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INTRODUCTION

Gannan navel orange is a national 
geographical indication product of China. It is of 
high quality, rich in essential nutrients and enjoys 
the reputation of Chinese famous fruit. As a major 
indicator of nutrients, chlorophyll content is involved 

in various biochemical and physiological processes 
that are vital for navel orange production. Real-time 
and non-destructive assessment of navel orange 
chlorophyll content is important for evaluating crop 
productivity and improving the precise management of 
N(LI et al., 2016). Although, traditional measurement 
of chlorophyll content via wet chemistry methods 
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ABSTRACT: Estimating leaf chlorophyll contents through leaf reflectance spectra is efficient and nondestructive. The literature base 
regarding optical indices (particularly chlorophyll indices) is wide ranging and extensive. However, it is without much consensus regarding 
robust indices for Gannan navel orange. To address this problem, this study investigated the performance of 19 published indices using RDS 
(raw data spectrum), FDS (first derivative data spectrum) and SDS (second derivative data spectrum) for the estimation of chlorophyll content 
in navel orange leaves. The single spectral index and combination of multiple spectral indices were compared for their accuracy in predicting 
chlorophyll a content (Chla), chlorophyll b content (Chlb) and total chlorophyll content (Chltot) content in navel orange leaves by using partial 
least square regression (PLSR), adaboost regression (AR), random forest regression (RFR), decision tree regression (DTR) and support vector 
machine regression (SVMR) models. Through the comparison of the above data in three datasets, the optimal modeling data set is RDS data, 
followed by FDS data, and the worst is SDS data. In modeling with multiple spectral indices, good results were obtained for Chla (NDVI750, 
NDVI800), Chlb (Datt, DD, Gitelson 2) and Chltot (Datt, DD, Gitelson2) by corresponding index combinations. Overall, we can find that the 
AR is also the best regression method judging by prediction performance from the results of single spectral index models and multiple spectral 
indices models. In comparison, result of multiple spectral indices models is better than single spectral index models in predicting Chla and Chltot 
content using FDS data and SDS data, respectively.
Key words: chlorophyll content, spectral index, regression, Gannan navel orange.

RESUMO: Estimar os teores de clorofila foliar através de espectros de refletância foliar é eficiente e não destrutivo, a base da literatura sobre 
índices ópticos (principalmente índices de clorofila) é ampla e extensa. No entanto, não há muito consenso sobre índices robustos para a laranja 
de Gannan. O estudo investigou o desempenho de 19 índices publicados usando RDS (espectro de dados brutos), FDS (espectro de dados de 
primeira derivada) e SDS (espectro de dados de segunda derivada) para a estimativa do teor de clorofila em folhas de laranja de umbigo. Os 
índices espectrais foram comparados quanto à sua precisão na previsão do teor de clorofila a (Chla), teor de clorofila b (Chlb) e teor de clorofila 
total (Chltot) em folhas de laranja de umbigo usando regressão dos mínimos quadrados parcial (PLSR), regressão adaboost (AR), modelos de 
regressão de floresta aleatória (RFR), regressão de árvore de decisão (DTR) e regressão de máquina de vetor de suporte (SVMR). Através da 
comparação dos dados acima em três conjuntos de dados, o conjunto de dados de modelagem ideal são os dados RDS, seguidos pelos dados 
FDS, e o pior são os dados SDS. Na modelagem com vários índices espectrais, bons resultados foram obtidos para Chla (NDVI750, NDVI800), 
Chlb (Datt, DD, Gitelson 2) e Chltot (Datt, DD, Gitelson2) por combinações de índices correspondentes. No geral, podemos descobrir que o AR 
também é o melhor método de regressão a julgar pelo desempenho de previsão dos resultados de modelos de índice espectral único e modelos 
de índices espectrais múltiplos. Em comparação, o resultado de modelos de índices espectrais múltiplos é melhor do que os modelos de índices 
espectrais únicos na previsão do conteúdo de Chla e Chltot usando dados FDS e dados SDS, respectivamente.
Palavras-chave: teor de clorofila, índice espectral, regressão, Gannan laranja umbigo.
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is precise but cost intensive, time-consuming and a 
destructive for measuring leaves (LIU et al., 2018). 
Therefore, traditional wet chemistry destructive 
method is obviously undesirable for assessing 
chlorophyll content in navel oranges. For this reason, 
hyperspectral remote-sensing technology can be 
applied to estimate the spatio-temporal variations in 
the physical and chemical parameters of vegetation, 
including the chlorophyll content, at a relatively low 
cost compared to field measurements (MUTANGA et 
al., 2004; ZHANG et al., 2008; HE, 2013; PU et al., 
2014; PENG et al., 2018; HOEPPNER et al., 2020; JI 
et al., 2020; LI et al., 2020).

Hyperspectral remote-sensing methods 
for estimating vegetation chlorophyll content rely 
on observed spectral features via an empirical 
relationship that links the variables of interest to 
the sensitive bands, spectral indices, or  spectral 
transform values (MEER, 2001; DORIGO et al., 
2007; L. LIANG et al., 2012; LIANG et al., 2013). 
However, hyperspectral reflection is always affected 
by the biophysical characteristics of vegetation, 
canopy shape and structure, atmospheric absorption 
and scattering, and soil backgrounds (THENKABAIL 
et al., 2000; A et al., 2010). Therefore, to capture more 
effective information from the spectra, derivative 
spectra was applied to minimize the influences of 
background interference and spectral noise. Several 
studies showed that the first derivative reflectance 
(FDR) was sensitive to crop chlorophyll (CHO & 
SKIDMORE, 2006). Feng et al. (FENG et al., 2008) 
reported that the chlorophyll content was highly 
related to the radio of the red-edge integral areas 
and the blue-edge integral areas. Liu et al. (LIU et 
al., 2002) also demonstrated that the first derivative 
spectrum (FDS) at 740–760 nm was highly correlated 
with chlorophyll content in rice.

