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OBJECTIVE: The objective of this study was to compare long-latency auditory evoked potentials before and after
hearing aid fittings in children with sensorineural hearing loss compared with age-matched children with
normal hearing.

METHODS: Thirty-two subjects of both genders aged 7 to 12 years participated in this study and were divided
into two groups as follows: 14 children with normal hearing were assigned to the control group (mean age
9 years and 8 months), and 18 children with mild to moderate symmetrical bilateral sensorineural hearing loss
were assigned to the study group (mean age 9 years and 2 months). The children underwent tympanometry,
pure tone and speech audiometry and long-latency auditory evoked potential testing with speech and tone
burst stimuli. The groups were assessed at three time points.

RESULTS: The study group had a lower percentage of positive responses, lower P1-N1 and P2-N2 amplitudes
(speech and tone burst), and increased latencies for the P1 and P300 components following the tone burst
stimuli. They also showed improvements in long-latency auditory evoked potentials (with regard to both the
amplitude and presence of responses) after hearing aid use.

CONCLUSIONS: Alterations in the central auditory pathways can be identified using P1-N1 and P2-N2 amplitude
components, and the presence of these components increases after a short period of auditory stimulation
(hearing aid use). These findings emphasize the importance of using these amplitude components to monitor
the neuroplasticity of the central auditory nervous system in hearing aid users.
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H INTRODUCTION LLAEPs are composed of the P1, N1, P2, N2 and P300

. . ) ) components. P1, N1 and P2 are considered exogenous com-
Hearing thresholds obtained using behavioral tests donot  ponents, i.e., they are influenced by the acoustic character-

provide comprehensive data regarding the contribution of istics of a stimulus, while the N2 and P300 components are

individual sound gmplification devices (hearin.g aids [HAs]) endogenous, i.e., they are most influenced by intrinsic events
and/or cochlear implants to the central auditory nervous such as perception and cognition (6).
system. For this reason, the use of objective tests is essential (1). LLAEPs can be obtained using different acoustic stimuli

Currently, long-latency auditory evoked potentials (LLAEPS)  (pure tones or speech), and responses to tonal stimuli have
are used to investigate impairments in the central auditory  |5yer latency than those obtained from a speech stimulus (7).
pathways of children (1,2) and adults (3,4) with sensorineural Impairment of the LLAEP components (P1, N1, P2, N2)
hearing loss (SNHL). LLAEPs are also used as a biomarker for in children with mild to moderate SNHL has been reported
changes in the cortical auditory pathway after the use of HAs i, 4 previous study, which showed that this population
or cochlear implants (1-3,5). has a deficit in central auditory processing (8). In addition,

the changes to the LLAEP components indicate improved
responses from auditory stimulation; for example, the P1

Copyright © 2018 CLINICS — This is an Open Access article distributed under the component shows a decrease in latency after the use of a
terms of the Creative Commons License (http://creativecommons.org/licenses/by/ cochlear implant (1,2).

4.0/) which permits unrestricted use, distribution, and reproduction in any
medium or format, provided the original work is properly cited.

According to the literature, the presence of the P1, N1,
P2 and N2 components using speech and tone burst stimuli
in children with SNHL is positively correlated with the dura-
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The P300 component is present among people with hear-
ing loss as long as the individual can perceive and distin-
guish acoustic stimuli (10). A study showed that individuals
with normal hearing or mild SNHL exhibited 100% P300
presence at intensities of 65 dB SPL and 80 dB SPL, subjects
with moderate SNHL showed 50% P300 presence at an inten-
sity of 65 dB SPL and 100% P300 presence at an intensity of
80 dB SPL, and individuals with severe/profound SNHL
showed 14.3% P300 presence at an intensity of 65 dB SPL and
11.1% P300 presence at an intensity of 80 dB SPL. In addition,
individuals who had P300 present at a lower intensity (65 dB
SPL) showed increased latency, decreased amplitude and
impaired morphology of the P300 component (4).

Individuals (children and adults) with severe or profound
congenital hearing loss showed 58.6% presence of P300. Indivi-
duals with profound hearing loss showed lower amplitudes
than those with severe hearing loss, but there were no dif-
ferences in latency (11).

Given the importance of proper central auditory nervous
system functioning in childhood development, the aim of
this study was to provide scientific evidence for the develop-
ment and plasticity of the central auditory nervous system in
response to HA use using LLAEPs. The study will evalu-
ate the effectiveness and benefits of sound amplification
(stimulation) in hearing-impaired children. This study com-
pares LLAEPs in children with SNHL before and after HA
fittings compared with those in age-matched children with
normal hearing,.

B METHODS

This was a longitudinal prospective clinical study approved
by the Ethics Committee for Research Project Analysis under
Protocol No 266512/2013. The participants’ legal guardians
read and signed the Terms of Free and Informed Consent
(TFIC) form, and the children signed the Terms of Assent form.

A total of 32 subjects of both genders aged 7 to 12 years
participated in this study. The participants were divided into
two groups as follows: 14 comprised the control group (CG;
mean age 9 years and 8 months), and 18 comprised the study
group (SG; mean age 9 years and 2 months).

The CG comprised children who had normal otoscopy
findings, auditory thresholds up to 15 dB HL (frequencies
of 250 to 8000 Hz), a type A tympanometric curve (12),
ipsilateral acoustic reflexes (frequency 500-4000 Hz) and no
auditory or language complaints or neurological impairments.

The SG comprised children who had normal otoscopy find-
ings, mild to moderate bilateral symmetrical and flat SNHL (13)
with a speech recognition threshold (words) without amplifica-
tion between 72 and 100%, no prior use of any type of sound
amplification device, a type A tympanometric curve (12) and
no neurological impairments.

