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Abstract  Victora et al. (1998) proposed the use of low weight-for-age prevalence to estimate the
prevalence of height-for-age deficit in Brazilian children. This procedure was justified by the
need to simplify methods used in the context of community health programs. From the same
perspective, the present article broadens this proposal by using a Bayesian approach (based on
Markov Chain Monte Carlo (MCMC) methods) to deal with the imprecision resulting from Victo-
ra et al.’s model. In order to avoid invalid estimated prevalence values which can occur with the
original linear model, truncation or a logit transformation of the prevalences are suggested. The
Bayesian approach is illustrated using a community study as an example. Imprecision arising
from methodological complexities in the community study design, such as multi-stage sampling
and clustering, is easily handled within the Bayesian framework by introducing a hierarchical
or multilevel model structure. Since growth deficit was also evaluated in the community study,
the article may also serve to validate the procedure proposed by Victora et al.
Key words  Anthropometry; Nutritional Surveillance; Statistical Model; Bayes Theorem; Markov
chain Monte Carlo Method

Resumo  Victora et al. (1998) propuseram o uso de estimativas de prevalência de baixo peso pa-
ra idade para a estimação de déficit de altura para idade em crianças brasileiras, em virtude da
necessidade de simplificar métodos usados em programas de saúde comunitária. Este artigo ten-
ta aprofundar o referido estudo ao propor uma abordagem Bayesiana com base no método de
Simulação Estocástica via Cadeia de Markov (SEvCM), para lidar com questões de imprecisão li-
gadas à modelagem de estimação do déficit de estatura. Para evitar valores inválidos de preva-
lência estimados pelo modelo linear sugerido originalmente, propõem-se duas alternativas: um
truncamento dos valores que extrapolem os limites plausíveis de prevalência ou uma transfor-
mação logito das prevalências. A abordagem Bayesiana é ilustrada com um exemplo de um estu-
do comunitário. Imprecisões oriundas da complexidade do desenho desse estudo também são
contornadas com a abordagem Bayesiana, ao se introduzir uma estrutura hierárquica ou multi-
nível. Já que o déficit de crescimento foi efetivamente observado no exemplo, o artigo também
serve como instância de validação para o procedimento proposto por Victora et al.
Palavras-chave  Antropometria; Vigilância Nutricional; Análise Estatística; Teorema de Bayes;
Simulação Estocástica via Cadeia de Markov
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Introduction

In a recent article, Victora et al. (1998) pro-
posed the use of low weight-for-age (LWA)
prevalence to estimate the prevalence of low
height-for-age (LHA). Both indices (weight-for-
age and height-for-age) are obtained by com-
paring the data with reference curves (NCHS,
1978) by sex and age. Values below the -2 z-score
cut-off point were used to define deficits.

Focusing on the Brazilian context, Victora
et al. (1998) suggest the use of the model

[Prev.LHA] = 0.74 + 2.74 [Prev.LWA] – 
0.03 [Prev. LHA]2

to estimate the prevalence of LHA, obtained
from 38 anthropometric surveys conducted in
the country. Justifying this procedure, the au-
thors emphasized the need to simplify meth-
ods for use in the context of community health
programs, which are precisely those involving
the most marginalized segments of the popula-
tion and which are known to demand more
health evaluation and intervention. Underly-
ing the proposal for simplification is the fact
that anthropometry requires a certain level of
instrumental sophistication when one wishes
to achieve minimally acceptable accuracy for
decision-making.

However, it is important to note that the re-
gression coefficients in Victora et al.’s model
are subject to statistical uncertainty, since they
arise from a regression model based on only 38
“data points” (surveys). This additional impre-
cision should be built in to the final estimate in
order to improve the estimation of LHA.

A second issue that must be dealt with con-
cerns the structural specification of the model
suggested by Victora et al. (1998). It is possible
for their model to predict invalid values for
prevalence of LHA – both negative and above
100% – since it is linear with identity link func-
tion. Even though in the original article Victora
et al. (1998) focused mainly on point estimates,
so that this detail did not seem important, this
issue becomes overt when the stochastic na-
ture of the estimates are taken into considera-
tion as proposed in the present article.

This article therefore aims to expand on
the proposal presented by Victora et al. (1998).
Taking the data from a community study as an
example (Reichenheim, 1988), we propose a
Bayesian approach using Markov chain Monte
Carlo (MCMC) methods to obtain prevalence
estimates of LHA. This allows one to explicitly
incorporate the stochastic nature of the esti-
mates in the predictive model of LHA preva-

lence, in order to make appropriate allowance
for their imprecision and thus enable better-
informed decisions. This approach also en-
ables spatial and temporal comparisons, which
are crucial for community follow-ups of health
intervention measures. We also propose either
a truncation of values or a re-specification of
the model through a logit transformation of the
prevalences in order to avoid the problem of
invalid estimates of LHA. The latter option not
only adequately confines the values to the ap-
propriate distributional space, but also entails
a simpler model, eliminating the quadratic term
proposed originally by Victora et al. (1988).

