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ABSTRACT

Background: Tree height is an important variable in forestry, as it is commonly used to estimate volume 
and biomass, and to evaluate site productivity. In this study, we developed four generalized equations 
to model height-diameter (h-d) relationships for coniferous and broadleaf species. For this purpose, we 
used information from 49 permanent sampling plots located in the natural forests of Puebla, Mexico. 
Non-linear fixed and mixed-effects modeling approaches were used to fit generalized versions of the 
Gompertz function to Pinus patula and the Pinus group, the Näslund function to Abies religiosa, and the 
Curtis function to the Quercus group.

Results: Stand variables included in the models were the number of trees per hectare (N), quadratic 
mean diameter (dg), and basal area per hectare (G). The results showed a model efficiency (EF) = 0.91 
and root mean square error (RMSE) = 2.04 for P. patula, as well as an EF = 0.91 and RMSE = 1.63 for the 
Pinus group. The EF and RMSE for Abies religiosa were 0.88 and 2.21, while for the Quercus group these 
values were 0.72 and 1.9, respectively. From the mixed-effects model calibration, only a sub-sample of 
three trees from different quantiles of the diameter distribution is required to make accurate predictions. 
No stand-level variables related to tree height are included in any of the selected models, thus no 
additional measurements beyond tree diameter are required.

Conclusion: Compared to conventional non-linear least squares (ONLS), mixed-effects models are 
more flexible and accurate and represent a new tool for sustainable forest management of natural 
forests in the study area.

Keywords: Pinus patula, Abies religiosa, Pinus, Quercus, mixed-effects, calibration, cross-validation.

HIGHLIGHTS
Four new generalized height-diameter models were developed for species of central México.
Cross-validation was used to validate and calibrate the mixed-effects models simultaneously.
No tree height-related stand variables were used as predictors in the generalized models.
The number of trees per hectare was the most used variable and included in all selected models.
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INTRODUCTION
Tree height (h) is an important element in forest 

management and is used to characterize forest structure, 
estimate volume and biomass, and  assess site quality 
(Laar and Akça, 2007; Burkhart and Tomé, 2012). However, 
the measurement of tree height often requires more time 
and effort than measuring tree diameter or other tree 
variables. In addition, tree height is prone to measurement 
errors as it requires observing the top of the tree to make 
precise estimates (Prodan et al., 1997), which is often 
complicated in closed-canopy conditions, with broken 
trees, and in complex topographic positions (Vanclay, 
1994). Nevertheless, there are tools, such as allometric 
tree height-diameter (h-d) models, that can be used to 
estimate tree height instead of direct measurements 
(Calama and Montero, 2004; Mehtätalo et al., 2015). 

Several functions, both linear and non-linear, 
have been used to fit allometric tree h-d relationships, a 
compilation of which can be found in Mehtätalo et al. (2015) 
and Ogana et al. (2020). Functions that only include tree 
diameter as a predictor variable are known as local models 
and can be applied to accurately predict tree height, but they 
are not inherently useful in all forest conditions (Laar and Akça 
2007; Corral-Rivas et al., 2019). Therefore, a possible solution 
is to generalize local models by including stand variables 
that account for tree density or site quality (López et al. 2012; 
Hernández-Ramos et al., 2015). Furthermore, generalized 
models are often necessary in forest growth simulators 
(Hansen and Nagel, 2014) and for imputation of missing tree 
heights in large databases (Mehtätalo et al., 2015). 

In general, tree height is recorded in sample plots, 
generating grouped data. This structure often leads to a 
lack of independence among observations, thus violating 
the assumptions of ordinary least squares (OLS) traditionally 
used in forestry (West el al., 1984). The mixed-effects 
modeling approximation accounts for grouped structures 
(López et al., 2012) by modeling the variability between 
plots (Caballero-Deloya, 1998; Castedo Dorado et al., 2006). 
Furthermore, mixed-effects models can be calibrated (also 
known as localized) for tree height prediction on new plots 
when at least one additional tree height and diameter (pair) 
measurement is available, which simplifies their use and 
application in forestry (Corral-Rivas et al., 2019). 

