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OBJECTIVES: To investigate the clinical utility of serum microRNA levels (miR-9-5p and miR-128-3p) in the
diagnosis and prognosis of early-stage acute ischemic stroke (AIS).

METHODS: We compared the differences in serum miR-9-5p and miR-128-3p levels between patients with AIS
and healthy individuals (controls). The serum levels of miR-9-5p and miR-128-3p were quantified using
quantitative real-time PCR, and the association of each miRNA with AIS was determined using receiver operator
characteristic curve analysis. The predictive value of these indices in the diagnosis of early-stage AIS was
evaluated in conjunction with that of computed tomography findings and neuron-specific enolase levels. The
prognosis of patients with AIS was evaluated three months after their discharge from hospital using the
modified Rankin scale, which classifies the prognosis as either favorable or poor. Logistic regression analysis was
used to analyze the correlation between miR-9-5p and miR-128-3p levels and patient prognosis.

RESULTS: The serum levels of miR-9-5p and miR-128-3p were upregulated in patients with AIS relative to those
in healthy individuals. A pronounced correlation was identified between serum miR-9-5p and miR-128-3p levels
and patient prognosis, with high levels of both miRNAs being associated with poor patient outcomes.

CONCLUSION: Assessment of serum miR-9-5p and miR-128-3p levels is important for the early diagnosis and
prognosis of AIS.
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’ INTRODUCTION

Acute ischemic stroke (AIS) accounts for 70% of all stroke
cases and is associated with markedly high patient disability
and mortality rates (1). Early diagnosis and timely interven-
tion would significantly reduce these rates and improve the
prognostic outcomes and quality of life of patients with AIS
(2,3). Currently, AIS is diagnosed using computed tomogra-
phy (CT). However, in the early stages of the disease, CT
cannot identify any abnormalities in approximately 40–50%
of the patients with AIS (4). Although interleukin-6 (5,6),
neuron-specific enolase (NSE) (7), glial fibrillary acidic
protein (8), and 25-hydroxyvitamin D (9) are associated with

the onset of AIS, additional markers are needed owing to the
low specificity and sensitivity of these markers.
MicroRNAs (miRNAs)—small endogenous RNAs com-

prising 18-24 noncoding bases (10)—have been found to be
involved in various pathophysiological processes (i.e., cell
proliferation, immunity, metabolism, and tumorigenesis) via
the post-transcriptional regulation of mRNAs (11). miRNAs
have been detected in the cerebrospinal fluid, urine, serum,
and plasma samples of patients with AIS, suggesting their
diagnostic value (12). Their expression levels change signi-
ficantly during the pathogenesis of AIS, a process that
involves platelet aggregation, endothelial dysfunction, and
neuronal injury. Previous studies have found that mir-424
and miRNA-15a are closely correlated with the occurrence of
stroke (13,14). Indeed, the development of AIS has been
found to correlate with changes in miRNA levels in the
peripheral blood of patients (15).
The miRNA miR-9-5p is likely involved in the develop-

ment of AIS, although its exact role is unclear. It has been
shown to attenuate ischemic stroke by directly targeting
endoplasmic reticulum metallopeptidase 1 (ERMP1)–medi-
ated endoplasmic reticulum stress (16). However, other in
vivo and in vitro studies have revealed that blocking ofDOI: 10.6061/clinics/2021/e2958
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miR-9-5p and miR-128-3p activity could result in reduced
ischemic stroke–induced neuronal cell death and infract
volume (17). Given that the relationship between AIS and
serum miR-9-5p and miR-128-3p levels has not yet been fully
explored, the present study was carried out to investigate
whether assessment of the serum levels of these two miRNAs
has clinical utility in the early diagnosis and treatment of this
type of stroke.

’ METHODS

Study participants
Patients with AIS and healthy individuals (controls) who

visited our hospital between September 2018 and September
2020 were recruited for this study. The AIS group comprised
88 patients who had been diagnosed with acute cerebral
ischemia according to strict inclusion and exclusion criteria
(see below). The control group comprised 88 individuals who
had visited our hospital for physical examination during
the same period. This study was approved by the Ethics
Committee of Yantai Municipal Laiyang Central Hospital
(ethical reference number ChiCTR18000180365), and all study
participants provided written informed consent.

Patient inclusion and exclusion criteria
The following inclusion criteria were employed: (i) diag-

nosis in strict accordance with the AIS criteria; (ii) diagnosis
within 6 h after AIS onset; and (iii) confirmation of the
diagnosis via CT or magnetic resonance imaging. The follow-
ing exclusion criteria were employed: (i) ageo18 years; (ii)
comorbidities involving the heart, liver, and kidney, and other
vital organ failure or insufficiency; (iii) unsigned informed
consent form; and (iv) a history of cerebral hemorrhage or
intracranial tumor. A flowchart of the patient-selection process
has been presented in Figure 1.