An additional feature of the Bayesian ap-
proach is that it allows one to simultaneously
deal with the difficulties resulting from the use
of Victora et al.’s model and with specific
methodological issues linked to the complexity
of the community study itself. In the present
example, the fact that a multi-stage sampling
strategy has been employed merits special at-
tention. Since the child is the unit of analysis,
two potential sources of imprecision deriving
from staging were considered: the census enu-
meration district (primary sampling unit) and
the household (secondary sampling unit). Due
to the peculiar characteristics of the communi-
ty at hand – dispersed and diffuse intra-com-
munity health differential, without a well-de-
marcated geographic pattern – one finds prac-
tically all of the variability at the child and
household levels. This justifies a modeling ap-
proach that incorporate only the clustering ef-
fect of the latter. In the current study this is
achieved by way of introducing a random ef-
fect component to the structural sub-model of
the main statistical model.

Taking advantage of the fact that LHA was
actually observed in the community study used
as an example, another objective of this article
is to validate the procedure for using LWA to esti-
mate LHA. We therefore compare the prevalence
of LHA estimated by the current procedure with
that actually found in the community study, for
both the total population and select sub-groups.

The rest of the article is organized as fol-
lows. Following a brief introduction to the
Bayesian modeling approach in the section on
methods, we formally present the various mod-
els considered in the analysis and the related
modeling procedure. Annotated results are
presented in the ensuing section, where we al-
so emphasize the graphical form of the presen-
tation of the findings. In the final section we
briefly discuss the possibilities and prospects of
the Bayesian method using MCMC in the con-
text of the article.
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Methods

Presenting the models considered here and the
respective analytical procedures pre-supposes
some knowledge of the modeling process from
a Bayesian perspective. In short, this involves
the following steps (Spiegelhalter et al., 1995a).
First, it is necessary to construct a complete
probability model, specifying the structural
component of the statistical model and the
parametric form of the direct relationships be-
tween these quantities (sampling model). Hav-
ing specified the relationships between all the
quantities (nodes) in the system, one needs
to provide the values for some of these nodes:
specifically for the nodes representing the ob-
served data, and for the nodes representing pa-
rameters of the Bayesian prior distributions.
These priors may be diffuse (vague) or infor-
mative, as wished or necessary. It is often con-
venient to represent such full probability mod-
els in a graphical form: an example is given in
Figure 1, and discussed in the section “The Di-
rect Acyclical Graph concerning the complete
model (F)”.

The model is then implemented using sim-
ulation procedures based on Gibbs or Metrop-
olis-Hastings sampling or other MCMC algo-
rithms to generate samples from the posterior
distribution of each unknown parameter in the
model (Casella & George, 1992; Gilks, 1995).
The adequacy of the estimation process must
be checked by monitoring the outputs of simu-
lations to ensure mixing and convergence. The
latter relates to whether or not the sampler ac-
tually reaches the target posterior distribution.
Non-convergence can lead to incorrect para-
meter estimates. Mixing refers to the range of
values in the underlying posterior distribution
that are actually “visited” (i.e. simulated) by the
sampler. If mixing is poor, the sampler may not
cover all the sampling space of the target dis-
tribution, leading to underestimated standard
errors and credibility intervals. Mixing and con-
vergence can be scrutinized through graphic
visualization of the simulated chains and cal-
culation of appropriate diagnostics (Cowles &
Carlin, 1996).

To complete the process, after evaluating
the model’s fit through residuals and other in-
dicators (Aitkin, 1991; Kass & Raftery, 1995;
Spiegelhalter et al., 1998a), one proceeds to in-
ference based on the posterior distributions of
the respective parameters (e.g., means, medi-
ans, centiles, standard errors etc.). A more ex-
tensive introduction to the topic can be found
in Spiegelhalter et al. (1995b) and the applica-
tion examples accompanying the reference
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(Spiegelhalter et al., 1995c, 1995d). For a more
in-depth view, we recommend Gelman et al.
(1995), the other chapters in Gilks et al. (1995)
in addition to that quoted above, and Gamer-
man (1997).

We now present the model used in the cur-
rent article. The analytic procedures are cov-
ered in the next section.

The model, its components, 
and alternatives

The model at hand comprises two sub-models.
The first sub-model refers to the modeling of
LWA prevalence using data from the communi-
ty survey. The second refers to the modeling of
LHA prevalence estimates, i.e., to the model
that generates the coefficients used to convert
estimates of LWA prevalence into LHA preva-
lence. We thus start by presenting the LWA sub-
model. This will include the specification of
priors and the transformation of cluster-spe-
cific (CS) regression coefficients (which are di-
rectly estimated in the modeling process) into
population-average (PA) coefficients (which are
necessary for prediction in the context of this
analysis). We then describe the various sub-
models for estimating LHA prevalence. Six sub-
models are contemplated, ranging from the
one proposed by Victora et al. (1998) to a com-
pletely re-specified sub-model. In the course of
the presentation we make several observations
justifying the use of the various alternatives.