In Mexico, mixed-effects models for predicting tree 
height have been scarcely applied, although some studies 
have been carried out in the state of Durango (Vargas-Larreta 
et al., 2009; Corral-Rivas et al., 2019). However, for central 
Mexico, most research studies do not include random effects 
(Guerra-De la Cruz et al., 2019). Therefore, deploying tree 
h-d models that account for hierarchical data structure, i.e. 
random effects, would contribute to Mexican forest science 
by providing a new management tool for economically and 
ecologically important species in central Mexico. 

The aim of this study was to develop four 
generalized tree h-d mixed-effects models for Pinus patula 
Schiede ex Schltdl. & Cham. and other major species of 
pure and mixed stands in northern Puebla, Mexico. The 
specific objectives were: (i) to test different local models 
from the literature and select the best fitted per species 

or genus (four in total); (ii) to generalize the best local 
models by including stand-level predictor variables; (iii) 
to test different combinations of parameters to expand 
with random effects at plot level; and (iv) to calibrate and 
validate the generalized mixed-effects models.  

MATERIAL AND METHODS

Study Area

This study was carried out in natural forests in northern 
Puebla, Mexico, located in the geographical province of the 
“Eje Neovolcanico Transversal”. The selected forest stands 
are part of the Forest Management Unit 2108 (UMF2108) 
“Zacatlán” located at the extreme coordinates of longitude 
[-98.06963°; -98.49796°] and latitude [19.68858°; 19.94516°]. 
In this section of Puebla, the climate is mostly temperate sub-
humid [12 – 18°C] with rains in summer (INEGI, 2008). The 
natural forests are mainly represented by associations of 
Pinus patula, Pinus teocote Schltdl. & Cham, Pinus ayacahuite, 
P. pseudostrobus Lindl., Abies religiosa (Kunth) Schltdl. & 
Cham., and Quercus laurina Humb et Bonpl. 

The database used in this study comes from 
49 permanent square plots (30x30 m), established in 
2008 under a stratified random sampling design and 
remeasured in 2012 (Figure 1). In this study we used 
only the data from 2012. In these plots, each tree with a 
diameter at breast height (1.3 m) equal to or larger than 
7.5 cm was measured, and data were collected on species, 
diameter at 1.3 m (d, cm), and total tree height (h, m), 
estimated with the use of a SUUNTO® clinometer. With 
these data, we estimated the number of trees per hectare 
(N), basal area per hectare (G), quadratic mean diameter 
(dg, cm), dominant tree height, as the average of the 100 
thickest trees per hectare (Ho, m), and its corresponding 
dominant tree diameter (Do, cm) (Assmann 1970). 

The species composition in the database was as 
follows: 81% Pinus (P. ayacahuite Ehrenb., P. montezumae 
Lamb., P. patula, P. pseudostrobus, and P. teocote), 7% 
Quercus (Q. rugosa Née and Q. laurina) and 11% Abies 
religiosa. Table 1 summarizes the descriptive statistics of 
the database. As some species have few observations, 
the individuals were grouped and fitted as follows: (i) P. 
patula, (ii) Pinus group (P. ayacahuite, P. montezumae, P. 
pseudostrobus, and P. teocote), (iii) Abies religiosa, and (iv) 
Quercus group (Q. rugosa and Q. laurina). 

Model Development

The tree h-d modeling process was divided into 
three steps: the first one was the development of the 
generalized mixed-effects models, where we fitted the six 
local models from the literature (Table 2, models 1-6) and 
selected one per group. Then, the selected models were 
generalized by directly adding stand variables from Table 
1 into the model. The second step was the fitting (using 
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 Obs. min max mean SD

Pinus patula

d (cm) 1594 7.5 78.5 26.6 13.6

h (m)  5.44 39 19.9 6.7

Pinus 

d (cm) 625 7.5 67.6 17.6 8.3

h (m)  4.75 33.5 11.8 5.5

Abies religiosa 

d (cm) 302 7.5 81.6 23.6 13.4

h (m)  5.25 40.25 18.9 6.3

Quercus 

d (cm) 204 7.5 33.4 15 4.8

h (m)  2.9 22.5 9.9 3.6

Stand 

N 2725 200 2311 981 571

G  10.9 84.3 43.7 13.8

dg  13.7 52.4 26.3 7.6

Ho  8.2 38.3 24.4 7.5

Do  16.9 66.7 36.5 13.3

the mixed modeling approximation) of the generalized 
models from the literature (Table 2, models 7-12) to 
compare them with the model developed in the first step. 
The third step comprised the calibration and validation 
of selected mixed-effects generalized models, one per 
group, using the cross-validation. These processes are 
described in more detail below. 