In the field of hyperspectral, given the 
spatial resolution, neighbor intensities are highly 
correlated so a spectral signature contains a lot of 
redundant information. The main issue consists 
of extracting the discriminative information to 
reduce the set of relevant bands (LE BRIS et al., 
2015). Spectral indices are an important method for 
extracting information from remotely sensed data 
because indices reduce, but do not eliminate, effects 
of soil, topography, and view angle (RDJ & ARH, 
1991; HATFIELD & PRUEGER, 2013; HATFIELD 
et al., 2015). Identically, spectral indices are also an 
important method for analyzing imaging spectrometer 
data (GITELSON et al., 2006). Several studies have 
successfully estimated chlorophyll content in leaves 
based on their own study dataset using different 

vegetation indices. Extensive use has been made of 
visible ratios (BISUN & DATT, 1998), visible/NIR 
ratios (HABOUDANE et al., 2002; GITELSON et 
al., 2006), red edge reflectance-radio indice (SIMS 
& GAMON, 2002), spectral and derivative red edge 
indices (MILLER et al., 1990). Combinations of the 
red edge and infrared region built a spectral index for 
measuring chlorophyll contents (ZARCO-TEJADA et 
al., 2003; MAIN et al., 2011). In addition, BROGE & 
LEBLANC (BROGE & LEBLANC, 2001) developed 
the triangular vegetation index (TVI) based on the 
area of a triangle with vertices at green, red and NIR 
wavelengths, which is sensitive to both chlorophyll 
content and LAI. However, most VIs have been 
focused on retrieving chlorophyll contents in specific 
species (MAIN et al., 2011; MALENOVSKY et al., 
2013), which have a limitation and un-stability for 
common use in other species. 

The research objects of this study are: (1) 
to find an indexes suitable for navel orange leaves 
because index may not be suitable for all species 
datasets (LE MAIRE et al., 2008); (2) to the best of 
our knowledge, derivative of the indexes has not yet 
been extensively applied in regression analysis, so we 
explored the capability of the derivative of the index 
in retrieval chlorophyll content; (3) to establish the 
relationship between the spectra data and chlorophyll 
content by using five different regression algorithms 
that are commonly used for data analysis in the field 
of remote sensing and comparative analysis the 
performances of these five regression methods.

MATERIALS   AND   METHODS

Data acquisition and processing
The study area was performed in a navel 

orange planting site stand located in National Navel 
Orange Engineering Research Center, Gannan Normal 
University, GanZhou, China. Sixty leaf samples were 
collected by the lopper from the branches of the 
canopy with ten trees on June 23, June 29, July 03, 
and July 04, 2018, between 9:00 and 11:00 or 14:00 
and 16:00, respectively. Leaf samples were all in a 
normal range of maturity and health. A laboratory 
hyperspectral imaging system (GaiaField-V10E, 
Sichuan Dualix Spectral Image Technology Co. Ltd, 
Sichuan, China) was used to acquire hyperspectral 
images of the leaf samples in reflectance mode. 
Imaging spectrograph (ImSpectorV10E) coves 
the spectral range from 400 to 1000nm with 360 
wavebands (wavelength interval 1.67 nm). Three-
point average spectral reflectance was used as the 
spectral value of each navel orange leaf sample.
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The datasets of 60 leaf samples were 
randomly split into two parts: a calibration set of 
45 samples and a validation set of 15 samples. First 
derivatives (FDS) and second derivatives (SDS) of 
the apparent absorbance spectra were calculated. The 
chlorophyll a content (Chla), chlorophyll b content (Chlb) 
and total chlorophyll content (Chltot) of the leaf samples 
was measured by spectrophotometry. The absorbance at 
665 nm (A665) and 649 nm (A649) was subsequently 
measured by V-5100 spectrophotometer. Chlorophyll 
content was calculated according to the reference using 
the correction equations (1), (2) and (3).

                     (1)

                       (2)

                                               (3)
where V is the volume of the extraction solution (ml), 
and W is the weight of the leaf sample (g). The results 
of Chla, Chlb and Chltot were expressed in mg/g.

Modeling methods
Some commonly used machine learning 

algorithms, such as partial least square regression 
(PLSR), adaboost regression (AR), random forest 
regression (RFR), decision tree regression (DTR) 
and support vector machine regression (SVMR) can 
cope with the strong nonlinearity of the functional 
dependence between spectral variables and biophysical 
or biochemical parameters. In this study, PLSR, AR, 
RFR, DTR and SVMR were applied to learn the 
relationship between the vegetation indices (VIs) and 
chlorophyll content by fitting a flexible model directly 
from the spectrum datasets. K-fold cross validation is 
used to avoid model overfitting, and the value of K is 
5. The grid search algorithm is used to find optimal 
model hyper parameters for 5 algorithms.

For AR parameters, the “base_estimator” 
is DecisionTree Regressor, the “loss” is linear, the “n_
estimators” is 50 and the “learning_rate” is 1; for RFR, 
the “n_estimators” is 81, the “max_features” is 6; for 
DTR, the “criterion” is mse, the “splitter” is best, the 
“min_samples_leaf” is 3 and the “max_depth” is 30; 
for SVMR, the C and gamma are 9 and 0.1 respectively.

The coefficient of determination (R2) 
and root mean square error (RMSE) are used 
as an evaluation indicators. Assuming that the 
relationship follows a normal distribution, R2 
ranges from 0 to 1. The higher the R2 value is, the 
stronger the predicted relationship is. The lower 
the RMSE is, the better performance of the model 
is. Which calculate as follows:

                 (4)
Where Ȳα is the average predicted value 

and Ȳm is the average measured value. 