Sub-model 1 related to the prevalence 
estimation of low weight-for-age

If one is interested in the prevalence of growth
deficit (LHA) in the total population, as well as
in some sub-groups relevant from a health point
of view (e.g., children with low birthweight or
high maternal parity), one must first estimate
the overall LWA prevalence and LWA preva-
lence for the various strata. The outcome vari-
able ([LWA]) and the variables identifying sub-
groups are all binary (defining low birthweight
[LBW] in the conventional way as < 2500 g, and
high parity [PAR] as ≥ 4 children per mother)
and so sub-model 1 may be written algebraical-
ly as a binary logistic regression model as fol-
lows:

[LHA]ij � Bernoulli (πij) (1a)
logit (πij) = β0 + β1[LBW]ij + β2[PAR]i + ui (1b)
ui � Normal (0, τu ) (1c)
βk � Normal (0, 0.001) (1d)
τu � Gamma (3,1) (1e)
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Figure 1

Direct Acyclic Graph referring to model F (sub-model 1 + sub-model 2F).
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The index i refers to the household/mother
and j refers to the child. A random effect term
ui is introduced to deal with the design effect
(clustering by household/mother). Note that
this component is specified as a Gaussian dis-
tribution with mean 0 and precision τu, the in-
verse of the variance (τu = σu-2). Equations (1d)
and (1e) define, respectively, the priors of the
k = (1, …, 3) regression coefficients (β0 , β1 and
β2 ), and the precision τu of the random effect
term. The specification of the hyperparameters
of the gamma distribution are based on the ar-
guments provided by Smith et al. (1995). Bear-
ing in mind that the model is of the logistic
form, this prior states the belief that, amongst
children of different households/mothers but
with otherwise identical observed covariates,
we expect a spread of roughly one order of
magnitude in the odds of a positive outcome. A
summary of the rationale leading to the actual
values for the gamma distribution can be found
on page 39 in Spiegelhalter et al. (1995b). On
the variance scale (τ-1), this prior places most
of its probability mass between 0 and 1, with
negligible mass on values above 2; from a sub-
stantive point of view, random effect variances
much larger than 2 are unlikely in this type of
model (Best & Spiegelhalter, 1995). Thus, al-
though it can be characterized as informative,
this prior can be considered diffuse over the
range of values with epidemiological meaning.
It must be pointed out that in the specific case
of the community survey used as an example,
sampling was self-weighted and thus elimi-
nates the need to incorporate sampling expan-
sion weights.

Sub-model 1 also entails the transformation
of the cluster-specific (CS) coefficients that are
directly estimated in the analysis into popula-
tion-average (PA) coefficients (Neuhaus et al.,
1991; Diggle et al., 1994; Goldstein & Rasbash,
1996;). The CS coefficients are conditional on
the cluster random effect, while what is of most
interest here are the marginal coefficients re-
ferring to the entire population (or strata there-
of). These PA coefficients are necessary for car-
rying out the predictions presented later in this
article. There are various methods for obtaining
PA coefficients from CS coefficients. Some re-
quire integration over the distribution of the
random effects (Zeger et al., 1988). An alterna-
tive method proposed by Zeger et al. (1988)
simply uses a deterministic approximation to
the relationship between the CS and PA coeffi-
cients. Since the results are practically indistin-
guishable, and with a view towards computing
efficiency, only the latter is used. The approxi-
mation proposed by Zeger et al. (1988) is

βk* � βk (1 + 0.346 σu
2 )-1/2 (2)

where βk* represent the desired PA estimations,
βk represent the CS regression coefficients in
the random effects model (eq. 1a – 1e), and
σu

2 = τu
-1 is the random effect variance.

In preparation for the procedure to esti-
mate LHA prevalence, it is necessary to obtain
the prevalence estimates of LWA, both for the
total and by sub-group. To calculate the latter,
one uses the simple conversion

[Prev.LWA]g = (1 + exp {-(β0* + β1* [ILBW] + 
β2* [IPAR])}-1 x 100 (3)

where the index g indicates sub-groups whose
prevalence of LWA are being estimated. [ILBW]
and [IPAR] represent the sub-group indicators
and can thus take the values 0 or 1, according
to the stratum that is being calculated. Note
that PA coefficients are used.

To obtain the estimate of the overall preva-
lence, one calculates

[Prev.LWA]ij = (1 + exp {-(β0* + β1* [LBW]ij + 
β2* [PAR]i )}-1 x 100 (4)

for each child j from household (mother) i, fol-
lowed by the mean [Prev.LWA](•) = ∑ij [Prev.
LWA]n-1. Note that here equation (4) refers to
each child ij and thus the individual values
of the covariates are used. In calculating the
means, n is the total number of children in the
community study.

Sub-model 2 related to the prevalence 
estimation of low height-for-age

Having obtained estimates of the true preva-
lence of LWA, one proceeds to estimate the
prevalence of LHA. A summary of the sub-
models can be found in Table 1.

In sub-model 2A, one applies the equation
proposed by Victora et al. (1998) to the point
estimates of [Prev.LWA](•) and [Prev.LWA]g ob-
tained from the analysis of the community sur-
vey. Generically, sub-model 2A is 

[Prev.LHA] = α0 + α1[Prev.LWA] + α2[Prev.LWA]2 (5)

where, from Victora et al. (1998), α0 = 0.743,
α1 = 2.342, and α2 = -0.029.