Tree height-diameter functions

To select the models that best explain the h-d 
relationship per group (P. patula, A. religiosa, Pinus, and 
Quercus groups), we tested 12 non-linear functions frequently 
used in forestry (López et al. 2012; Corral-Rivas et al. 2014; 
Hernández-Ramos et al. 2015; Ogana et al. 2020) (Table 2), 
using the mixed-effects modeling approximation.

Figure 1.    	
Study area location.

Table 1.    Descriptive statistics of the database by group and stand. Where d = mean tree diameter in cm, h = mean tree 
height in m, N = number of trees per hectare, G = basal area per hectare in m2, dg = quadratic mean diameter in cm, Ho = 
dominant tree height in m, Do = dominant tree diameter in cm, SD = standard deviation.
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Mixed-effects modeling approach

Mixed-effects models incorporate variables as fixed 
and random. In tree h-d modeling, while the population 
response for the fixed-effects model (when random effects 
are zero) are common to all trees and plots, random effects 
are specific to each plot, or to any other predefined grouping 
factor (Pinheiro and Bates 2000; Mehtätalo et al. 2015). In 
this study, we used the mixed-effects modeling approach 
to account for tree height variation within and between 
plots, incorporating the random effect at plot level. We also 
used this approach to overcome the lack of independence 

between observations (Castedo-Dorado et al. 2006; Corral-
Rivas et al. 2019). According to Pinheiro and Bates (2000), a 
mixed-effects model can be defined as follows: 

                              (13)

Where: yij = the j-th height (tree) taken at the i-th plot, xij  
= the j-th measurement of the predictor variable taken 
from the i-th plot, βi  = parameter vector r × 1 (r is the total 
number of parameters in the model) specific to each plot, f 
= non-linear function, eij= error term. 

Table 2.    The tree h-d equations analyzed in this study. Where h = total height (m); d = tree diameter (cm); H0 = dominant 
tree height (m); D0 = dominant tree diameter (cm); N = number of trees per hectare; G = basal area per hectare (m2. ha-1); 
dg = quadratic mean diameter (cm); hg = height corresponding to quadratic mean diameter (m); βi = model parameters.

Source Expression No.

Curtis, (1967) (1)

Schumacher, (1939) (2)

Näslund, (1936) (3)

Richards, (1959) (4)

Gompertz, (1825) (5)

Weibull (Weibull, 1951) (6)

Nagel (Nagel, 1999) (7)

Schröder-Álvarez I (2001) (8)

Schröder-Álvarez II (2001) (9)

Ogana et al., (2020) (10)

Corral et al., (2019) (11)

Sharma et al., (2016) (12)
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The parameter vector βi can be divided into the 
fixed part, common to the whole population, and the 
random components, specific to each sampling plot with 
the form: βi=Aiλ+Bibi, where λ is the vector p × 1 of the fixed 
parameters, (p is the number of fixed parameters); bi is the 
vector q × 1 of the random parameters associated with the 
i-th plot (q is the number of random parameters), A and B 
are design matrices of size r ×p and r ×q for the fixed and 
random effects specific to the i-th plot, respectively. The 
basic theoretical assumptions of non-linear mixed-effects 
models assume that the vector of residuals (ei) and the 
vector of the random effect (bi) have a normal distribution 
with mean equal to zero and a variance-covariance matrix 
(Ri and D) representing the variability among the different 
sampling plots (Lindstrom and Bates 1990; Littell et al. 2006).

To carry out the parameter estimation, the non-linear 
models were linearized using the first-order Taylor expansion 
around the random effects (Pinheiro and Bates 2000). The 
Lindstrom-Bates algorithm was used in the fitting process through 
the first-order conditional expectation (FOCE) approximation as 
the expansion method (Lindstrom and Bates 1990).

Parameter expansion with random effects

The procedure we followed, to choose which 
parameters to expand with random effects, was to consider 
all parameters from the non-linear model as fixed and 
random (mixed). When the model failed to converge, we 
systematically took out random effects until convergence 
was reached (Pinheiro and Bates 2000). In our case, several 
combinations of random effects were tested and the final 
model was chosen based on the goodness-of-fit statistics. 