                                  (5)
Where yαi is the output value; ymi is the 

measured data; and n is the sample number. 

RESULTS   AND   DISCUSSION

Spectral reflectance and leaf chlorophyll content
The apparent reflectance of spectra was 

subjected to first and second derivation in agreement 
(SHI et al., 2013) in order to increase signal-to-noise 
ratios at the different wavelengths. Higher signal-
to-noise ratios obtained by derivation seem to have 
been able to highlight the parts of the spectral where 
important chemical information is located. They are 
expected to subsequently improve the regression 
models for chlorophyll content determination. The 
content of Chla measured by spectrophotometry 
ranged from 0.45mg/g to 2.73mg/g, Chlb range from 
0.08mg/g to 0.75mg/g and Chltot range from 0.53mg/g 
to 3.48mg/g.

Vegetation indices used in this study
A number of hyperspectral indices have 

been established to estimate chlorophyll content at 
both the leaf and canopy scales. In this study, using 
the leaf reflectance data, we calculated 19 published 
chlorophyll indices (Table1). In this paper, five 
superior indices used by LIU et al. (LIU et al., 2018), 
top five in the 20 spectral indices used by Main et al. 
(MAIN et al., 2011) and nine indices used by DIAN 
et al. (DIAN et al., 2015)  were selected as spectral 
indices group. 

Analysis of modeling results
In this experiment, the raw data spectrum 

(RDS), first derivative data spectrum (FDS) and 
second derivative data spectrum (SDS) were used 
to calculate the index, and then observed their 
performance on chlorophyll estimation. In addition, 
five different regression methods are applied for 
modeling, the main purpose is to get the best suitable 
regression method and indexes for navel orange 
chlorophyll content regression. The consistency 
and robustness of the various VIs in estimating leaf 
chlorophyll content was assessed in two different 

file:///C:/Users/Revista/Desktop/ARTIGOS/n3/CR-2021-0630.R2/WORD/../../Administrator/AppData/Local/youdao/dict/Application/8.5.3.0/resultui/html/index.html#/javascript:;
file:///C:/Users/Revista/Desktop/ARTIGOS/n3/CR-2021-0630.R2/WORD/../../Administrator/AppData/Local/youdao/dict/Application/8.5.3.0/resultui/html/index.html#/javascript:;
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ways, namely, using single index and using the 
combined of multiple spectral indexes. 

Single spectral index modeling
The table 2 lists 45 indicators that perform 

best in specific data sets and inversion variables, for 
example, in PLSR algorithm, RDS data set and Chla 
variable, the index with the best performance among all 
indicators is TCARI with serial number 18 in table 1.

The horizontal line in the table is to 
highlight the data set with the best inversion effect 
in the same algorithm. Among the five machine 
algorithms, except for RFR algorithm, RDS data 
set got the best regression effect, followed by FDS, 
and finally SDS. However, when modeling with 
SDS data, the best estimate of Chlb (R2=0.931 and 
RMSE=0.045) in navel orange leaves is obtained. 
Using RDS data as the input vector of the model, 
AR shows great potential in chlorophyll content 
estimating for Chla (R2=0.955 and RMSE=0.139) and 
Chltot (R2=0.966 and RMSE=0.150), yet the estimate 
of Chlb is a bit worse, but is still better than other 
modeling methods. In addition, R² value from Chla 

and Chltot is better than Chlb, the reason may be that 
these selected indices are not particularly sensitive to 
Chlb. As can be seen from table 2, the regression effect 
of AR algorithm is the best, regardless of different 
data sets or different regression variables.

In order to find the spectral indices 
suitable for searching for Chla, Chlb and Chltot in 
RDS data, FDS data and SDS data, we select the 
best index according to the frequency of index 
occurrence, and the index with the most occurrence 
is identified as the best index. Compared with other 
spectral indices, during all the regression methods, 
Vogelmann, which appeared 10 times in the RDS 
data were considered as the best spectral indices 
in the RDS data. Similarly, when modeling with 
FDS data and SDS data, DD and Vogelmann3 are 
the best modeling spectral indices respectively. 
To choose a spectral index that is excellent for the 
estimation of Chla, Chlb and Chltot, Vogelmann3, DD 
and Vogelmann would be recommend respectively. 
Lastly, an index that is good for various modeling 
methods and various modeling data sets can be 
selected from, which is Vogelmann. 

 

Table 1 - Vegetation indices used in the study. 
 