In sub-model 2B, one directly and simulta-
neously uses the point estimates of the coeffi-
cients provided by Victora et al. (1998). Al-
though equation (5) is formally the same, here
the prediction of LHA is carried out at the same
time as the analysis of the community data
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used to estimate LWA. Since the regression co-
efficients in sub-model 2B are treated as known
(i.e. without allowing for imprecision), the sub-
sequent distribution of [Prev.LHA] is only de-
pendent on the variability stemming from the
community survey data in estimating [Prev.LWA].

In 2C, the regression coefficients are treat-
ed stochastically and assumed to arise from a
Gaussian distribution with mean and standard
deviation given, respectively, by the point esti-
mates and standard errors reported by Victora
et al from their analysis of the data from the 38
anthropometric surveys. Formally,

[Prev.LHA] = δ0 + δ1[Prev.LWA] + δ2[Prev.LWA]2 (6a)
δ0 � Normal (α0, τ0 ) (6b)
δ1 � Normal (α1, τ1 ) (6c)
δ2 � Normal (α2, τ2 ) (6d)

where α0, α1, and α2 are the same as for model
2A (equation 5) and τ0 = 0.272, τ1 = 9.595, and
τ2 = 8548.1 are the precisions, defined as the in-
verse square of the respective standard errors
of the coefficients reported by Victora et al.
(1998). In this model, imprecision arising from
the anthropometric surveys is taken into ac-
count and transmitted to the prevalence esti-
mate of LHA, which are already dependent on
the imprecision of the LWA estimates from the
community survey itself. Note that the external
information (from Victora et al.’s analysis) is
explicitly used as a priori knowledge.

In sub-model 2D, estimation of LHA preva-
lence is carried out by simultaneously using

the data from both the community survey and
the 38 external anthropometric surveys. Here,
the coefficients are estimated by

µq = δ0 + δ1[Prev.LWA]q + δ2[Prev.LWA]q
2 (7)

[Prev.LHA]q � Normal (µq, ψ) (8)

Index q indicates the prevalence values
from each of the 38 anthropometric studies
and ψ represents the precision of a normal dis-
tribution. Vague priors are assigned to the pa-
rameters δk (k = 1, K, 3) and ψ:

δk � Normal (0, 0.001) (9a)
ψ � Gamma (0.001, 0.001) (9b)

The estimates δk , are then used to predict
[Prev.LHA] for the community study according
to equation (6a), where [Prev.LWA] are the
prevalence estimates for LWA in the communi-
ty study, obtained using sub-model 1.

Sub-model 2E is similar to 2D but includes a
simple truncation to constrain the predicted LHA
prevalence estimates to the range (zero, 100%). In
the case of the analysis at hand, this has been ac-
complished by setting any negative estimation to
zero thus avoiding inappropriate values originat-
ing from the specification of the sub-model as in
2B through 2D (linear with identity link function). 

With the same purpose, model 2F has been
re-specified by way of a logit transformation of
the prevalences. This avoids arbitrary trunca-
tion, since values under 0 and over 100% cannot
even be estimated. In a preliminary exploration

Table 1

Summary of sub-models 2 for estimating prevalence of low height-for-age.

Characteristics Estimation sub-models
2A 2B 2C 2D 2E 2F

Estimation parallel to analysis of community data √ √ √ √ √

Estimated value of [Prev.LHA] treated stochastically

No √

Yes: information on 
model’s precision

Excluded √

Included √ √ √ √

Parameters estimated directly from surveys (anthropom.) √ √ √

Model adequate to confine zero values estimated by

Truncation √

Specification √
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of this model, we found that the quadratic term
suggested by Victora et al. (1998) is no longer
necessary (the quadratic term on the logit scale
had a p-value of 0.61 and the model excluding
this term still gave a value of R2 = 0.88). In this
new sub-model, the 2 coefficients δ0

(L) and δ1
(L)

are estimated on the basis of the prevalences
(LWA and LHA) from the 38 surveys transformed
into the respective logits [P/(1 - P)]. By also
transforming the prevalences of LWA (aggre-
gate and by sub-group) estimated in sub-mod-
el 1 to the same scale, one obtains [Prev.LHA](L)

through

[Prev.LHA](L) = δ0
(L) + δ1

(L)[Prev.LWA](L) (10)

with priors for δk
(L) as in (9a). Thereafter, one

transforms back to original scale, obtaining the
values of interest: 

[Prev.LHA] = (1 + exp {-[Prev.LWA](L)})-1 (11)

As for the objective of validating the LHA
prevalence estimation procedure, one also
needs the prevalence estimates of LHA from
the community study data. For this purpose we
used the same structure of sub-model 1, but
with [LHA] rather than [LWA]. This modeling
thus includes the random component taking
the design effect into account.