Serum preparation
Peripheral venous blood was collected from all study

participants (after fasting for 12-14h). The blood samples
were centrifuged at 25000� g at 4oC for 10 min, and the
serum was collected and stored at -80oC.

MiRNA isolation and quantitative real-time
polymerase chain reaction (qPCR)

Total miRNA was extracted from 200 mL of each serum
sample using an miRNA purification kit (Norgen Biotekand,
Canada) and then reverse transcribed into cDNA using a
cDNA synthesis kit (Sigma-Aldrich, USA). An miRNA qPCR
kit (Sigma-Aldrich, USA) was then used to detect and
quantify the miRNAs by employing a SYBR Green-based
qPCR protocol. A CFX96 Real-Time PCR System (Bio-Rad,
Hercules, CA, USA) was used for the qPCR. Individual
miRNA-specific primers were obtained from Sino-Gene
Biotechnology Ltd. (Beijing, China). The relative expression
of each miRNA, which was normalized to that of the internal
control U6 small nuclear RNA, was determined using the
2-DDCT method (37).

Stratified analysis
The finally selected patients were stratified into two

groups based on various health indicators. Stratification
according to blood pressure readings was performed based
on the international diagnostic criteria for hypertension,
wherein the inclusion criteria for the elevated blood pressure
group were a systolic blood pressure of 140 mmHg and
diastolic blood pressure of 90 mmHg. Individuals with blood
pressure levels below these criteria were allocated to the
normal (control) group. Stratification according to body mass
index (BMI) was performed as follows: those with a BMI of
25 or higher were allocated to the high BMI group, whereas
those with a BMI of less than 25 were allocated to the control
group. For stratification according to low-density lipoprotein
(LDL) levels, individuals with 4.1 mmol/L LDL were
assigned to the elevated LDL group, whereas those with
lower concentrations were assigned to the normal (control)
group. The participants were also stratified into smoking and
non-smoking groups, as well as groups with or without a
history of hypertension and groups with or without a history
of hyperlipidemia.

Statistical analysis
All data were statistically analyzed using SPSS software

(SPSS, Inc., Chicago, IL, USA) and GraphPad Prism 8. Means±
standard deviations were normally distributed. Student’s

Figure 1 - Flow chart depicting patient inclusion and exclusion.
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t-test was used to perform two group comparisons. The
chi-square test was used to analyze categorical variables.
Receiver operator characteristic (ROC) curves were con-
structed, and the area under the ROC curve (AUC) was used
to assess the association between each miRNA and AIS.
Correlations between the serum levels of miR-9-5p and miR-
128-3p and prognostic scores were analyzed using Pearson’s
correlation coefficient. Differences with a p-value o0.05 were
considered significant.

’ RESULTS

Baseline data
The patient and control groups were compared in terms of

sex ratio, age, BMI, laboratory indicators (blood pressure and
lipid and creatinine levels), and incidence of complica-
tions (hyperlipidemia, hypertension, and diabetes mellitus).
The two groups showed significant differences in terms
of blood pressure, BMI, and LDL levels (po0.05). Patients
in the AIS group exhibited significantly higher incidences of

hyperlipidemia and hypertension than those in the control
group (po0.05; Table 1).

Comparison of serum miR-9-5p and miR-128-3p
levels
Patients in the AIS group had significantly higher serum

miR-9-5p and miR-128-3p levels than those in the control
group (po0.05; Figure 2a, b). The levels of miR-9-5p
and miR-128-3p were found to be correlated with blood
pressure, BMI, LDL levels, hypertension, and hyperlipide-
mia. After controlling for these variables, significant differ-
ences were identified between the AIS and control groups
(Tables 2 and 3).

Detection of miR-9-5p and miR-128-3p levels via
ROC curve analysis
The relationship between serum miR-9-5p levels and AIS

was confirmed by analyzing the ROC curve (Figure 3a),
where the AUC was 0.9467 with a 95% confidence inter-
val (CI) ranging from 0.8996 to 0.993. The sensitivity and

Table 1 - General baseline information of the study participants.