--------------Spectral index-------------- Formula Source 

I 

1 BGI R1
450/R1

550 ZARCO-TEJADA et al. 2003 
2 PRI_5 R1

550
*R1

700
*(R1

700-R1
550)/R1

670 LIU et al. 2011 
3 TVI [120*(R1

750-R1
550)-200*(R1

670-R1
550)]/2 BROGE AND LEBLANC 2001 

4 CARI (R1
700/R1

670)*[(R1
670

*a +R1
670

*b)/SQRT(a2 + 1)] 
a = (R1

700-R1
550)/150; b = R1

550–550*a KIM et al. 1994 

5 CRI 100/R1
510–100/R1

550 GITELSON et al. 2002 

II 

6 Datt (R1
850-R1

710)/(R1
850-R1

680) DATT 1999 
7 DD (R1

749-R1
720)-(R1

701-R1
672) LE MAIRE et al. 2004 

8 Gitelson 2 (R1
750-R1

800/R1
695-R1

740)-1 GITELSON et al. 2003 
9 Vogelmann R1

740/R1
720 VOGELMANN et al. 1993 

10 Vogelmann3 D2
715/D2

705 VOGELMANN et al. 1993 

III 

11 NDVI750 (R1
750 - R1

705)/(R1
750 + R1

705) GITELSON & MERZLYAK 1994 
12 NDVI800 (R1

800 - R1
680)/(R1

800 + R1
680) RICHARDSON et al. 2002 

13 SR800 R1
800/R1

680 SIMS & GAMON 2002 
14 SR750 R1

750/R1
705 SIMS & GAMON 2002 

15 mND (R1
750 - R1

705)/(R1
750 + R1

705 - 2R1
445) SIMS & GAMON 2002 

16 mSR (R1
750-R1

445)/(R1
705-R1

445) SIMS & GAMON 2002 
17 MCARI [(R1

700 - R1
670) - 0.2(R1

700 -R1
550)]R1

700/R1
670 HABOUDANE et al. 2002 

18 TCARI 3[(R1
700 - R1

670) - 0.2(R1
700 -R1

550)R1
700/R1

670] HABOUDANE et al. 2002 
19 OSAVI (1+0.16)(R1

800-R1
670)/(R1

800+R1
670+0.16) HABOUDANE et al. 2002 

 

1represents reflectance at wavelength X nm. 
2represents the derivative of the reflectance spectrum at wavelength X nm.. 
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Multiple spectral index modeling
Combinations of different indices were 

used to estimate chlorophyll content, show as table 3. 
The AR models built by the FDS data, RDS 

data and RDS data provided relatively robust results 
for predicting Chla (R2 =0.966 and RMSE=0.121), 
Chlb (R2 =0.921 and RMSE=0.048) and Chltot (R2 
=0.969 and RMSE=0.144), compared with the other 
models. Through the comparison of the above data 
in these three datasets, there is not much difference 
between RDS and FDS in the regression effects, both 
of which are relatively excellent, and the worst is 
SDS data. Consistent with the conclusion of single 
index, AR is the algorithm with the best performance 
among the five algorithms. In modeling with multiple 
spectral indices, good results were obtained for Chla 
(NDVI750, NDVI800), Chlb (Datt, DD, Gitelson2) 
and Chltot (Datt, DD, Gitelson2) by corresponding 
index combinations. 

Comparative analysis of the optimal models
The prediction results for Chla, Chlb and 

Chltot in both single spectral index and multiple 
spectral indices using the RDS data, FDS data and 
SDS data are shown in table 2 and table 3. It can 
be founded that the AR is also the best regression 
method judging by prediction performance from the 
results of single spectral index models and multiple 

spectral indices models. In comparison, result of 
multiple spectral indices models is better than the 
single spectral index. In contrast, single spectral index 
models got better prediction results for Chlb  using the 
SDS data. In general, modeling with multiple spectral 
indices is suitable for the estimation of Chla and Chltot, 
and using single spectral index is suitable for the 
retrieval of Chlb.

DISCUSSION

This study investigated the performance of 
19 published indices using RDS data, FDS data and 
SDS data for the estimation of chlorophyll content in 
navel orange leaves. The aim was to understand which 
of the myriad of published VIs would be consistent or 
robust enough when applied to Gannan navel orange 
leaves. The indices varied greatly in terms of their 
original focus, and intended targets, but they were 
tested none-the-less and produced interesting results. 
We applied the indices to would provide a more 
than adequate examination of their abilities, due to 
the variety of leaf structures, leaf surfaces, moisture 
contents and chlorophyll contents present. Among the 
navel orange leaves, the Chltot content is the highest, 
followed by the Chla, and the least content is Chlb. 
A common observation in the study was that AR 
appeared regularly in the top of the rankings for each 

 

Table 2 - The performance of the vegetation indices to predict chlorophyll content (mg/g) according to the single index. 
 

Method ----------------Chla---------------- ------------------Chlb----------------- -------------------Chltot----------------- 

 VIS_N R² RMSE VIS_N R² RMSE VIS_N R² RMSE 

PLSR 
RDS NO.18 0.88 0.22 NO.18 0.79 0.11 NO.18 0.87 0.30 
FDS NO.10 0.85 0.25 NO.9 0.75 0.11 NO.10 0.84 0.33 
SDS NO.7 0.82 0.27 NO.7 0.73 0.12 NO.7 0.81 0.36 

AR 
RDS NO.9 0.92 0.14 NO.9 0.93 0.05 NO.9 0.97 0.15 
FDS NO.9 0.95 0.14 NO.7 0.92 0.05 NO.9 0.95 0.19 
SDS NO.10 0.94 0.16 NO.14 0.93 0.05 NO.16 0.95 0.18 

RFR 
RDS NO.9 0.9 0.18 NO.9 0.80 0.08 NO.9 0.92 0.23 
FDS NO.7 0.94 0.15 NO.7 0.88 0.06 NO.7 0.95 0.18 
SDS NO.15 0.92 0.18 NO.15 0.86 0.07 NO.10 0.92 0.22 

DTR 
RDS NO.17 0.91 0.18 NO.17 0.85 0.08 NO.17 0.91 0.24 
FDS NO.7 0.88 0.21 NO.7 0.80 0.08 NO.7 0.89 0.27 
SDS NO.10 0.88 0.21 NO.10 0.80 0.08 NO.9 0.88 0.27 

SVMR 
RDS NO.6 0.94 0.16 NO.18 0.89 0.06 NO.18 0.95 0.19 
FDS NO.10 0.93 0.17 NO.16 0.88 0.06 NO.16 0.94 0.19 
SDS NO.10 0.93 0.17 NO.6 0.82 0.08 NO.6 0.90 0.26 

 

*VIS_N represents the serial number of vegetation index in table1. 
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of the scenarios. The phenological state of the leaves, 
as well as inherent differences between species, 
results in datasets with variable moisture contents, 
leaf surfaces, and leaf internal structures. The indices 
would have had different responses to these moisture 
and structure variations, which in turn could have 
influenced their ability to predict for chlorophyll 
content. It can be assumed that the best performing 
indices probably show a decreased sensitivity to 
varying leaf structures or moisture contents and can 
be considered more robust than indices that only did 
well for crop species. Results also have similarities 
to those reported in MAIN et al. (MAIN et al., 
2011), where the data from various species to test the 
performance of 70 published chlorophyll indices was 
used. Some of the same indices that performed well 

in the MAIN et al. (MAIN et al., 2011) study also 
perform well in this study (e.g. Vogelmann 3 index, 
Datt index and Vogelman indices). 