In the fitting process, we chose the restricted maximum 
likelihood method (REML) to obtain the model parameters 
with the nlme package implemented in R (R Core Team 2019).

Calibration of the mixed-effects model. 

In forestry, the application of an already fitted 
mixed-effects model to a new plot is usually done by a 
method called calibration or localization (Hall and Bailey 
2001). In this study, the calibration involved the use of at 
least one tree height measurement from the new plot to 
predict the random effects. We used the Lindstrom-Bates 
algorithm through the FOCE method in the calibration 
procedure, where the value of the vector of random 
parameters bj, associated with the sampling plot, can be 
estimated through the following equation (Vonesh and 
Chinchilli 1997): 

                     (14)

Where: D̂ = variance-covariance matrix q ×q associated 
with the random parameters, (q is the number of random 
parameters included in the model) common to all plots.       
R ̂ i = variance-covariance matrix mj×mj of the model error 
term, êi = vector of residuals m× 1, whose components are 
obtained by the difference between the observed height of 
each tree and the predicted value using the model with only 
fixed parameters. Ẑ  i = matrix m×q of the partial derivatives 
of the random parameters evaluated in b ̂ =0. 

Number of trees for calibration

In order to evaluate the number of trees in the 
calibration process, we followed a similar approach to 
Ogana et al. (2020) and Corral-Rivas et al. (2019), i.e. we 
tested different subsample combinations based on the 
diameter distribution. In this regard, we selected different 
sample trees per plot under the following combinations: 
three sample trees Q[1;2;3] =  taking a subsample of the 
three closest trees to the 0.25, 0.50, and 0.75 quantiles 
of the diameter distribution. The remaining subsample 
categories include the Q[1;2], Q[1;3], Q[2;3], Q[2], and the three 
trees closest to the diameter dg, the smallest [min] and 
the largest [max], respectively.

Calibration was evaluated by estimating the amount 
of the root mean squared error (RMSE) reduction given by 
the different calibration options. Then, we compared the 
calibration options with the Nlme when all trees in the sampling 
plot are considered to estimate the random parameters. Using 
this approach, we were able to evaluate the number of trees 
using different calibration options; this process could also be 
combined with the model validation step. 

Validation of the mixed-effects model

In this study, we used leave-one-out cross-
validation (Hastie et al. 2009) and calibration 
simultaneously to evaluate the models. For this purpose, 
we coded a for loop in R that follows the next steps: step 
1) take out the plot number one and fit the mixed-effects 
model using the remaining plots; step 2) take a subsample 
from plot one and estimate the random effects using 
equation (13); step 3) use the predicted random effects 
along with the fixed effects from step 1 and make tree 
height predictions on the remaining trees; step 5) repeat 
the process with the plot number two and continue with 
the remaining plots until the whole database has all tree 
heights predicted; and step 6) with the observed and 
predicted tree heights calculate the RMSE. Overall, it was 
possible to use the results to rank the model based on 
the cross-validated/calibrated RMSE. 

Model assessment

The best models were selected on the basis of 
model accuracy and parsimony. While the former was 
evaluated using the RMSE and model efficiency (EF), which 
is similar to the coefficient of determination R2, parsimony 
was evaluated through the Akaike and Schwarz Bayesian 
information criteria, AIC and BIC, respectively (Schwarz 
1978), which are expressed as follows: 

                                                                            (15)

                                                                            (16)
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                                                                             (17)

                                                                             (18)

Where: yi = observed values, yi= predicted values, ŷi = 
average, n = total number of observations, p = number of 
parameters of the equation, SSR = sum of the squares of 
the residuals, log = natural logarithm. 

RESULTS
Overall, given the results we selected the 

proposed generalized mixed models instead of those 
from the literature. On the one hand, the proposed 
models have lower AIC and BIC, although the difference 

is not that great. On the other hand, the selected 
models do not include tree height-related stand 
variables, which can reduce the workload and make 
these models easier to apply, especially in the Mexican 
context. Further details of the results are given in the 
following paragraphs. 