The Direct Acyclic Graph 
for the complete model (F)

For purposes of illustration, model F (sub-mod-
el 1 + sub-model 2F) is shown in Figure 1. Such
representation is based on the formal graphical
modeling ideas discussed by Spiegelhalter
(1998). Each quantity in the model appears in a
node in the graph. For clarity we use rectan-
gular and oval nodes to distinguish data and
known constants from unobserved variables,
respectively, although both types of node are
treated as random variables from a Bayesian
perspective. Circular nodes represent deter-
ministic functions. Repetitive structures like
children nested within households (mothers)
are shown as stacked “sheets”. Arrows linking
the nodes indicate direct dependencies be-
tween the quantities in the model. The solid
and dotted lines distinguish between stochastic
and deterministic relationships, respectively.

Analyses procedures

Estimation of parameters was carried out in
the Bayesian software WinBUGS 1.2, which us-
es MCMC sampling algorithms. The code refer-
ring to the model presented in Figure 1 is shown
in Table 2.

To improve estimability or computing effi-
ciency, some authors recommend re-parame-
terizations of the model (Gilks & Roberts, 1995;
Spiegelhalter et al., 1995b). Here, the model has
been re-parameterized to center the random
effects about the population intercept (rather
than about zero), and to center the covariate
about its mean. This improves numerical sta-
bility and convergence, but does not alter the
interpretation of the model.

Mixing was evaluated visually by means
of dynamic traces monitored in WinBUGS
(Spiegelhalter et al., 1998b). Among many sug-
gested in the literature (Best et al., 1994; Gel-
man, 1995), convergence was monitored by the
potential scale reduction statistic, a diagnostic
procedure proposed by Gelman and Rubin
(Gelman & Rubin, 1992; Gelman, 1995) and im-
plemented in WinBUGS and the CODA suite of
S-functions (Best et al., 1994). For this purpose,
we carried out 2 independent simulations of
12,000 updates for the B and C models and 2
simulations of 15,000 updates for the D through
F models, beginning with overdispersed initial
values as indicated in the literature (Gelman,
1995; Spiegelhalter et al., 1995b). Based on rec-
ommended criteria (Gelman & Rubin, 1992;
Best et al., 1994), it became clear that conver-
gence and good mixing had been achieved be-
yond the first 6,000 and 7,500 updates, respec-
tively. The results presented here are based on
chains of 12,000 (models B and C) and 15,000
(models D through F) iterations, obtained by
pooling the second half of the 2 chains used for
the diagnosis.

Results and comments

Estimation models coefficients

Values of the coefficients referring to all six
sub-models 2 are found in Table 3. Note that
the point estimates and credibility limits (based
on 2.5th and 97.5th centiles of the posterior dis-
tribution) obtained by MCMC are the same as
those estimated traditionally (maximum likeli-
hood), to within Monte Carlo (simulation) error.

To provide a better picture, traces of the
chains and distributions for the 2 coefficients
in sub-model 2F are found in Figure 2. Note
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Table 2

WinBugs code for implementing model F.

{

# SUB-MODEL 1

for (j in 1:J) {

D[j] ~ dbern(p.D[j]);

log(p.D[j]) <- beta0[hhold[j]] +

beta.PAR*(PAR[hhold[j]]-0.1974638) +

beta.bw2*(LBW[j]-0.0996377);

}

# Priors

for (i in 1:I) {

beta0[i] ~ dnorm(beta0.C, tau.beta0);

}

beta0.C ~ dnorm(0.0.1.0E-3); # centered intercept

beta.int <- beta0.C-(beta.PAR*0.1974638)- # return to intercept

(beta.LBW*0.0996377); # original

beta.PAR ~ dnorm(0.0. 1.0E-3) ; # coef. for PAR

beta.LBW ~ dnorm(0.0. 1.0E-3) ; # coef. for LBW

tau.beta0 ~ dgamma(3,1) ; # precision

sigma2.beta0 <- pow(tau.beta0. -1) ; # variance (random effect)

sigma.beta0 <- sqrt(sigma2.beta0) ; # d.p.

# Transformation of CS coefficient in PA (Zeger et al., 1988)

beta.int.PA <- beta.int/sqrt(((0.346*sigma2.beta0)+1)) ;

beta.PAR.PA <- beta.PAR/sqrt(((0.346*sigma2.beta0)+1)) ;

beta.LBW.PA <- beta.LBW/sqrt(((0.346*sigma2.beta0)+1)) ;

### PREVALENCES AND PREDICTIONS

# sub-model 2F

for (n in 1:N) {

prob.LWA.Vict[n] <- LWA.Vict[n]/100 ;

LWA.Vict.lgt[n] <- log(prob.LWA.Vict[n]) ;

prob.LHA.Vict[n] <- LHA.Vict[n]/100 ;

LHA.Vict.lgt[n] <- log(prob.LHA.Vict[n]) ;

mu[n] <- delta.int + delta.1 * LWA.Vict.lgt[n] ;

LHA.Vict.lgt[n] ~ dnorm(mu[n], tau.Vict) ;

}

# Priors for sub-model 2

delta.int ~ dnorm(0. 1.0E-4);

delta.1 ~ dnorm(0. 1.0E-4);

tau.Vict ~ dgamma(1.0E-3, 1.0E-3);

# [Prev.LWA] predicted => prop. D per subgr k
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that mixing and convergence is adequate, as
indicated in the section on methods.