The question regarding whether there is 
one single index or multiple indices to use in order 
to estimate Gannan navel orange chlorophyll content 
has been answered in this paper. A number of robust 
and consistent indices for Chla, Chlb and Chltot are 
proposed; and could therefore, be seen as priority 
indices to be tested in any follow up work. For 
instance the Vogelmann index by VOGELMANN 
et al. (VOGELMANN et al., 1993) consistently 
performed well in all modeling methods, and was 
the best performer for the low Chlb. Further research 
is recommended regarding whether these indices 
be able to measure Gannan navel orange canopy 

 

Table 3 - The performance of the vegetation indices to predict chlorophyll content (mg/g) according to the multiple index. 
 

Method ------------------Chla----------------- ------------------Chlb------------------- -----------------Chltot----------------- 

 VIS_N R² RMSE VIS_N R² RMSE VIS_N R² RMSE 

PLSR 

RDS 6/7 0.92 0.19 6/7 
/8/9 0.86 0.08 6/7 0.91 0.26 

FDS 6/7 
/8/9 0.92 0.19 6/7/8 0.88 0.11 6/7 

/8/9 0.92 0.25 

SDS 2/3 
/4/1 0.83 0.24 2/3 

/4/1/5 0.73 0.10 2/3 0.82 0.33 

AR 

RDS 6/7 0.95 0.14 6/7 
/8 0.92 0.05 6/7 

/8 0.97 0.14 

FDS 11/12 0.97 0.12 11/12 0.91 0.05 11/12 
/13 0.96 0.15 

SDS 6/7 
/8/9 0.96 0.13 6/7 

/8/9/10 0.88 0.06 6/7 
/8/9 0.94 0.20 

RFR 

RDS 6/7/8 0.94 0.16 6/7/8 
/9/10 0.88 0.06 6/7/8 

/9/10 0.94 0.20 

FDS 6/7/8/ 
9/10 0.93 0.17 6/7/ 

8/9 0.89 0.06 6/7/8/ 
9/10 0.94 0.20 

SDS 6/7 0.920 0.18 6/7 0.84 0.07 6/7 0.92 0.23 

DTR 

RDS 

11/12/13 
/14/15/1

6 
/17/18 

0.900 0.19 
11/12/13/ 
/14/15/ 
16/17 

0.82 0.08 
11/12/13/1

4/15/ 
16/17/18 

0.89 0.26 

FDS 2/3/4 0.87 0.23 2/3/4/1 0.80 0.28 2/3/5 0.88 0.29 

SDS 6/7/8 
/9/10 0.85 0.24 6/7/ 

8/9 0.71 0.11 6/7 
/8/9 0.86 0.30 

SVMR 

RDS 6/7 0.87 0.23 6/7/8/9 0.81 0.08 6/7 0.90 0.26 

FDS 
11/12/13 
/14/15/1

6 
0.93 0.17 11/12/13 

/14/15/16/ 0.89 0.06 11/12/13 
/14/15/16 0.92 0.23 

SDS 6/7 0.89 0.21 6/7/ 
8/9 0.85 0.07 6/7 0.89 0.27 

 

*VIS_N represents the serial number of vegetation index in table 1. 
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spectral. Another further study is to combine the actual 
spectrum with the radial transfer models (RTMs) 
to make the model simulation data set make up the 
shortcomings of the actual measurement data set.

CONCLUSION

Firstly, the regression of Chla, Chlb and 
Chltot has achieved good results, thus it’s available 
to use hyperspectral vegetation indices estimate the 
Chla, Chlb and Chltot contents in navel orange leaves. 
Secondly, in 19 published spectral indices, modeling 
by the single index or multiple indices, a suitable 
index was founded for navel orange leaves. Finally, 
when RDS data, FDS data and SDS data are used as 
input vectors of the models, among the five modeling 
methods the best modeling method is AR, which 
can establish a quantitative monitoring model of 
chlorophyll content and control the nutritional status 
of navel orange fruit trees in real time.

ACKNOWLEDGEMENTS

This research was supported in part by the National 
Natural Science Foundation of China under Grant 61741103 and 
42061067, in part by the Guangdong Natural Science Foundation 
of China under Grant 2017A030313343, in part by the Shenzhen 
Subject Layout Project of China under Grant 20180172, and in 
part by the Shenzhen Science and Technology Projection of China 
under Grant JCYJ20160520173822387. 

DECLARATION   OF   CONFLICT   OF   
INTEREST 

The authors declare no conflict of interest. The 
founding sponsors had no role in the design of the study; in the 
collection, analyses, or interpretation of data; in the writing of the 
manuscript, and in the decision to publish the results.

AUTHORS’   CONTRIBUTIONS 

All authors contributed equally for the conception 
and writing of the manuscript. All authors critically revised the 
manuscript and approved of the final version.

REFERENCES

A, C. H. J., et al. Estimating Leaf Chlorophyll Content Using 
Red Edge Parameters - ScienceDirect. Pedosphere, v.20, n.5, 
p.633-644. 2010. Available from: <https://doi.org/10.1016/S1002-
0160(10)60053-7>.  Accessed: Aug. 20, 2021. doi: 10.1016/
S1002-0160(10)60053-7.