Local mixed-effects models

The six local models (models 1 to 6 in Table 2) 
had different degrees of accuracy depending on the 
group and the number of parameters. The Gompertz 
model (5) was selected for the P. patula and Pinus 
groups, whereas for the A. religiosa and Quercus 
groups the best models were the Näslund (3) and 
Curtis (1) ones, respectively. The decision was based 
on the AIC and BIC (Table 3) ranking and visual analysis 
of the graphs (Figure 2).

Parameters
Pinus patula Pinus group Abies religiosa Quercus group

Estimate SE Estimate SE Estimate SE Estimate SE

β0 29.06 0.957 23.04 1.63 1.94 0.14 22.64 1.70

β1 2.01 0.131 2.30 0.22 0.15 0.01 15.05 0.98

β2 0.06 0.002 0.08 0.01 - - - -

sd(ui ) 5.97 - 6.47 - 0.55 - 3.98 -
sd(vi ) 0.75 - 0.81 - 0.02 - 0.0004 -

Cor(ui , vi ) 0.81 - 0.81 - -0.97 - 0.0020 -
AIC 6791.50 - 2384.50 - 1336.65 - 839.60 -
BIC 6812.99 - 2402.25 - 1347.78 - 849.55 -

Table 3.    Fitting results of the selected local mixed-effects models per group. Where β0...β2 are the fixed-effects parameters; 
ui and vi are the random effects.

Figure 2.    Graphical fitting 
of the selected local mixed-
effects models. Where the 
black lines represent the local 
curves and the dots are the 
observed h-d data.
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Generalized mixed-effects models

Pinus patula. For P. patula, the Gompertz model 
(5) was generalized by including quadratic mean diameter 
(log(dg)), basal area per hectare (G), and number of trees 
per hectare (N). log(dg) was incorporated to β0 and the 
log(G∕N) ratio to the β1 parameter. Although the inclusion 
of mean and dominant heights generally improves the 
height-diameter models, a large number of trees are 
needed to estimate such variables, which implies additional 
sampling cost. Regarding random effects, although we 
tested different combinations, only two parameters could 
be expanded with random effects β0 and β1. Therefore, the 
generalized mixed-effects model for P. patula was fitted 
through the following expression: 

(19)

Where hij is the tree height of the j tree in the i sample plot, 
dij is the tree diameter of the j tree in the i sample plot, dgi 
is the quadratic mean diameter for plot i, Gi and Ni are the 
basal area per hectare and the number of trees per hectare 
for plot i, β0...β4 are the fixed-effects parameters, ui and vi  
are random effects, and eij is the model error. 

The proposed generalized mixed-effects model (19) 
was compared with the generalized ones from the literature 
(models 7 to 12 from Table 2). In general, although the 
models had only marginal differences, we selected model 
(19) as the final model because it has the lowest values 
of RMSE, AIC, and BIC (Table. 4). In addition, model (19) 
does not include stand-level predictors associated with 
tree height, i.e. in practice, it does not need additional 
tree height measurements other than those used in the 
calibration procedure. Figure 3 shows no systematic trend 
in the distribution of the residuals. 

Pinus group

The generalized model for the Pinus group, 
based on the Gompertz function (5), includes the 
quadratic mean diameter (dg) and the number of 
trees per hectare (log(N)) incorporated to β0 and to β1, 
respectively. In relation to random effects, as well as for 
P. patula, only two parameters could be expanded with 
random effects, β0 and β1. Thus, the generalized mixed-
effects model for the Pinus group was fitted through 
the following expression: 

(20)

The generalized mixed-effects model for the Pinus 
group (20) was selected based on the goodness-
of-fit statistics (Table. 5). Model (20) converged by 
expanding two parameters with random effects. 
Although the generalized models have only marginal 
differences with other models, we selected model (20) 
as the final model because it has the lowest values of 
RMSE, AIC, and BIC and does not include stand-level 
predictors associated with tree height. As in the case of 
P. patula, the regression line for the Pinus group shows 
no evidence of heteroscedasticity in the distribution of 
the residuals (Figure 3). 