Hearing loss in the SG was diagnosed at the Hearing
Clinic of the Clinical Hospital of the School Medicine of the
University of Sdo Paulo - Division of Clinical Otorhino-
laryngology (Ambulatério de Satide Auditiva do Hospital
das Clinicas da Faculdade de Medicina da Universidade de
Sao Paulo — Divisdo de Clinica da Otorrinolaringologia do
HCFMUSP). All children with hearing loss were referred
to the Auditory Health Clinic of the Clinics Hospital by the
Central System for Regularization of Health Services Offer-
ing (Sistema Central de Regularizagdo de Oferta de Servigos
de Satide — Cross) of the State Health Department of Sao
Paulo. Due to the above referral system, at the time of the
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audiological and electrophysiological hearing assessments,
none of the children had undergone any type of rehabilita-
tion for their hearing loss.

The etiology of the hearing loss was unknown in 83.34%
(N=15), suspected prematurity in 5.55% (1), possible neo-
natal anoxia in 5.55% (1) and suspected genetic but with no
further investigation in 5.55% of the children.

After the children were diagnosed with hearing loss, they
were referred for electrophysiological evaluation of hearing.
At a later date, they returned to the outpatient clinic for selec-
tion and fitting of HAs.

In all cases, the HA was a bilateral mini retroauricular-type
device with digital technology and non-linear signal proces-
sing. All children with mild or moderate hearing loss under-
went a HA fitting. The children used their HAs daily, and the
daily use was monitored through the processing algorithm
that is built into the HA’s memory (mean time of 8.5 hours of
daily use).

The children underwent tonal and vocal audiometry using
a Grason Stadler GSI 61 audiometer and a TDH 50 supra-
aural earphone, acoustic emittance measurements using a
Madsen Model Zodiac 901 emittance meter, and LLAEP
examination using a two-channel device (the Smart Box Jr.™
Smart EP universal model, Intelligent Hearing Systems)
calibrated at listening level (dBHL). The acoustic stimulation
used to acquire the LLAEPs was presented by a sound field
system with speakers positioned at a 90-degree angle and
45 cm from the ear to be tested.

Both groups were assessed at three different time points:
baseline (M0), 3 months after the initial assessment (M3), and
9 months after the initial assessment (M9). The SG children
did not use HAs at MO.

The LLAEPs were obtained by the same evaluator at
the three time points. The components were analyzed by the
evaluator and two other professionals with experience in
hearing electrophysiology using consensus scoring.

To capture the P1, N1, P2, N2 and P300 components of the
LLAEPs, the child was placed in a reclining chair in an
acoustically treated room with appropriate electrical access.
The skin was cleaned with abrasive paste, and the electrodes
were attached to the skin with electrolytic paste and adhesive
tape (Micropore) at the active vertex (Cz) and ground (Fpz)
based on the International Electrode System standard IES
10-20 (14). The reference electrodes were positioned on the
left and right mastoids (M1 and M2). Responses were
collected when the impedance values were below 5 kohms.
Band-pass filters of 1 to 30 Hz were used with a 150 K gain,
rejection above 66.7 microvolts (1V), and speech and tone-
burst stimuli.

LLAEPs were evoked by tone burst stimuli using 1000 Hz
as the frequent stimulus and 2000 Hz as the rare stimulus.
The stimuli were delivered for 50 ms at 75 dBnHL at a display
speed of 1.1 stimuli per second using an exact Blackman
envelope and an interstimulus interval (ISI) of 860 ms.
We chose the frequencies between 1000 and 2000 Hz
based on the literature and used the protocol proposed by
Hall, 2007.

For the speech stimuli, the /ba/ syllable was used as the
frequent stimulus and the /da/ syllable was used as the rare
stimulus. The stimuli were presented at 75 dBnHL at a
presentation rate of 1.1 stimuli per second. The frequent
stimulus (/ba/) had a duration of 114 ms and an ISI of
799 ms, while the rare stimulus (/da/) had a duration of
206 ms and an ISI of 690 ms. Both stimuli were synthetic.
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The specific characteristics of the /ba/ and /da/ speech
sounds are described in Figure 1.

A total of 300 stimuli (15% rare and 85% frequent) were
used to capture the P300 component. The children were
instructed to pay attention to the rare stimuli, which occur-
red randomly among a series of frequent stimuli, and to raise
their hand whenever the rare event occurred.

During data collection, responses were recorded on two
charts: one chart corresponded to the frequent stimulus and
identified and analyzed the P1, N1, P2 and N2 components,
and another chart corresponded to the rare stimulus and
identified and analyzed the P300 component. The amplitude
and latency of all components and the presence and absence
of responses for each ear were analyzed.

Syllable /ba/ /da/
Stimulus duration 114.875 ms 206.275 ms
Consonant duration 18 ms 9 ms
Vowel duration 75 ms 174 ms

Pitch (start-end) 112.4-111.2 Hz 109.1-102.1 Hz

Formant (Hz)
F1 818 732
F2 1378 1335
F3 2024 2498
F4 2800 3058
FS 4436 3828

Legend: ms=milliseconds; Hz=Hertz; F=formant

Figure 1 - Specific characteristics of the /ba/ and /da/ speech
stimuli used to obtain the LLAEPs.
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Each child was instructed to look at a fixed point two
meters in front of him/her. The charts were accepted for
analysis when a maximum of 30 artifacts were present.

In addition to the tabulation of the latency and amplitude
values of the LLAEP components at each assessment point,
the LLAEP components were classified as present or absent
for each individual and for each studied ear.

Statistical methods

First, the percentages of present and absent LLAEP
components were calculated for both groups. We compared
the latency and amplitude values within each group and
between groups at each time point (M0, M3 and M9).

The Shapiro-Wilk and Levene tests were performed to
verify that the groups had a normal distribution and to deter-
mine whether there was homogeneity of variances between
groups, respectively.

Descriptive analyses were performed using means and
standard deviations (+ SD). When comparing three values,
the three-factor repeated measures analysis of variance was
used. When comparing two values, the two-factor analysis or
the Bonferroni test was used. The significance level was set at
5% (p value <0.05) for all analyses.

B RESULTS

In this study, low percentages of non-responses were
observed for both speech stimulus and tone bursts in both
ears for both the SG and CG at all time points (Figure 2).

The results of the statistical analyses, including the latency
and amplitude values of all the components, are presented
below.