BISUN; DATT. Remote Sensing of Chlorophyll a, Chlorophyll 
b, Chlorophyll a+b, and Total Carotenoid Content in Eucalyptus 
Leaves. Remote Sensing of Environment. 1998. Available from: 
<https://doi.org/10.1016/S0034-4257(98)00046-7>.  Accessed: 
Aug. 20, 2021. doi: 10.1016/S0034-4257(98)00046-7.

BROGE, N. H.; E. LEBLANC. Comparing prediction power 
and stability of broadband and hyperspectral vegetation indices 
for estimation of green leaf area index and canopy chlorophyll 
density. Remote Sensing of Environment, v.76, n.2, p.156-
172. 2001. Available from: <https://doi.org/10.1016/S0034-
4257(00)00197-8>. Accessed: Aug. 20, 2021. doi: 10.1016/
S0034-4257(00)00197-8.

CHO, M.; A. SKIDMORE. A new technique for extracting the red 
edge position from hyperspectral data: The linear extrapolation 
method. Remote Sensing of Environment, v.101, p.181-193. 
2006. Available from: <https://doi.org/10.1016/j.rse.2005.12.011>. 
Accessed: Aug. 20, 2021. doi: 10.1016/j.rse.2005.12.011.

DIAN, Y., et al. Influence of Spectral Bandwidth and Position on 
Chlorophyll Content Retrieval at Leaf and Canopy Levels. Journal 
of the Indian Society of Remote Sensing, v.44, n.4, p.1-11. 2015. 
Available from: <https://doi.org/10.1007/s12524-015-0537-2>.  
Accessed: Aug. 20, 2021. doi: 10.1007/s12524-015-0537-2.

DORIGO, W. A., et al. A review on reflective remote sensing 
and data assimilation techniques for enhanced agroecosystem 
modeling. International Journal of Applied Earth Observation 
& Geoinformation, v.9, n.2, p.165-193. 2007. Available from: 
<https://doi.org/10.1016/j.jag.2006.05.003>. Accessed: Aug. 20, 
2021. doi: 10.1016/j.jag.2006.05.003.

FENG, W., et al. Monitoring leaf pigment status with hyperspectral 
remote sensing in wheat. Australian Journal of Agricultural 
Research - AUST J AGR RES, v.59. 2008. Available from: 
<https://doi.org/10.1071/ar07282>. Accessed: Aug. 20, 2021. doi: 
10.1071/ar07282.

GITELSON, A., et al. Three-Band Model for Noninvasive 
Estimation of Chlorophyll Carotenoids and Anthocyanin Contents 
in Higher Plant Leaves. Geophysical Research Letters - 
GEOPHYS RES LETT, v.33. 2006. Available from: <https://
doi.org/10.1029/2006gl026457>. Accessed: Aug. 20, 2021. doi: 
10.1029/2006gl026457.

HABOUDANE, D., et al. Integrated narrow-band vegetation 
indices for prediction of crop chlorophyll content for application 
to precision agriculture. Remote Sensing of Environment, v.81, 
n.2, p.416-426. 2002. Available from: <https://doi.org/10.1016/
S0034-4257(02)00018-4>. Accessed: Aug. 20, 2021. doi: 10.1016/
S0034-4257(02)00018-4.

HATFIELD, J. L., et al. Application of Spectral Remote Sensing 
for Agronomic Decisions. Agronomy Journal, v.100, n.3, 
p.117-131. 2015. Available from: <https://doi.org/10.2134/
agronj2006.0370c>.  Accessed: Aug. 20, 2021. doi: 10.2134/
agronj2006.0370c.

HATFIELD, J. L.; J. H. PRUEGER. Value of Using Different 
Vegetative Indices to Quantify Agricultural Crop Characteristics 
at Different Growth Stages under Varying Management Practices. 
Remote Sensing, v.2, n.2, p.562-578. 2013. Available from: 
<https://doi.org/10.3390/rs2020562>. Accessed: Aug. 20, 2021. 
doi: 10.3390/rs2020562.

HE, K. K. W. A. Y. Estimating grassland chlorophyll content 
using remote sensing data at leaf, canopy, and landscape scales. 
Canadian Journal of Remote Sensing: Journal canadien de 
télédétection. 2013. Available from: <https://doi.org/10.5589/
m13-021>. Accessed: Aug. 20, 2021. doi: 10.5589/m13-021.

https://doi.org/10.1016/S1002-0160(10)60053-7
https://doi.org/10.1016/S1002-0160(10)60053-7
https://doi.org/10.1016/S0034-4257(98)00046-7
https://doi.org/10.1016/S0034-4257(00)00197-8
https://doi.org/10.1016/S0034-4257(00)00197-8
https://doi.org/10.1016/j.rse.2005.12.011
https://doi.org/10.1007/s12524-015-0537-2
https://doi.org/10.1016/j.jag.2006.05.003
https://doi.org/10.1071/ar07282
https://doi.org/10.1029/2006gl026457
https://doi.org/10.1029/2006gl026457
https://doi.org/10.1016/S0034-4257(02)00018-4
https://doi.org/10.1016/S0034-4257(02)00018-4
https://doi.org/10.2134/agronj2006.0370c
https://doi.org/10.2134/agronj2006.0370c
https://doi.org/10.3390/rs2020562
https://doi.org/10.5589/m13-021
https://doi.org/10.5589/m13-021


8

Ciência Rural, v.53, n.3, 2023.

Lian et al.

HOEPPNER, J. M., et al. Mapping Canopy Chlorophyll Content 
in a Temperate Forest Using Airborne Hyperspectral Data. 
Remote Sensing, v.12, n.21. 2020. Available from: <https://doi.
org/10.3390/rs12213573>. Accessed. doi: 10.3390/rs12213573.