Abies religiosa

The generalized model for Abies religiosa was based 
on the Näslund model (3). Stand-level predictors included 
the log(G∕N) ratio associated with β0 and the quadratic 

Pinus patula (Model 19)
Parameters Estimate SE t-value

β0 -35.41 7.97 -4.45

β1 4.68 0.55 8.52

β2 0.06 0 23.12

β3 18.87 2.33 8.11

β4 1.01 0.19 5.36

Random components
sd(ui ) 3.72 - -
sd(vi ) 0.47 - -

Cor(ui ,vi ) 0.45 - -
Goodness-of-fit statistics

EF 0.91 - -
RMSE 2.04 - -
AIC 6800.74 - -
BIC 6832.99 - -

Table 4.    Fitting results of the selected generalized mixed-
effects model for Pinus patula. Where β0...β4 are the fixed-
effects parameters; ui and vi are the random effects. Pinus Group (Model 20)

Parameters Estimate SE t-value

β0 12.69 3.30 3.84

β1 7.74 1.61 4.81

β2 0.08 0.01 12.11

β3 0.34 0.11 3.13

β4 0.83 0.23 3.56

Random components

sd(ui ) 4.92 - -

sd(vi ) 0.52 - -

Cor(ui ,vi ) 0.64 - -

Goodness-of-fit statistics

EF 0.91 - -

RMSE 1.63 - -

AIC 2392.60 - -

BIC 2419.23 - -

Table 5.    Fitting results of the selected generalized mixed-
effects model for the Pinus group. Where β0...β4 are the 
fixed-effects parameters; ui and vi are the random effects. 
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mean diameter (dg) with β1. Regarding random effects, 
similar to the previous groups, only two parameters could 
be expanded with random effects, β0 and β1. Therefore, the 
generalized mixed-effects model for A. religiosa was fitted 
by using the following expression.

(21)

Compared to the generalized models from the literature, 
model (21) was ranked as the best one and chosen as the 
final model (Table 6). Additionally, the regression results 
for A. religiosa do not show any systematic trend in the 
distribution of the residuals (Figure 3). 

Quercus group
The generalized model proposed for the Quercus 

group was based on the Curtis model (1) and only included 
the square root ratio of N and G as stand-level predictors. 
Two parameters were expanded with random effects, β0 and 
β1. Therefore, the generalized mixed-effects model for the 
Quercus group was fitted through the following expression:

     (22)
The generalized mixed-effects model for the Quercus group 
(22) showed the best goodness-of-fit statistics compared 
to the generalized models from the literature (Table 7). 
Therefore, this model was chosen as the final one.

Table 6.    Fitting results of the selected generalized mixed-
effects model for Abies religiosa. Where β0...β4 are the fixed-
effects parameters; ui and vi are the random effects.

Table 7.    Fitting results of the selected generalized mixed-
effects model for the Quercus group. Where β0...β4 are the 
fixed-effects parameters; ui and vi are the random effects.

Abies religiosa (Model 21)
Parameters Estimate SE t-value

β0 3.58 0.74 4.85

β1 0.32 0.07 4.38

β2 0.65 0.28 2.31

β3 -0.05 0.02 -2.35

Random components
sd(ui ) 0.44 - -
sd(vi ) 0.02 - -

Cor(ui ,vi ) -0.94 - -
Goodness-of-fit statistics

EF 0.88 - -
RMSE 2.21 - -
AIC 1342.85 - -
BIC 1361.40 - -

Quercus group (Model 22)

Parameters Estimate SE t-value

β0 31.53 3.79 8.31

β1 15.08 0.98 15.35

β2 -2.48 0.95 -2.61

Random components

sd(ui ) 3.00 - -

sd(vi ) 0.0002 - -

Cor(ui ,vi ) 0.0010 - -

Goodness-of-fit statistics

EF 0.72 - -

RMSE 1.90 - -

AIC 846.68 - -

BIC 859.96 - -

Figure 3.    Residual plots per 
group of the generalized mixed-
effects models.
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Calibration and validation

Overall, the results regarding the evaluation of the 
calibration approach showed that in all cases it is better 
to use three trees to predict random effects. For P. patula 
and the Pinus group, the best option was achieved by 
measuring the total tree height of the three trees: 1) the 
tree with diameter closer to the dg, 2) the smaller (min 
d), and 3) the larger tree (max d) (Table 8). The best 
calibration strategy for Abies religiosa and the Quercus 
group was achieved by measuring the total height of three 
trees with a diameter close to the first three quantiles of 
the diameter distribution (Table 8). 