Eomponsnts. | Group| Ear Speech stimulus Tone burst stimulus
MO M3 M9 MO M3 M9
ce RE | 7.14% | 0,00% | 0,00% | 0,00% | 7.14% | 7.14%
P1 LE | 0.00% | 0.00% | 0.00% | 0.00% | 7.14% | 0.00%
sG RE | 5.50% | 11.76% | 0.00% | 11.11% [ 11.76% | 6.25%
LE | 5.50% | 11.76% | 6.25% | 0.00% | 5.88% | 0.00%
ce RE | 7.14% | 0.00% | 0.00% | 7.14% | 0.00% | 0.00%
N1 LE | 0.00% | 7.14% | 7.14% | 0.00% | 0.00% | 7.14%
sG RE | 5.50% | 0.00% | 6.25% | 16.66% | 11.76% | 6.25%
LE | 550% | 5.88% | 0.00% | 11.11% | 11.76% | 6.25%
cG RE | 0.00% | 0.00% | 0.00% | 7.14% | 0.00% | 0.00%
p2 LE | 0.00% | 7.14% | 0.00% | 7.14% | 0.00% | 14.28%
sG RE | 0.00% | 0.00% | 6.25% | 11.11% | 11.76% | 12.50%
LE | 0.00% | 0.00% | 0.00% | 11.11% | 17.64% | 12.50%
cG RE | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
N2 LE | 0.00% | 0.00% | 7.14% | 0.00% | 0.00% | 0.00%
sG RE | 0.00% | 0.00% | 0.00% | 0.00% | 5.88% | 0.00%
LE | 0.00% | 0.00% | 0.00% | 5.55% | 0.00% | 0.00%
cG RE | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
P300 LE | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
sG RE | 0.00% | 0.00% | 0.00% | 0.00% [ 0.00% | 0.00%
LE | 0.00% | 0.00% | 0.00% | 0.00% | 11.76% | 0.00%

Legend: CG= control group; SG=study group; RE=right ear; LE=left ear; MO=month zero;

M3=month three; M9=month nine

Figure 2 - Percentages of LLAEP component absences in the study and control groups.
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Figure 3 - Comparison of the LLAEP component amplitudes evoked by speech stimuli between the CG and SG at the three time points.

LLAEPs with speech stimuli

P1, N1, P2, N2 and P300 Amplitudes. When the CG and
SG were compared at the three time points (M0, M3, M9),
there was a statistically significant difference (p-value=0.015)
in the P1-N1 amplitude value in the right ear (RE), and the
SG presented a lower mean amplitude at all assessment
points (Figure 3).

We observed lower amplitudes at all time points in the
SG compared with the CG; however, this result was only
statistically significant for P1 in the RE at M3 (p=0.003),
P2-N2 in the LE at M3 (p=0.032) and P300 at MO (p=0.010)
(Figure 3).

Comparisons between the time points revealed no statis-
tically significant differences in the SG. In the CG, there was
a statistically significant decrease over time in the P2-N2

amplitude in the RE (MOxM3xM9 p=0.027; MOxM9 p=0.060)
and in the P300 amplitude in the LE (MOxM3xM9 p=0.041;
M3xM9 p=0.056) (Figure 4).

P1, N1, P2, N2 and P300 component latency. The
comparison of the CG and SG at the three time points and
the two-factor comparison revealed no statistically signifi-
cant difference in the latency of the LLAEP components
(Table 1).

When comparing the latency between time points, stati-
stically significant decreases in P2 (MO0xM3xM9 p=0.007;
M3XM9 p=0.010) and N2 (MOxM3xM9 p=0.005; M3xM9
p=0.007) were found for the LE in the SG. In the CG,
a statistically significant increase in the P2 latency (MOx
M3xM9 p=0.005; MOxM3 p=0.005) in the LE was observed
(Table 2).
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Figure 4 - Comparison of the LLAEP component amplitudes evoked by speech stimuli across the three time points between the CG

and SG.

LLAEP with tone burst stimulus

P1, N1, P2, N2 and P300 amplitudes. When comparing
the LLAEP components between the CG and SG at the
three time points (M0, M3 and M9), statistically significant
differences in the P1-N1 amplitude were found in both
ears, and the SG had lower amplitudes at all time points
(Figure 5).

When the results of CG and SG were compared at the
different time points, we found a significant difference in the
amplitude of P1-N1 in the RE at M9 (p=0.008) and in the LE
at M1 (p=0.036). We also observed significant differences in
P2-N2 in the RE at M3 (p=0.039) and M9 (p=0.019) (Figure 5).
For both of the above amplitudes, we found lower values
in the SG.

Comparisons between the time points revealed no stati-
stically significant differences between the P1-N1, P2, N2 and
P300 amplitudes in either the CG or SG (Figure 6).

P1, N1, P2, N2 and P300 component latency. The com-
parison of the control and study groups at the three time
points revealed no significant difference in the latency of
the LLAEP components. In the two-factor comparison,
we observed a significant difference only for P300 at M0
(p=0.013) in the LE, with the SG showing a greater latency
value.

In the comparison of the three time points within each
group, we found significant differences only for P1 of the
LE in the CG (MOxM3xM9 p=0.032;, MOxM3 p=0.043;
M3xM9 p=0.048) and P1 in the LE (MOxM3xM9 p=0.023;
MOxM9 p=0.002) and P300 in the RE (MOxM3xM9 p=0.019;
MOxM3 p=0.013) in the SG (Table 4).

B DISCUSSION

Currently, LLAEPs are used to investigate central auditory
pathway impairments in children (1,2) and adults (3,4) with
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Table 1 - Comparison of the P1, N1, P2, N2 and P300 wave latencies (in ms) obtained from speech stimuli between the control and
study groups at the three time points.