Prevalences of low weight-for-age 
and low height-for-age

As shown in Table 4, the point prevalence esti-
mates and respective credibility limits for LWA
found in the various models are also quite sim-
ilar. This was to be expected, since sub-model
1 is common to all of them.

The prevalence estimates of LHA are found
in Table 5. In general, the point estimates proved
to be quite consistent across all models. Slight

differences can easily be attributed to Monte
Carlo errors. 

However, subtle differences appear when
one moves beyond the point estimates. As not-
ed in the section “Sub-models 2 related to the
prevalence estimation of low height-for-age”,
models that use MCMC (B – F) allow for more
appropriate handling of statistical uncertainty.
In this respect, the 95% interval estimates for
prevalence of LHA under the different models
are not equal, either nominally or in terms of
adequacy. Intervals in model B are consistently
narrower than in the others, capturing quite
well the fact that only the imprecision from the

Table 2 (continued)

WinBugs code for implementing model F.

for (c in 1:C) {

prob.D.PA[j] <- (1/(1 + (exp(-(beta.int.PA +

beta.PAR.PA*(PAR[hhold[j]]) +

beta.LBW.PA*(LBW[j]) ))))) ;

prev.D.PA[j] <- prob.D.PA[j]*100 ;

# Conversion using log transf.

prob.D.PA.lgt[j] <- log(prob.D.PA[j]) ;

prob.stunting.PA.lgt[j] <- delta.int + delta.1*prob.D.PA.lgt[j] ;

prev.stunting.PA[j] <- (1 / (1 + exp(-prob.stunting.PA.lgt[j]))) * 100 ;

}

# Total prevalences

prev.D.PA.bar <- mean(prev.D.PA[])

prev.stunting.PA.bar <- mean(prev.stunting.PA[])

# Prevalence in sub-group PAR=1, LBW=0

prob.D.PA.10 <-(1/(1 + (exp(-(beta.int.PA +

beta.PAR.PA*(1) +

beta.LBW.PA*(0) )))) ) ;

prev.D.PA.10 <- prob.D.PA.10*100 ;

# Conversion using log transf.

prob.D.PA.10.lgt <- log(prob.D.PA.10) ;

prob.stunting.PA.10.lgt <- delta.int + delta.1*prob.D.PA.10.lgt ;

prev.stunting.PA.10 <- (1 / (1 + exp(-prob.stunting.PA.10.lgt))) * 100 ;

... Same for sub-groups [PAR=0. LBW=1] , [PAR=0. LBW=0], and [PAR=1, LBW=1]

}
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community survey data is encompassed in the
former model.

Among the models that incorporate infor-
mation on the imprecision arising from the
LHA estimation procedure, model C is the one
with the greatest uncertainty as shown by the
wider credibility intervals. 

Overall, the stochastic linear models (B – E)
appear well-behaved with quite similar point
estimates for prevalence ranges above 5%.
However, it is in the low range prevalences that
one notices problems. Model C, for example,
allows for the sampling of negative prevalence
values! Although one can argue that from a
Bayesian perspective the negative values found
specifically for the sub-group [PAR = 0, LBW = 0]
would already be in a scarcely plausible range
(i.e., in the left tail of the parameter distribu-
tion), the same might not occur in other situa-
tions with even lower prevalence or perhaps, in
studies with a smaller sample size. Indeed, the
same could have happened with model D, al-
though apparently it did not. One must point
out that the value of 0.2% found in the 2.5th

centile is fortuitously positive. Also for model
E, nearly 2.5% of the simulated values were neg-
ative, as suggested by the lower credibility limit
of 0.01 for the sub-group [PAR = 0, LBW = 0]. By
arbitrarily truncating the negative values to ze-
ro, that of centile 2.5 becomes artificially close
to zero (0.01%). 

Model F, which uses a logit transformation
of the prevalences in the estimation process, is
able to deal satisfactorily with this issue. In ad-
dition, the 95% credibility intervals for predict-
ed LHA prevalence are narrower, partly as a re-
sult of the logit transformation which penalizes
extreme values of prevalence more heavily
than the linear model.

Drawing attention to the comparisons be-
tween the prevalence values for LHA obtained
by the various models and those observed in
the community survey, similarities are appar-
ent in the range of 5% to 15/20%. Compare, for
instance, the values obtained in A or F with the
observed values for the total population and
sub-groups [PAR = 1, LBW = 0] and [PAR = 0,
LBW = 1]. Yet, in ranges outside those limits, a
hasty appraisal, based exclusively on point es-
timates, could lead to a spurious conclusion.
Models A and F estimate, respectively, preva-
lences of 4.1% and 3.9% for sub-group [PAR = 0,
LBW = 0] and 40.6% and 39.1% for sub-group
[PAR = 1, LBW = 1]. Comparing estimated and
observed values, there seem to be some prob-
lems at both extremes (respectively, under- and
over-estimation by about 30%). However, a clos-
er look, taking the dispersion of the estimators
into account, reveals quite a different picture.
Clearly, the credibility intervals encompass the
point estimates observed in the survey, indicat-
ing that there are no major validity problems in

Table 3

Regression coefficients of sub-models 2 – means and centiles 2.5 and 97.5.