Parameters Control (n=88) AIS (n=88) p

Male/Female 43/45 48/40 0.661
Age (years) 62.42±3.64 63.22±5.43 0.591
Body mass index (kg/m2) 26.44±1.32 24.33±1.22 0.016*

Blood pressure
Systolic pressure (mmHg) 142.33±6.13 136±2.32 0.027*
Diastolic pressure (mmHg) 94±2.77 83±2.64 0.005**
Creatinine (mmol/L) 245.09 236.22 0.521
High-density lipoprotein (mmol/L) 1.22±0.12 1.04±0.27 0.028*
Low-density lipoprotein (mmol/L) 3.28±0.28 2.61±0. 31 0.019*

Complications
Hypertension 78 58 0.008**
Diabetes 83 47 0.003**
Hyperlipidemia 63 40 0.014*

AIS: acute ischemic stroke. *po0.05, **po0.01.

Figure 2 - Comparison of serummiR-9-5p and miR-128-3p levels between the AIS and control groups. a) SerummiR-9-5p levels. b) Serum
miR-128-3p levels. *po0.05.
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specificity of the prediction were 89.75% and 82.66%,
respectively. Likewise, the ROC curve (Figure 3b) confirmed
the predictive value of miR-128-3p levels in the diagnosis of
AIS, with an AUC of 0.9288 with a 95% CI ranging from
0.8615 to 0.9961. The sensitivity and specificity of this
prediction were 73% and 79%, respectively.
The ROC curve (Figure 3c) confirmed the predictive value

of CT in the diagnosis of AIS, where the AUC was 0.5423
with a 95% CI ranging from 0.4234 to 0.6612. The sensitivity
and specificity were 48.45% and 55.11%, respectively. Finally,
the predictive value of serum NSE levels in the diagnosis of
AIS was confirmed using the ROC curve (Figure 3d), where
the AUC was 0.6858 with a 95% CI ranging from 0.5650 to
0.8066. The sensitivity and specificity were 68.75% and
53.26%, respectively. Thus, miR-9-5p and miR-128-3p may
serve as biomarkers for the diagnosis of AIS.

Correlation of serum miR-9-5p and miR-128-3p
levels with the modified Rankin scale (MRS) scores
The investigation of the relationship between serum miR-

9-5p and miR-128-3p levels and the MRS scores revealed that

the serum levels of these two miRNAs were positively
correlated with the prognostic MRS scores of the patients
(po0.05; Table 4).

’ DISCUSSION

AIS, which is the most prevalent cerebrovascular disease,
has a morbidity and mortality rate of approximately 3–5%
and a disability rate of 34–37% (1,18). Early diagnosis and
treatment would effectively reduce the death and disability
rates associated with this disease and significantly improve
the quality of life of patients (19).

Brain tissues contain diverse types of miRNAs (20). Due to
their very low molecular mass, miRNAs are readily secreted
into the blood, and their levels in the serum are highly
correlated with those in the brain tissue (21). Peripheral
blood miRNAs are easily detected and have been widely
used in the clinical diagnosis of various diseases because of
their various advantages, such as the low invasiveness of the
methods used for their analysis (22-27). In this study, the
serum miR-9-5p and miR-128-3p levels were quantified

Table 2 - Hierarchical analysis of miR-9-5p.

Group Subjects (n) miR-9-5p (mmol/L) F p

Blood pressure 9.21 o0.01**
High group 56 0.473±0.02
Control group 32 1.023±0.03

Body mass index 5.44 o0.01**
High group 63 0.543±0.12
Control group 25 0.972±0.11

Smoking 6.87 o0.01**
Yes 68 0.552±0.09
No 20 0.927±0.05

Low-density lipoprotein 8.44 o0.01**
High group 54 0.612±0.04
Control group 34 0.993±0.04

Hypertension 6.33 o0.01**
Yes 64 0.412±0.11
No 24 0.883±0.12

Hyperlipidemia 8.56 o0.01**
Yes 50 0.271±0.14
No 38 1.013±0.11

**po0.01.

Table 3 - Hierarchical analysis of miR-128-3p.

Group Case (n) miR-128-3p (mmol/L) F p

Blood pressure 8.33 o0.01**
High group 56 1.442±0.17
Control group 32 1.011±0.11

Body mass index 6.71 o0.01**
High group 63 1.553±0.10
Control group 25 1.001±0.11

Smoking 4.66 o0.01**
Yes 68 1.422±0.11
No 20 1.032±0.15

Low-density lipoprotein 7.69 o0.01**
High group 54 1.529±0.11
Control group 34 1.021±0.13