Speech Latencies (ms)
Control Study p-value
N Mean SD N Mean SD

P1 Mo RE 13 95.4 14.6 13 93.8 9.0 0.749
LE 13 94.4 1.1 13 88.5 18.2 0.333

M3 RE 13 89.2 13.5 13 94.6 171 0.375

LE 13 91.0 10.0 13 93.9 121 0.507

M9 RE 13 86.9 13.9 13 95.9 1.7 0.087

LE 13 92.8 5.4 13 95.8 10.1 0.341

N1 Mo RE 12 137.3 1.3 13 139.6 19.0 0.722
LE 12 134.3 14.7 13 134.2 25.0 0.998

M3 RE 12 139.8 20.7 13 132.9 20.8 0.414

LE 12 135.8 13.5 13 138.6 19.3 0.683

M9 RE 12 132.9 13.6 13 135.1 241 0.788

LE 12 1371 129 13 138.0 14.2 0.867

P2 Mo RE 12 184.3 10.2 14 182.6 14.0 0.721
LE 12 1791 6.6 14 185.9 16.5 0.196

M3 RE 12 184.8 141 14 184.4 10.6 0.934

LE 12 194.2 11.8 14 195.7 104 0.726

M9 RE 12 186.0 11.3 14 184.7 131 0.793

LE 12 184.1 14.2 14 182.3 18.9 0.789

N2 Mo RE 13 245.2 19.0 15 251.9 15.6 0.314
LE 13 2421 16.1 15 246.1 14.1 0.490

M3 RE 13 252.7 12.8 15 247.0 17.1 0.335

LE 13 251.5 8.1 15 257.1 15.8 0.253

M9 RE 13 246.8 16.6 15 257.2 27.3 0.410

LE 13 243.7 129 15 242.9 20.8 0.910

P3 Mo RE 14 283.6 29.4 12 284.3 36.1 0.953
LE 14 281.4 21.0 12 295.1 29.4 0.179

M3 RE 14 300.1 41.2 12 283.4 30.3 0.257

LE 14 288.9 30.1 12 282.7 24.7 0.576

M9 RE 14 290.1 22.4 12 279.8 41.6 0.430

LE 14 278.2 29.4 12 276.8 19.6 0.891

MO = month zero; M3 = month three; M9 = month nine; RE = right ear; LE = left ear; SD = standard deviation; N = sample size; *p-value considered statistically significant.

Table 2 - Comparison of the P1, N1, P2, N2 and P300 wave latencies (in ms) obtained from speech stimuli across the three time points
for the control and study groups.

Speech Latencies (ms)
Time points Ears Control p-value Study p-value
N Mean SD N Mean SD
P1 Mo RE 13 95.4 14.6 MOxM3xM9 13 93.8 9.0 MOxM3xM9
LE 13 94.4 11.1 RE=0.857 13 88.5 18.2 RE=0.090
M3 RE 13 89.2 13.5 LE=0.193 13 94.6 171 LE=0.748
LE 13 91.0 10.0 13 93.9 121
M9 RE 13 86.9 13.9 13 95.9 11.7
LE 13 92.8 5.4 13 95.8 10.1
N1 Mo RE 12 137.3 11.3 MOxM3xM9 13 139.6 19.0 MOxM3xM9
LE 12 1343 14.7 RE=0.416 13 134.2 25.0 RE=0.530
M3 RE 12 139.8 20.7 LE=0.801 13 132.9 20.8 LE=0.795
LE 12 135.8 13.5 13 138.6 19.3
M9 RE 12 132.9 13.6 13 135.1 241
LE 12 1371 129 13 138.0 14.2
P2 Mo RE 12 184.3 10.2 MOxM3xM9 14 182.6 14.0 MOxM3xM9
LE 12 1791 6.6 RE=0.937 14 185.9 16.5 RE=0.823
M3 RE 12 184.8 14.1 LE=0.005* 14 184.4 10.6 LE=0.007*
LE 12 194.2 11.8 MO0xM3=0.005* 14 195.7 10.4 M3xM9=0.010*
M9 RE 12 186.0 11.3 14 184.7 131
LE 12 184.1 14.2 14 182.3 18.9
N2 Mo RE 13 245.2 19.0 MOxM3xM9 15 251.9 15.6 MO0xM3xM9
LE 13 2421 16.1 RE=0.343 15 246.1 14.1 RE=0.143
M3 RE 13 252.7 12.8 LE=0.107 15 247.0 171 LE=0.005*
LE 13 2515 8.1 15 257.1 15.8 M3xM9=0.007*
M9 RE 13 246.8 16.6 15 257.2 273
LE 13 243.7 129 15 2429 20.8
P3 Mo RE 14 283.6 29.4 MOxM3xM9 12 284.3 36.1 MOxM3xM9
LE 14 2814 21.0 RE=0.262 12 295.1 29.4 RE=0.944
M3 RE 14 300.1 41.2 LE=0.383 12 283.4 30.3 LE=0.105
LE 14 288.9 30.1 12 282.7 24.7
M9 RE 14 290.1 22.4 12 279.8 41.6
LE 14 278.2 29.4 12 276.8 19.6

MO = month zero; M3 = month three; M9 = month nine; RE = right ear; LE = left ear; SD = standard deviation; N = sample size; *p-value considered statistically significant.
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Figure 5 - Comparison of the LLAEP component amplitudes evoked by tone burst stimuli between the CG and SG at the three time points.

SNHL. They are also used as a biomarker for changes in the
cortical auditory pathway after initiating HA use or receiv-
ing a cochlear implant (1,2,3,5).

Regarding the presence or absence of P1, N1, P2, N2 and
P300 component responses in the SG and CG, there was
a low percentage of absent responses in both groups for
speech and tone burst stimuli. However, the SG had a greater
percentage of absent responses than the CG at all time
points, especially in response to tone burst stimuli (Figure 2).
Therefore, we hypothesize that these findings may be related
to the complexity of the stimuli used. Because a speech stim-
ulus is more acoustically complex than a tone burst, more
structures or neurons may be activated, leading to a more
apparent electrophysiological response.