JI, T., et al. Hyperspectral-Based Estimation on the Chlorophyll 
Content of Turfgrass. Spectroscopy and Spectral Analysis, v.40, 
n.8, p.2571-2577. 2020. Available from: <https://doi.org/10.3964/j.
issn.1000-0593(2020)08-2571-07>. Accessed. doi: 10.3964/j.
issn.1000-0593(2020)08-2571-07.

L. LIANG, et al. Chlorophyll content inversion with hyperspectral 
technology for wheat canopy based on support vector regression 
algorithm. Transactions of the Chinese Society of Agricultural 
Engineering, v.28, n.20, p.162-171. 2012. Available from: <https://
doi.org/10.3969/j.issn.1002-6819.2012.20.022>. Accessed: Aug. 
20, 2021. doi: 10.3969/j.issn.1002-6819.2012.20.022.

LE BRIS, A., et al. EXTRACTION OF OPTIMAL SPECTRAL 
BANDS USING HIERARCHICAL BAND MERGING OUT OF 
HYPERSPECTRAL DATA. ISPRS - International Archives of 
the Photogrammetry, Remote Sensing and Spatial Information 
Sciences, v.XL-3/W3, p.459-465. 2015. Available from: <https://
doi.org/10.5194/isprsarchives-XL-3-W3-459-2015>. Accessed: 
Aug. 20, 2021. doi: 10.5194/isprsarchives-XL-3-W3-459-2015.

LE MAIRE, G., et al. Calibration and validation of hyperspectral 
indices for the estimation of broadleaved forest leaf chlorophyll 
content, leaf mass per area, leaf area index and leaf canopy biomass. 
Remote Sensing of Environment, p.3846-3864. 2008. Available 
from: <https://doi.org/10.1016/j.rse.2008.06.005>. Accessed: Aug. 
20, 2021. doi: 10.1016/j.rse.2008.06.005.

LI, K., et al. Hyperspectral Estimation Method of Chlorophyll 
Content in MOSO Bamboo under Pests Stress. Spectroscopy and 
Spectral Analysis, v.40, n.8, p.2578-2583. 2020. Available from: 
<https://doi.org/10.3964/j.issn.1000-0593(2020)08-2578-06>. 
Accessed. doi: 10.3964/j.issn.1000-0593(2020)08-2578-06.

LI, L., et al. Evaluating chlorophyll density in winter oilseed rape 
(Brassica napus L.) using canopy hyperspectral red-edge parameters. 
Computers and Electronics in Agriculture, v.126, p.21-31. 2016. 
Available from: <https://doi.org/10.1016/j.compag.2016.05.008>. 
Accessed. doi: 10.1016/j.compag.2016.05.008.

LIANG, L., et al. Estimating Canopy Leaf Water Content in 
Wheat Based on Derivative Spectra. Scientia Agricultura Sinica. 
2013. Available from: <https://doi.org/10.3864/j.issn.0578-
1752.2013.01.003>. Accessed: Aug. 20, 2021. doi: 10.3864/j.
issn.0578-1752.2013.01.003.

LIU, P., et al. Estimating leaf chlorophyll contents by combining 
multiple spectral indices with an artificial neural network. Earth 
Science Informatics, v.11, n.1, p.147-156. 2018. Available from: 
<https://doi.org/10.1007/s12145-017-0319-1>. Accessed. doi: 
10.1007/s12145-017-0319-1.

LIU, W., et al. Relationship between rice LAI, CH.D, and 
hyperspectral data. Proceedings of SPIE - The International 
Society for Optical Engineering, v.4897. 2002. Available from: 
<https://doi.org/10.1117/12.466710>. Accessed: Aug. 20, 2021. 
doi: 10.1117/12.466710.

MAIN, R., et al. An investigation into robust spectral indices for 
leaf chlorophyll estimation. Isprs Journal of Photogrammetry 
& Remote Sensing, v.66, n.6, p.751-761. 2011. Available from: 

<https://doi.org/10.1016/j.isprsjprs.2011.08.001>. Accessed: Aug. 
20, 2021. doi: 10.1016/j.isprsjprs.2011.08.001.

MALENOVSKY, Z., et al. Retrieval of spruce leaf chlorophyll content 
from airborne image data using continuum removal and radiative 
transfer. Remote Sensing of Environment, v.131, n.8, p.85-102. 
2013. Available from: <https://doi.org/10.1016/j.rse.2012.12.015>. 
Accessed: Aug. 20, 2021. doi: 10.1016/j.rse.2012.12.015.

MEER, W. B., K. SCHOLTE, A. SKIDMORE, H. JONG, J. G. 
P. W. CLEVERS, ET AL. Spatial scale variations in vegetation 
indices and above-ground biomass estimates: Implications 
for MERIS. International Journal of Remote Sensing, 
v.22, n.17, p.3381-3396. 2001. Available from: <https://doi.
org/10.1080/01431160152609227>. Accessed: Aug. 20, 2021. doi: 
10.1080/01431160152609227.

MILLER, J. R., et al. Quantitative characterization of the 
vegetation red edge reflectance 1. An inverted-Gaussian 
reflectance model. International Journal of Remote Sensing, 
v.11, n.10, p.1755-1773. 1990. Available from: <https://doi.
org/10.1080/01431169008955128>. Accessed: Aug. 20, 2021. doi: 
10.1080/01431169008955128.

MUTANGA, O., et al. Predicting in situ pasture quality in the 
Kruger National Park, South Africa, using continuum-removed 
absorption features. Remote Sensing of Environment, v.89, 
n.3, p.393-408. 2004. Available from: <https://doi.org/10.1016/j.
rse.2003.11.001>. Accessed: Aug. 20, 2021. doi: 10.1016/j.
rse.2003.11.001.