Hypertension 6.34 o0.01**
Yes 64 1.38±0.09
No 24 1.04±0.12

Hyperlipidemia 6.47 o0.01**
Yes 50 1.73±0.07
No 38 1.022±0.12

**po0.01.
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using qPCR and were found to be significantly higher in
patients with AIS than those in healthy individuals. Serum
miR-9-5p and miR-128-3p levels exhibited a significant
negative correlation with the prognostic outcomes in AIS.
Therefore, the serum levels of these two miRNAs exhibit
clinical utility in the early diagnosis and prevention of AIS.
Previous studies have focused on the relationships

between endoplasmic reticulum stress, miRNAs, and cere-
bral ischemia (28). For example, miR-335 was found to be
downregulated during AIS pathogenesis. Additionally, miR-
335 overexpression was found to promote stress granule
formation and inhibit apoptosis by targeting Rho-associated
protein kinase 2 (29). The ischemic zone in rats has been
shown to have reduced miR-9-5p expression. Furthermore,
another study showed that the upregulation of miR-9-5p
expression could improve cell viability and inhibit both

lactate dehydrogenase activity and neuronal apoptosis by
directly targeting ERMP1 (16). miR-9-5p expression in the
brain can assist in the growth and proliferation of the nerves
(30). Additionally, miR-9a-5p levels were significantly redu-
ced in a rat model of middle cerebral artery occlusion (31).
However, Sørensen et al. found that the levels of miR-9-5p
and miR-128-3p were increased in the cerebrospinal fluid of
patients with infarcts greater than 2 cm3 in volume (15). Such
differences may be attributed to the different sample types
used for miRNA detection. Previous studies that have
compared the distribution of the same miRNA in different
samples revealed that the levels are different in various types
of samples and that many factors can affect their detection
(32). In our study, miR-9-5p was found to be upregulated
during AIS pathogenesis, which is similar to the findings of
Sørensen et al. (15). We hypothesize that during the onset of
acute stroke, the viability of neuronal, glial, and other cells is
reduced, and in severe cases, apoptosis occurs in response to
ischemia and hypoxia. By targeting B-cell lymphoma 2-like
11, miR-9-5p can inhibit neuronal apoptosis in AIS (33), and
the upregulation of miR-9-5p promotes neuronal self-repair.
In a comparison of 65 patients with stroke and 66 healthy
individuals, researchers found a significant increase in
exosome-derived miR-9 levels in the stroke group, suggest-
ing that brain exosomes can cross the blood-brain barrier and
enter the peripheral circulation (34). Other researchers found

Figure 3 - Predictive value of serum miR-9-5p and miR-128-3p levels in patients with acute ischemic stroke, as evaluated by receiver
operator characteristic (ROC) curve analysis. a) ROC curve of serum miR-9-5p levels. b) ROC curve of serum miR-128-3p levels. c) ROC
curve of computed tomography findings. d) ROC curve of neuron-specific enolase (NSE) levels in the serum. *po0.05.

Table 4 - Correlation of the serum miR-9-5p and miR-128-3p
levels with the modified Rankin scale scores.

Parameter R p

miR-9-5p 0.066 0.003**
miR-128-3p 0.082 0.007**

**po0.01.
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that miR-9-3p levels in the hippocampus and exosomes were
increased in mice in which the central nervous system
neurons had been selectively damaged, indicating the
potential of this miRNA as a marker of brain injury (35).
Therefore, in the early stages of stroke, detection of miR-9-5p
in the blood of patients using relevant experimental
technology could help clarify the diagnosis of early brain
injury in stroke, and provide insights for developing efficient
treatment strategies for AIS.
It has been reported that miR-128b is significantly

upregulated in the plasma of patients with ischemic stroke
compared to that in healthy individuals (36). Another study
demonstrated a significant increase in the level of miR-128-
3p in the cerebrospinal fluid of patients with AIS compared
to that in the cerebrospinal fluid of the control patients (15).
Our finding of a significant increase in serum miR-128-3p
levels in patients with AIS is consistent with the results of the
aforementioned studies. Although our results are not entirely
comparable owing to the different types of samples used in
various studies, our findings are supported to some extent.
Therefore, in the early stages of stroke, the detection of high
serum miR-128-3p levels can also be used as an important
criterion for predicting the occurrence of neuronal apoptosis
in patients, thus providing clues for the early diagnosis of
ischemic stroke.
Our study has several limitations. First, the severity of AIS

was not categorized, which may have led to study bias.
Second, our cohort of patients with AIS was small; therefore,
further validation in a larger multicenter study is warranted.
Finally, the patients need to be followed up for a prolonged
period.
In conclusion, serum miR-9-5p and miR-128-3p levels

exhibit clinical utility in the early diagnosis of acute cerebral
infarction and can therefore be used as potential markers for
the diagnosis and treatment of AIS.
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