The P1 and N2 components are predominant in the
LLAEPs of small children. Between 3 and 6 years old, the P2
component appears and the N2 becomes more clear and
robust (15). The N1 component is not present in small children

and can only be observed with the use of a long ISI (greater
than 1 second) in children between 3 and 10 years old (16).
It should be noted that, according to the literature, the higher
the ISI (e.g., 800 ms), the greater the likelihood that the N1
and P2 components will be present starting at 8 years old
(17,18). In the present study, the CG and SG presented low
percentages of non-response for all components; therefore,
the inter-stimulus range used in this study (799 ms for speech
and 860 ms for tone burst) was adequate for eliciting res-
ponses in the studied age group.

When the two groups were compared, the N1 and P2 com-
ponents in the SG showed a greater percentage of non-
responses to tone burst stimuli (Figure 2). This finding
suggests that children with mild to moderate SNHL have a
maturational delay in the cortical auditory pathway caused
by auditory deprivation. This finding is consistent with the
reports in the literature (8) that the N1 and P2 components
are poorly defined in children with mild to moderate SNHL.
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Figure 6 - Comparison of the LLAEP component amplitudes evoked by tone burst stimuli across the three time points for the CG and SG.

Another important finding was that only the N1 compo-
nent obtained with the tone burst stimuli showed a decrease
in non-response in both ears during HA use, reinforcing the
idea that this population has a maturational delay in the
auditory pathway and that stimulation with an HA facili-
tates the maturational process and the emergence of the
N1 component.

According to the literature, the presence of the P1, N1, P2
and N2 components evoked by both speech and tone burst
stimuli is positively correlated with the duration of HA
use (9). Thus, we hypothesize that the P2 component may
emerge after a longer duration of stimulation.

We observed that the P1-N1 and P2-N2 amplitudes
(Figures 3 and 5) in response to both the speech and tone
burst stimuli were lower in the SG than in the CG at all
time points and in both ears. These findings indicate that the
children in the SG showed less neuronal activation in the
regions generating these components even after the use of

HAs, consistent with reports that hearing deficiency impairs
normal development of the connectivity necessary for the
formation of a functional auditory system (2).

Furthermore, it is known that amplitudes of the P1, N1
and P2 (exogenous) components are influenced by the
physical characteristics of the stimulus (19,20). We speculate
that the lower amplitudes presented by the SG individuals
with mild to moderate hearing loss occurred because they per-
ceived the stimulus (75 dBnHL) at a lower intensity (dB NS).

The comparison of the P300 amplitudes in both the CG
and SG (Figures 3 and 5) revealed a significant difference in
response to the speech stimulus at MO (LE), where the SG
had a lower amplitude; in contrast, at M3 and M9, the mean
P300 amplitudes ?were similar between the groups. It should
be noted that P300 was present in almost 100% of the subjects
(Figure 2). The similarity of these values in the two groups
and the presence of this component in most individuals may
be explained by the task used to obtain the P300 amplitude.
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Table 3 - Comparison of the P1, N1, P2, N2 and P300 wave latencies (in ms) obtained with tone burst stimuli between the control and

study groups at the three time points.

Tone burst Latencies (ms)
Control Study p-value
N Mean SD N Mean SD

P1 MO RE 13 78.70 9.40 13 79.10 18.80 0.946

LE 13 79.60 7.90 13 85.30 18.70 0.932

M3 RE 13 72.30 10.50 13 78.40 20.80 0.369

LE 13 71.30 13.20 13 84.90 21.30 0.074

M9 RE 13 75.50 8.60 13 75.80 16.60 0.951

LE 13 80.30 6.40 13 77.00 21.80 0.616

N1 MO RE 12 122.20 20.70 13 79.10 18.80 0.193

LE 12 112.90 13.30 13 85.30 18.70 0.745

M3 RE 12 108.20 8.60 13 108.80 14.60 0.893

LE 12 106.10 12.00 13 112.70 21.80 0.369

M9 RE 12 109.40 12.70 13 107.30 21.90 0.778

LE 12 109.10 10.00 13 105.60 19.10 0.580

P2 MO RE 12 169.10 16.90 14 162.00 23.70 0.421

LE 12 169.20 12.70 14 167.20 25.40 0.815

M3 RE 12 161.60 13.50 14 162.20 18.60 0.939

LE 12 160.20 17.60 14 161.40 19.60 0.875

M9 RE 12 156.90 12.20 14 164.60 19.80 0.282

LE 12 160.20 13.40 14 168.80 21.20 0.264

N2 Mo RE 13 215.20 27.90 15 221.40 16.40 0.479

LE 13 215.80 25.40 15 224.90 21.00 0.308

M3 RE 13 223.20 23.90 15 221.60 17.70 0.845

LE 13 214.90 23.80 15 219.90 21.50 0.564

M9 RE 13 226.70 11.70 15 226.90 23.10 0.975

LE 13 228.60 23.60 15 219.70 26.40 0.357

P3 MO RE 14 285.20 31.80 12 309.80 49.00 0.128
LE 14 279.90 25.60 12 319.10 48.80 0.013*

M3 RE 14 277.30 34.50 12 277.60 36.30 0.830

LE 14 286.50 35.60 12 294.90 39.80 0.560

M9 RE 14 290.90 52.50 12 297.80 62.40 0.753

LE 14 280.80 27.70 12 308.60 63.30 0.144

MO = month zero; M3 = month three; M9 = month nine ; RE = right ear; LE = left ear; SD = standard deviation; N = sample size; *p-value considered

statistically significant.

As the emergence of P300 is affected by the cognitive acti-
vity performed (endogenous potential) (6) more so than the
characteristics of the stimulus (19), we can hypothesize that
mild to moderate hearing loss did not directly impair the
activation of the cortical structures responsible for perform-
ing the task.

These findings are similar to those reported in a study
showing that P300 was present in 100% of subjects with
normal hearing or mild to moderate SNHL at an intensity of
80 dB SPL (4).

Furthermore, although the difference was not statisti-
cally significant, the SG showed an improvement in the P300
amplitude between MO and M3 for both stimulus types.
These results suggest possible neuroplasticity due to HA use.
According to the literature, neuroplasticity occurs as a result
of the nervous system’s ability to reorganize its structures,
functions and connections in response to intrinsic and extri-
nsic stimuli (21). Therefore, we believe that the improvement
in the sound input due to the use of the HA was responsible
for the increase in the P300 amplitude observed in response
to the stimuli.