PENG, Y., et al. Best hyperspectral indices for assessing leaf 
chlorophyll content in a degraded temperate vegetation. Ecology 
and Evolution, v.8, n.14, p.7068-7078. 2018. Available from: 
<https://doi.org/10.1002/ece3.4229>. Accessed. doi: 10.1002/
ece3.4229.

PU, R., et al. Mapping and assessing seagrass bed changes in 
Central Florida‘s west coast using multitemporal Landsat TM 
imagery. Estuarine Coastal & Shelf Science, v.149, p.68-79. 2014. 
Available from: <https://doi.org/10.1016/j.ecss.2014.07.014>. 
Accessed: Aug. 20, 2021. doi: 10.1016/j.ecss.2014.07.014.

RDJ, A.; B. ARH. Interpreting vegetation indices. Preventive 
Veterinary Medicine, v.11, n.3–4, p.185-200. 1991. Available 
from: <https://doi.org/10.1016/S0167-5877(05)80004-2>. 
Accessed: Aug. 20, 2021. doi: 10.1016/S0167-5877(05)80004-2.

SHI, T., et al. Comparison of multivariate methods for estimating 
soil total nitrogen with visible/near-infrared spectroscopy. Plant & 
Soil, v.366, n.1-2, p.363-375. 2013. Available from: <https://doi.
org/10.1007/s11104-012-1436-8>. Accessed: Aug. 20, 2021. doi: 
10.1007/s11104-012-1436-8.

SIMS, D. A.; J. A. GAMON. Relationships between leaf pigment 
content and spectral reflectance across a wide range of species, 
leaf structures and developmental stages. Remote Sensing of 
Environment, v.81, n.2-3, p.337-354. 2002. Available from: 
<https://doi.org/10.1016/S0034-4257(02)00010-X>. Accessed: 
Aug. 20, 2021. doi: 10.1016/S0034-4257(02)00010-X.

THENKABAIL, P. S., et al. Hyperspectral Vegetation Indices and 
Their Relationships with Agricultural Crop Characteristics. Remote 
Sensing of Environment, v.71, n.2, p.158-182. 2000. Available 
from: <https://doi.org/10.1016/S0034-4257(99)00067-X>. 
Accessed: Aug. 20, 2021. doi: 10.1016/S0034-4257(99)00067-X.

https://doi.org/10.3390/rs12213573
https://doi.org/10.3390/rs12213573
https://doi.org/10.3964/j.issn.1000-0593(2020)08-2571-07
https://doi.org/10.3964/j.issn.1000-0593(2020)08-2571-07
https://doi.org/10.3969/j.issn.1002-6819.2012.20.022
https://doi.org/10.3969/j.issn.1002-6819.2012.20.022
https://doi.org/10.5194/isprsarchives-XL-3-W3-459-2015
https://doi.org/10.5194/isprsarchives-XL-3-W3-459-2015
https://doi.org/10.1016/j.rse.2008.06.005
https://doi.org/10.3964/j.issn.1000-0593(2020)08-2578-06
https://doi.org/10.1016/j.compag.2016.05.008
https://doi.org/10.3864/j.issn.0578-1752.2013.01.003
https://doi.org/10.3864/j.issn.0578-1752.2013.01.003
https://doi.org/10.1007/s12145-017-0319-1
https://doi.org/10.1117/12.466710
https://doi.org/10.1016/j.isprsjprs.2011.08.001
https://doi.org/10.1016/j.rse.2012.12.015
https://doi.org/10.1080/01431160152609227
https://doi.org/10.1080/01431160152609227
https://doi.org/10.1080/01431169008955128
https://doi.org/10.1080/01431169008955128
https://doi.org/10.1016/j.rse.2003.11.001
https://doi.org/10.1016/j.rse.2003.11.001
https://doi.org/10.1002/ece3.4229
https://doi.org/10.1016/j.ecss.2014.07.014
https://doi.org/10.1016/S0167-5877(05)80004-2
https://doi.org/10.1007/s11104-012-1436-8
https://doi.org/10.1007/s11104-012-1436-8
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.1016/S0034-4257(99)00067-X


Retrieval of leaf chlorophyll content in Gannan navel orange based on fusing hyperspectral vegetation...

Ciência Rural, v.53, n.3, 2023.

9

VOGELMANN, J. E., et al. Red edge spectral measurements 
from sugar maple leaves. International Journal of Remote 
Sensing, v.14, n.8, p.1563-1575. 1993. Available from: <https://
doi.org/10.1080/01431169308953986>. Accessed: Aug. 20, 2021. 
doi: 10.1080/01431169308953986.

ZARCO-TEJADA, P. J., et al. Steady-state chlorophyll a 
fluorescence detection from canopy derivative reflectance and 
double-peak red-edge effects. Remote Sensing of Environment, 

v.84, n.2, p.283-294. 2003. Available from: <https://doi.
org/10.1016/S0034-4257(02)00113-X>. Accessed: Aug. 20, 2021. 
doi: 10.1016/S0034-4257(02)00113-X.

ZHANG, Y., et al. Leaf chlorophyll content retrieval from 
airborne hyperspectral remote sensing imagery. Remote Sensing 
of Environment, v.112, n.7, p.3234-3247. 2008. Available from: 
<https://doi.org/10.1016/j.rse.2008.04.005>. Accessed: Aug. 20, 
2021. doi: 10.1016/j.rse.2008.04.005.

https://doi.org/10.1080/01431169308953986
https://doi.org/10.1080/01431169308953986
https://doi.org/10.1016/S0034-4257(02)00113-X
https://doi.org/10.1016/S0034-4257(02)00113-X
https://doi.org/10.1016/j.rse.2008.04.005