Estimation sub-models δ0 δ1 δ2

Conventional estimation1 0.743 0.341 -0.0294
(-3.155 / 4.641) (1.685 / 2.997) (-0.0514 / -0.0075)

2C 0.737 0.340 -0.0296
(-2.980 / 4.440) (1.720 / 2.970) (-0.0509 / -0.0081)

2D 0.758 0.340 -0.0293
(-2.950 / 4.590) (1.680 / 2.940) (-0.0497 / -0.0069)

2E 0.771 0.330 -0.0291
(-3.210 / 4.680) (1.660 / 3.0) (-0.0515 / -0.0065)

Conventional estimation2 0.691 0.930 –
(0.397 / 0.984) (0.810 / 1.049)

2F 0.685 0.928 –
(0.394 / 0.976) (0.809 / 1.050)

1 Values estimated in Stata (StataCorp, 1997) by the maximum likelihood method, based on data 
from the 38 surveys and using the conversion equation suggested by Victora et al. (1998).
2 Same using model with logit-transformed prevalence.
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the proposed method. The “true” values in fact
fall within the expect limits, especially in light
of the models that seek to incorporate the vari-
ous sources of error.

Posterior distributions of prevalence 
values estimated by model F

Figures 3a – 3e show the full potential of the
Bayesian perspective in the current context,
presenting the 5 posterior distributions esti-
mated by model F (sub-model 1 + sub-model
2F). The graphs emphasize the various regions

of plausibility for the LHA prevalence values.
Thus, for example, one can infer that the preva-
lence of LHA for the entire child population in
the target community has a substantial possi-
bility of falling between 6% and 8%. As dis-
cussed previously, appraisals of this sort are
relevant when applied to inter- or intra-com-
munity comparisons over time. For example, a
drop in the prevalence of growth deficit (LHA)
from 7.2% (the point estimate found using
model F) to 5.8% in 3 years could give the false
impression of effectiveness of an intervention
program. However, from a stochastic perspec-

Figure 2

Traces and distributions of sub-model 2F coefficients.
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Table 4

Prevalence of malnutrition using the weight-for-age index (≤ -2 z-score) – means and centiles 2.5 and 97.5 – according

to models containing and not containing coupled sub-models 2 (B through F).

Estimation models Prevalence (%)
Total Population Sub-group

PAR=1 PAR=0 PAR=0 PAR=1
LBW=0 LBW=1 LBW=0 LBW=1

Estimation of W/A 3.23 6.24 6.74 1.48 23.80
without estimation (1.96 / 4.78) (2.69 / 11.30) (2.17 / 14.10) (0.63 / 2.79) (9.03 / 44.80)
of H/A1

B 3.19 6.14 6.69 1.45 23.70
(1.99 / 4.78) (2.63 / 11.20) (2.16 / 13.90) (0.65 / 2.81) (8.84 / 44.10)

C 3.21 6.15 6.79 1.46 23.90
(1.94 / 4.77) (2.62 / 11.30) (2.20 / 14.10) (0.57 / 2.77) (9.05 / 44.40)

D 3.26 6.25 6.84 1.50 23.80
(1.99 / 4.86) (2.65 / 11.40) (2.20 / 14.10) (0.61 / 2.84) (9.07 / 44.00)

E 3.23 6.20 6.81 1.48 23.80
(1.96 / 4.81) (2.62 / 11.40) (2.18 / 14.10) (0.58 / 2.81) (9.01 / 43.80)

F 3.22 6.18 6.78 1.47 23.70
(1.99 / 4.75) (2.64 / 11.30) (2.23 / 14.00) (0.65 / 2.73) (8.96 / 44.10)

1Values estimated by MCMC (WinBUGS) using sub-model 1 without coupled sub-model 2.

Table 5

Prevalence of growth deficit according to the height-for-age index (≤ -2 z-score) – estimated by models A through F

and that observed in the community study – means and centiles 2.5 and 97.5.

Estimation models Prevalence (%)
Total Population Sub-group

PAR=1 PAR=0 PAR=0 PAR=1
LBW=0 LBW=1 LBW=0 LBW=1

A 8.01 14.23 15.21 4.15 40.06

B 7.34 13.80 14.80 4.05 36.90
(5.04 / 10.40) (6.69 / 23.20) (5.66 / 27.50) (2.24 / 7.07) (19.10 / 46.30)

C 7.40 13.90 15.00 4.08 37.40
(2.54 / 12.80) (5.22 / 25.60) (4.58 - 30.50) (-0.31 / 8.83) (14.40 / 71.80)

D 7.51 14.10 15.10 4.17 37. 50
(3.76 / 11.40) (6.43 / 23.70) (5.45 / 28.00) (0.20 / 8.26) (19.40 / 53.00)

E 7.45 14.00 15.00 4.15 37.40
(3.63 / 11.30) (6.29 / 23.60) (5.38 / 28.00) (0.01 / 8.28) (19.30 / 53.20)

F 7.20 13.60 14.60 3.86 39.10
(4.65 / 10.30) (6.48 / 22.80) (5.55 / 27.10) (1.77 / 6.79) (18.70 / 62.00)

Observed 8.58 14.00 13.60 6.15 27.70
Prevalence1 (6.48 / 11.00) (8.23 / 21.00) (6.47 / 23.50) (4.14 / 8.63) (13.80 / 45.30)

1Values estimated by MCMC (WinBUGS) by sub-model 1, using LHA variable observed in the community.
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tive, contemplating the plausibility regions for
the “true” estimate would reveal a broad over-
lapping of the central regions in the two distri-
butions. Subsequent decisions regarding health
interventions would obviously be completely
different.