According to the literature (2), for children up to the age
of 3.5 years with congenital hearing impairment who are
stimulated (via cochlear implant use), the P1 latency reaches
normal values between 3 and 6 months after cochlear implant
activation. In contrast, children who receive cochlear implants
between the ages of 3.5 and 7 years have varying responses in

terms of latency, and children who receive their implant after
age 7 do not have normal P1 latency or wave morphology,
even after years of stimulation.

In this study, the comparison of responses to the speech
stimulus between the CG and SG (Tables 1 and 3) showed no
difference in the mean latency of the P1, N1, P2, N2 and P300
components; however, when the tone burst was used, the SG
showed a greater mean latency for P300 in the LE at MO
compared with the CG.

The results of this study show that, for most LLAEP com-
ponents, the SG and CG had equivalent acoustic stimulus
transmission/processing speeds. These findings may be
related to the SG’s degree of hearing loss. It is noteworthy that
in mild/moderate recruitment hearing loss, the impairment
may reside in the outer hair cells (OHCs) (22). Furthermore,
stimuli over 40-60 dB directly stimulate the inner hair cells
(IHCs) (23), which would be preserved in the population
evaluated in this study. Thus, as the LLAEPs were obtained at
a high intensity (75 dBHL), the degree of hearing loss did not
seem to interfere with the latency times of the SG, which were
equivalent to those of the CG.

Another possible cause of the similar latency found in both
groups may be related to plasticity resulting from auditory
deprivation, i.e., the central nervous system reorganizes to
compensate for a peripheral receptor disorder (24). Accord-
ing to the literature, the mechanisms of this compensatory
plasticity are not well defined; however, it is known that it
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Table 4 - Comparison of the P1, N1, P2, N2 and P300 wave latencies (in ms) obtained using tone burst stimuli across the three time

points for the control and study groups.

Tone burst Latencies (ms)
Time points Ears Control p-value Study p-value
N Mean SD N Mean SD
P1 Mo RE 13 78.70 9.40 MOxM3xM9 13 79.10 18.80 MOxM3xM9
LE 13 79.60 7.90 RE=0.157 13 85.30 18.70 RE=0.635
M3 RE 13 72.30 10.50 LE=0.032* 13 78.40 20.80 LE=0.023*
LE 13 71.30 13.20 MOxM3=0.043* 13 84.90 21.30 MO0xM9=0.0022*
M9 RE 13 75.50 8.60 M3xM9=0.048* 13 75.80 16.60
LE 13 80.30 6.40 13 77.00 21.80
N1 Mo RE 12 122.20 20.70 MOxM3xM9 13 79.10 18.80 MOxM3xM9
LE 12 112.90 13.30 RE=0.102 13 85.30 18.70 RE=0.941
M3 RE 12 108.20 8.60 LE=0.152 13 108.80 14.60 LE=0.444
LE 12 106.10 12.00 13 112.70 21.80
M9 RE 12 109.40 12.70 13 107.30 21.90
LE 12 109.10 10.00 13 105.60 19.10
P2 Mo RE 12 169.10 16.90 MOxM3xM9 14 162.00 23.70 MOxM3xM9
LE 12 169.20 12.70 RE=0.181 14 167.20 25.40 RE=0.792
M3 RE 12 161.60 13.50 LE=0.150 14 162.20 18.60 LE=0.248
LE 12 160.20 17.60 14 161.40 19.60
M9 RE 12 156.90 12.20 14 164.60 19.80
LE 12 160.20 13.40 14 168.80 21.20
N2 Mo RE 13 215.20 27.90 MOxM3xM9 15 221.40 16.40 MOxM3xM9
LE 13 215.80 25.40 RE=0.192 15 224.90 21.00 RE=0.605
M3 RE 13 223.20 23.90 LE=0.173 15 221.60 17.70 LE=0.443
LE 13 214.90 23.80 15 219.90 21.50
M9 RE 13 226.70 11.70 15 226.90 23.10
LE 13 228.60 23.60 15 219.70 26.40
P3 Mo RE 14 285.20 31.80 MOxM3xM9 12 309.80 49.00 MOxM3xM9
LE 14 279.90 25.60 RE=0.634 12 319.10 48.80 RE=0.019*
M3 RE 14 277.30 34.50 LE=0.779 12 277.60 36.30 MO0xM3=0.013*
LE 14 286.50 35.60 12 294.90 39.80 LE=0.127
M9 RE 14 290.90 52.50 12 297.80 62.40
LE 14 280.80 27.70 12 308.60 63.30

MO = month zero; M3 = month three; M9 = month nine ; RE = right ear; LE = left ear; SD = standard deviation; N = sample size; *p-value considered

statistically significant.

can occur due to the following events: activation of pre-
viously existing but silent circuits, stabilization of transitional
connections that would disappear under normal circumstances,
emergence of axons adjacent to injured or inactive regions and
various combinations of these events (25). The fact that these
data were derived from a population with mild to moderate
SNHL, i.e., the acoustic stimulation of the cortical central
auditory pathway is reduced but is still stimulated, favors
the theory of compensatory plasticity before the child begins to
use a HA, which may explain why there were no differences
in latency between the SG and CG even after the use of a HA
for 9 months.

Although there were no differences in latency between
the two groups, the intra-group comparisons at the different
time points revealed some differences (Tables 2 and 4).
The SG showed improvements in the P2 (M3 X M9) and N2
(MO x M3, M3 X M9) components in the LE when stimulated
with speech sounds. When the tone burst stimulus was used,
the SG showed improvements (as a result of the decrease in
the latency) in the P1 component in the LE from MO to M9
and for P300 in the RE from MO to M3.

The results show that after three months of HA use, there
were improvements in the response generation times of the
P2 and N2 (speech stimulus) and P1 and P300 (tone burst
stimulus) components, likely due to neuroplasticity in res-
ponse to auditory stimulation (HA use).

