods that consider each variable separa-
tely 27. SEM demonstrated its potential for the 
analysis of epidemiological data, especially when 
the object requires a more complete understand-
ing of the interrelations between different target 
factors, as in the case of the current study.

Final remarks

The aim of this study was to provide a summary 
of the basic principles and concepts in structur-
al equation modeling (SEM) and to present an 
empirical example of this type of analysis. Nu-
merous applications in the field of Epidemiol-
ogy can benefit from this methodology, including 
examination of the number of dimensions that 
comprise the target phenomena and the valida-
tion and evaluation of the reliability of measure-
ment scales. A specific area of application is in 
behavioral genetics studies 16, which evaluate the 
contribution of genetic factors to the variation in 
observed phenotypes. The assumption that mea-
surements are performed without error may not 
be realistic in many of these applications. One of 
the strongest justifications for introducing SEM 
is modeling of the causal relationship, since these 
models constitute powerful tools for express-
ing causal theories, allowing their verification 
through the model’s mathematical fit and de-
termination of the extent to which the observed 
data provide evidence that supports the theory. 
In addition, simulation studies 35 indicate that 
SEM is superior for studying mediation, when 
compared to traditional regression models.

This study approached SEM involving con-
tinuous endogenous variables, with a consolidat-
ed statistical theory that is already widely used in 
various fields of knowledge. However, advances 
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Figure 4

Estimates from the reduced structural equation model for studying childhood cognitive development.

in SEM have allowed the inclusion of new esti-
mation techniques to deal with non-normal dis-
tributions. Due to the work of Muthén 36,37 and 
others, it is possible to estimate the complex SEM 
parameters when the data are non-normal, in-
cluding the mixture of dichotomous, ordinal cat-
egorical, and continuous variables. There is also 
a SEM literature for binary responses or those in-
volving contexts in which the multiple normality 
assumption does not apply 37,38. For the case of 
binary responses, Kupek 38 proposed the use of 
Yule transformation to obtain the odds ratio to 
describe and interpret the interrelations between 
variables in SEM.

Another expanding area is the use of SEM for 
situations involving complex data structures with 
correlation between multiple observations of the 
same individual or between individuals belong-
ing to the same group or cluster. The application 
of SEM to growth curves or using the multilevel 
modeling approach has attracted the interest of 
various researchers 39,40,41. The use of this meth-

odology helps overcome the limitations of tradi-
tional methods, allowing progress in epidemio-
logical knowledge. Such analysis of a theoretical 
model that involves a more complex causal net-
work, including difficult-to-measure variables, is 
advantageous for minimizing the residual con-
founding related to the principal association, es-
pecially in observational studies, where there is a 
limitation due to the impossibility of completely 
controlling the confounding variables.

Although SEM is not used frequently for ana-
lyzing epidemiological data, the discussion on 
this topic has existed for some time, especially 
in the debates on causal modeling and the role 
of Statistics in causal inference 42. Importantly, 
however, like any procedure in data analysis, this 
methodology is also subject to misspecifications, 
and can be considered concurrently with other 
procedures to allow a more robust evaluation of 
the target interrelations.

* p-valor < 0.05.
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Resumo

A modelagem de equações estruturais (MEE) é uma 
ferramenta estatística importante para avaliar rela-
ções complexas em várias áreas do conhecimento. Em 
Epidemiologia sua divulgação e uso são limitados. 
Este artigo apresenta princípios e conceitos básicos da 
MEE, com exemplo de aplicação na análise de dados 
epidemiológicos. A análise de dados é realizada em es-
tudo que investiga determinantes do desenvolvimento 
cognitivo infantil, sendo definidos construtos relacio-
nados à organização do ambiente da criança, ao seu 
status de saúde, e às práticas e estilo de vida dos pais. 
O impacto positivo da qualidade de estimulação psi-
cossocial do ambiente doméstico sobre o índice de de-
sempenho cognitivo (IDC) esclarece que parte do efeito 
da estimulação sobre o IDC deve-se ao estilo parental 
de interação com a criança e às características físico-
ambientais do contexto familiar. As potencialidades 
do uso da MEE em Epidemiologia são apresentadas, 
enfatizando-se a definição do modelo teórico e seu uso 
para aprofundamento de questões epidemiológicas 
sob nova perspectiva.

Modelos Matemáticos; Análise Fatorial; Causalidade
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