It is important to highlight that the plausi-
bility regions shown in Figure 3 are based on a
model in which the two main sources of impre-
cision in the data have been addressed. Had
the imprecision pertaining to the estimation of
coefficients from the anthropometric surveys
been ignored, this plausibility range would in-
evitably decrease, leading to a false sense of se-
curity. This issue is particularly relevant in rela-
tion to sub-group [PAR = 1, LBW = 1], in which
the scarcity of information in the community
data allows the information from sub-model 2
to dominate over the likelihood in the resulting
posterior distribution of LHW. This is evident in
Table 4 (last column), where the credibility in-
tervals increase by some 38% from model B to F.

Final remarks

One should not fail to restate the underlying
motives in the proposal by Victora et. al (Victo-
ra et al., 1998). The use of simplified, easily ac-
cessible, yet sufficiently accurate methodolo-
gies merits interest and further development.
The current study fully endorses this view and
has hopefully moved forward in attempting to
deal with certain issues not addressed or fore-
seen previously. For example, model F appro-
priately incorporates the stochastic nature of
prevalence estimates, dealing with various
sources of imprecision, and offers a solution to
the problem of estimating negative prevalence
values of LHA, whilst producing a more parsi-
monious model.

Such issues, in addition to the possibility
of providing transparency in the results with
the aim of assisting decision-making process-
es, are positive points in the approach pro-
posed by the current study. Yet, it is worth
pointing out that the advantages go beyond
the specific problems dealt with here. More
complex analytical issues such as, for exam-
ple, measurement errors (Richardson & Gilks,
1993) and non-ignorable missing data (Best
et al., 1996) – possibly found in the various
sources of data considered here – can also be
easily accommodated and modeled simulta-
neously.

At first glance, there is a contradiction be-
tween the perspective involving simplification
and the procedure presented here. A possible

objection to adopting a Bayesian approach us-
ing MCMC would be the apparent intricacies
involved, as opposed to the available expertise
in the context where it is meant to be used (e.g.,
community health programs). Another relates
to limited access to hardware and software re-
quired to perform the analyses. In fact, the two
critiques are acceptable if the proposal is nar-
rowly conceived in terms of complete imple-
mentation at the local level, taking the technol-
ogy’s current state of the art into account. We
realize that performing the analyses discussed
in this article requires some statistical and pro-
gramming knowledge and, more importantly,
computing time and capacity.

Figure 3

Distribution of growth deficit prevalences estimated by model F.

Figure 3b

[PAR = 1, LBW = 0]

Figure 3a

Aggregate.
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However, such objections merit qualifica-
tion. Computing problems as obstacles tend to
decrease gradually with the introduction of
more advanced technologies. In a not-so-dis-
tant future, computers with parallel processing
capabilities should be fully accessible to the
public, making computer-intensive methods
routine. Suffice it to recall that a logistic regres-
sion analysis, now easily performed anywhere
by an epidemiologist or public health special-
ist with minimum training, used to take special
programming and a long time to run less than
20 years ago. There is no reason why comput-
er-intensive methods like the Bayesian ap-
proach using MCMC should not follow a simi-
lar course.

Although there are some software already
available (e. g., BUGS 6.0 available on URL http:
//www.mrc-bsu.cam.ac.uk/bugs/; or WinBUGS
1.2 (Spiegelhalter et al., 1998b); or HUGIN
(Jensen, 1996)), development will tend to grow
in this scenario of expanding computing ca-
pacity. And with diversity, more specific and in-
creasingly user-friendly programs may emerge.

The issue of expertise is a more delicate one.
No matter how available user-friendly soft-
wares become, the method will always require
ad hoc programming, essentially because of
the flexibility it seeks to provide. However, to
overcome this difficulty, one can conceive of
intermediate (interface) software that could
make the outputs completely transparent and
“palatable” to the end user, as witnessed by Fig-
ures 3a – 3e. One thus maintains the perspec-
tive of using simplified and easily accessible
methodologies, even though the underlying
procedures are not necessarily so. Such pro-
jects will have much to contribute to the estab-
lishment of a Bayesian approach in the field of
collective health (Etzioni & Kadane, 1995; Lan-
drum & Normand, 1999).

Figure 3

Distribution of growth deficit prevalences estimated by model F.

Figure 3d

[PAR = 0, LBW = 0]

Figure 3e

[PAR = 1, LBW = 1]
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