These findings are in accordance with a previous study (1).
Although the study only investigated P1, the study showed

10

that P1 exhibited decreased latency after HA and/or cochlear
implant use, highlighting the importance of P1 as a biological
marker of central auditory pathway development in hearing-
impaired individuals.

There are some limitations to the current study, such as the
number of individuals in the sample. The number of partici-
pants in the SG was variable at different time points due to
the longitudinal design, which depended on the compliance
of patients for audiological follow-up. For this reason, it was
not possible to achieve an equal number of individuals at
the three time points for audiological follow-up. In addition,
it was not possible to obtain a homogeneous sample with
consistent etiology and hearing loss onset. Regarding the
control group, we believe that the low number of individuals
may be related to the fact that they were typical developed
children, with no hearing complaints.

In conclusion, the results of this study demonstrated reduc-
tions in amplitudes of the P1-N1 and P2-N2 components of
the LLAEP and a greater percentage of absent responses in
children with mild to moderate SNHL, suggesting a deficit in
the activation of the cortical structures responsible for auditory
processing of the exogenous characteristics of these stimuli.

P300 showed similar responses between the groups, sug-
gesting that the endogenous potential was less affected than
the exogenous potential by the sensory input deficiency
caused by the hearing loss in this population.

The latency of the LLAEP components showed little vari-
ability between the groups, indicating that sensory hearing
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loss did not interfere with the stimulus processing speed. The
responses were steady across the three time points, demon-
strating that this measurement is minimally affected over a
short time interval (9 months).

The results of the present study show that it is possible
to identify changes in the central auditory pathway using
P1-N1 and P2-N2 component amplitudes and that there is an
increased response of these components to a short period of
auditory stimulation (i.e., HA use). Therefore, the importance
of using these components to monitor the neuroplasticity of
the central auditory nervous system in HA users should be
emphasized.

B AUTHOR CONTRIBUTIONS

Leite RA participated in the conception and design of the study, acquisi-
tion, analysis and interpretation of the data, drafting and revision of the
manuscript for important intellectual content, and approval of the final
version of the manuscript to be published. Magliaro FC participated in the
conception and design of the study, acquisition, analysis and interpretation
of the data, drafting and revision of the manuscript for important intel-
lectual content, and approval of the final version of the manuscript to be
published. Matas CG participated in the conception and design of the
study, the analysis and interpretation of the data, drafting and revision of
the manuscript for important intellectual content, and approval of the final
version of the manuscript to be published. Raimundo JC participated in the
conception and design of the study, acquisition of data, and critical revision
of the manuscript for important intellectual content. Bento RF participated
in critically revising the manuscript for important intellectual content.

B REFERENCES

1. Sharma A, Dorman MF, Kral A. The influence of a sensitive period on
central auditory development in children with unilateral and bilateral
cochlear implants. Hear Res. 2005;203(1-2):134-143, http://dx.doi.org/
10.1016/j.heares.2004.12.010.

2. Sharma A, Gilley PM, Dorman MF, Baldwin R. Deprivation-induced
cortical reorganization in children with cochlear implants. Int J Audiol.
2007;46(9):494-499, http:/ /dx.doi.org/10.1080/14992020701524836.

3. Dawes P, Munro K], Kalluri S, Edwards B. Auditory acclimatization
and hearing aids: late auditory evoked potentials and speech recognition
following unilateral and bilateral amplification. ] Acoust Soc Am. 2014;
135(6):3560-3569, http://dx.doi.org/10.1121/1.4874629.

4. Oates PA, Kurtzberg D, Stapells DR. Effects of sensorineural hearing loss
on cortical event-related potential and behavioral measures of speech-
sound processing. Ear Hear. 2002,23(5):399-415, http:/ /dx.doi.org/10.1097 /
00003446-200210000-00002.

5. Eggermont JJ, Ponton CW. Auditory — evoked potential studies of cortical
maturation in normal hearing and implanted children: correlations with
changes in structure and speech perception. Acta Otolaryngol. 2003;123(2):
249-252, http:/ /dx.doi.org/10.1080/0036554021000028098.

6. McPherson DL. Late Potentials of the Auditory System. San Diego:
Singular Publishing Group; 1995. p. 99.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Cortical plasticity in hearing aid users
Leite RA et al.

Swink S, Stuart A. Auditory long latency responses to tonal and speech
stimuli. ] Speech Lang Hear Res. 2012;55(2):447-59, http://dx.doi.org/
10.1044/1092-4388(2011/10-0364).

Koravand A, Jutras B, Lassonde M. Cortical auditory evoked potentials in
children with a hearing loss: a pilot study. Int ] Pediatr. 2012;2012:250254,
http://dx.doi.org/10.1155/2012/250254.

Hassaan MR. Aided evoked cortical potential: an objective validation tool
for hearing aid benefit. EJENTAS. 2011;12:155-161, http://dx.doi.org/
10.1016/j.ejenta.2012.01.003.

Musiek FE, Lee WW. Potenciais auditivos de média e longa laténcia.
In: MusieK FE & Rintelmann WEF. Perspectivas Atuais em Avaliagdo
Auditiva. Barueri: Manole; 2001. p. 239-267.

Reis AC, I6rio MC. [P300 in subjcts with hearing loss]. Pro Fono. 2007;
19(1):113-122, http:/ /dx.doi.org/10.1590/50104-56872007000100013.
Jerger J. Clinical experience with impedance audiometry. Arch Otolar-
yngol. 1970;92(4):311-324, http://dx.doi.org/10.1001/archotol.1970.0431004
0005002.

Northen JL, Dows MP. Hearing in children. 3rd ed. Baltimore: Williams &
Wilkins; 1984. p. 89.

Klem GH, Liiders HO, Jasper HH, Elger C. The ten-twenty electrode
system of the International Federation. The International Federation of
Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl.
1999;52:3-6.

Hall IIT JW. Auditory Late Responses (ALRs). In: Hall IIT JW. New Hand-
book of Auditory Evoked Response. Boston: Pearson Allyn and Bacon;
2007. p. 488-517.

Sharma A, Kraus N, McGee TJ, Nicol TG. Developmental changes in
P1 and N1 central auditory responses elicited by consonant-vowel sylla-
bles. Electroencephalogr Clin Neurophysiol.1997;104(6):540-545, http://
dx.doi.org/10.1016/50168-5597(97)00050-6.

Ceponiene R, Cheou M, Naatanen R. Interstimulus interval and auditory
event-related potentials in children: evidence for multiple generators.
Electroencephalogr Clin Neurophysiol. 1998;108(4):345-354, http://dx.
doi.org/10.1016/50168-5597(97)00081-6.

Sussman E, Steinschneider M, Gumenyuk V, Grushko J, Lawson K.
The maturation of human evoked brain potentials to sounds presented
at different stimulus rates. Hear Res. 2008;236(1-2):61-79, http://dx.doi.
org/10.1016/j.heares.2007.12.001.

Hillyard, SA, Picton TW. Electrophysiology of Cognition. In: Hillyard, SA,
Picton TW. Comprehensive Physiology. John Wiley & Sons; 2011. p. 519-584.
Avaible from: http:/ /www.comprehensivephysiology.com/WileyCDA /Comp
PhysArticle/refld-cp010513.html.

Prakash H, Abraham A, Rajashekar B, Yerraguntla K. The Effect of Intensity
on the Speech Evoked Auditory Late Latency Response in Normal Hearing
Individuals. J Int Adv Otol. 2016;12(1): 67-71, http://dx.doi.org/10.5152/
ia0.2016.1776.

Cramer SC, Sur M, Dobkin BH, O'Brien C, Sanger TD, Trojanowski JQ,
et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;
134(Pt 6):1591-1609, http:/ /dx.doi.org/10.1093 /brain/awr039.

Moore BCJ, Glasberg BR. A model of loudness perception applied to
cochlear hearing loss. Audit Neurosci. 1997;3:289-311.

Castro Jr NP, Figueiredo MS. Audiometria Eletrofisiolégica. In: Lopes-
Filho O. Tratado de Fonoaudiologia. Sio Paulo: Editora Roca; 1997.
p. 201-220.

Boéchat EM. Plasticidade e Amplificagdo. In: Fernandes FDM, Mendes
BCA, Navas ALPGP. Tratado de Fonoaudiologia. Sdo Paulo: Editora Roca;
2010. p. 160-167.

Lent R. Os neur6nios se transformam. Bases Bioldgicas da Neuroplasti-
cidade. In: Lent R. Cem Bilhdes de Neurdnios. Conceitos Fundamentais
de Neurociéncia. Sao Paulo: Editora Atheneu; 2005. p. 113-166.


http://dx.doi.org/10.1016/j.heares.2004.12.010
http://dx.doi.org/10.1016/j.heares.2004.12.010
http://dx.doi.org/10.1080/14992020701524836
http://dx.doi.org/10.1121/1.4874629
http://dx.doi.org/10.1097/00003446-200210000-00002
http://dx.doi.org/10.1097/00003446-200210000-00002
http://dx.doi.org/10.1080/0036554021000028098
http://dx.doi.org/10.1044/1092-4388(2011/10-0364)
http://dx.doi.org/10.1044/1092-4388(2011/10-0364)
http://dx.doi.org/10.1155/2012/250254
http://dx.doi.org/10.1016/j.ejenta.2012.01.003
http://dx.doi.org/10.1016/j.ejenta.2012.01.003
http://dx.doi.org/10.1590/S0104-56872007000100013
http://dx.doi.org/10.1001/archotol.1970.04310040005002
http://dx.doi.org/10.1001/archotol.1970.04310040005002
http://dx.doi.org/10.1016/S0168-5597(97)00050-6
http://dx.doi.org/10.1016/S0168-5597(97)00050-6
http://dx.doi.org/10.1016/S0168-5597(97)00081-6
http://dx.doi.org/10.1016/S0168-5597(97)00081-6
http://dx.doi.org/10.1016/j.heares.2007.12.001
http://dx.doi.org/10.1016/j.heares.2007.12.001
http://www.comprehensivephysiology.com/WileyCDA/CompPhysArticle/refId-cp010513.html
http://www.comprehensivephysiology.com/WileyCDA/CompPhysArticle/refId-cp010513.html
http://dx.doi.org/10.5152/iao.2016.1776
http://dx.doi.org/10.5152/iao.2016.1776
http://dx.doi.org/10.1093/brain/awr039

	title_link
	INTRODUCTION
	METHODS
	Statistical methods

	RESULTS
	Specific characteristics of the solbasol and soldasol speech stimuli used to obtain the LLAEPs
	Percentages of LLAEP component absences in the study and control groups
	LLAEPs with speech stimuli
	P1, N1, P2, N2 and P300 Amplitudes
	P1, N1, P2, N2 and P300 component latency


	Comparison of the LLAEP component amplitudes evoked by speech stimuli between the CG and SG at the three time points
	LLAEP with tone burst stimulus
	P1, N1, P2, N2 and P300 amplitudes
	P1, N1, P2, N2 and P300 component latency


	DISCUSSION
	Comparison of the LLAEP component amplitudes evoked by speech stimuli across the three time points between the CG and SG
	Table  Table 1. Comparison of the P1, N1, P2, N2 and P300 wave latencies lparin msrpar obtained from speech stimuli between the control and study groups at the three time points
	Table  Table 2. Comparison of the P1, N1, P2, N2 and P300 wave latencies lparin msrpar obtained from speech stimuli across the three time points for the control and study groups
	Comparison of the LLAEP component amplitudes evoked by tone burst stimuli between the CG and SG at the three time points
	Comparison of the LLAEP component amplitudes evoked by tone burst stimuli across the three time points for the CG and SG
	Table  Table 3. Comparison of the P1, N1, P2, N2 and P300 wave latencies lparin msrpar obtained with tone burst stimuli between the control and study groups at the three time points
	Table  Table 4. Comparison of the P1, N1, P2, N2 and P300 wave latencies lparin msrpar obtained using tone burst stimuli across the three time points for the control and study groups
	AUTHOR CONTRIBUTIONS

	REFERENCES
	References