DISCUSSION

Local fixed-effects h-d models

Among the six local functions evaluated (Table 2), 
the Gompertz function (Gompertz, 1825) was the most 
accurate for P. patula and the Pinus group. The Gompertz 
function has a wide range of application in forest growth 
modeling (Burkhart and Tomé, 2012; Pödör et al. 2014). 
It has also been previously applied to describe the tree 
h-d relationships in natural forests in Nigeria (Ogana, 
2019) and to conifer species in the inland Northwest of 
the United States (Zhang, 1997), as well as to analyze how 
the tree h-d allometry is related to climate in the United 
States (Hulshof et al. 2015). In our study, considering the 
results on goodness-of-fit and model parsimony, the 
Gompertz function (5) was chosen for further analysis for 
P. patula and the Pinus group. 

Näslund (Näslund, 1936) (3) and Curtis (Curtis, 
1967) (1) functions were the most suitable for A. religiosa 
and the Quercus group, respectively. On the one hand, 
the Näslund function has been widely applied to describe 
tree h-d relationships; for example, in the studies of  
Mehtätalo et al. (2015) and Sharma et al. (2016), it was 
one of the most appropriate functions for modeling the 
tree h-d relationship in several datasets. On the other 
hand, the Curtis function has been tested in several 
studies (Mehtätalo et al., 2015; Sharma et al., 2016; Ogana, 
2019). However, contrary to our case, the Curtis function 
usually tended to show lower goodness-of-fit compared 

to other tree h-d functions (Sharma et al., 2016; Ogana 
2019), particularly when compared to 3-parameter models 
(Ng’andwe et al., 2019). In this study, we generalized the 
Näslund and Curtis functions using stand-level variables 
for A. religiosa and the Quercus group, respectively. 

Tree h-d model generalization

The generalization of tree h-d models is necessary 
to account for stand density, competition, and site quality 
(Prodan et al. 1997; Corral-Rivas et al. 2019; Bronisz and 
Mehtätalo, 2020). For this purpose, stand-level variables such 
as quadratic mean diameter (dg) or dominant tree height 
(H0) must be included in h-d models. For example, a newly 
developed model for Pinus nigra, based on the Chapman-
Richards function, included dominant tree height and 
dominant tree diameter as stand predictor variables (Raptis 
et al., 2021). Corral-Rivas et al. (2019) included H0, G, and N, 
while Ogana et al. (2020), Sharma et al. (2016), and Schröder 
and Álvarez (2001) used H0 and dg as predictor variables. 

In this study, we did not include stand-level variables 
related to tree height, such as dominant tree height. The 
main reason was that the integration of those stand-level 
predictors would imply additional field work, especially 
in the Mexican context. In Mexico, while most forest 
inventories require all tree diameters to be measured, not 
all of them require all tree heights. Therefore, the use of 
the models presented here are suitable.

In this study, the stand-level predictors included in 
all final generalized models can be estimated through tree 
diameters and the number of trees. A common variable in 
all four generalized models was the number of trees per 
hectare (N), while dg was added to P. patula, A. religiosa, 
and Pinus models, and G was included in P. patula, A. 
religiosa, and Quercus models. Similar studies included dg 
and G as stand-level predictor variables as these did not 
require additional measurements except tree diameter 
(Mehtätalo et al. 2015; Bronisz and Mehtätalo 2020). 

Parameter expansion with random effects

The parameter expansion procedure included 
the exploration of different parameter combinations. 
As recommended by Sharma and Parton (2007) and 
Mehtätalo et al. (2015), the first step was to try to fit 

Subsample
Pinus patula Pinus group Abies religiosa Quercus group
Model (19) Model (20) Model (21) Model (22)

Q[1;2;3] 2.54 2.16 2.89 2.10

Q[1;2] 2.64 2.53 2.90 2.24

Q[1;3] 2.79 2.18 2.91 2.13

Q[2;3] 2.47 2.39 3.35 2.13

Q[2] 2.58 2.87 3.26 2.28

dg, dmin, dmax 2.41 2.16 3.22 2.15

Table 8.    Comparison of the calibration alternatives applied to the selected generalized mixed-effects models. The table 
shows the RMSE using different combinations of sub-sample tree heights. The presented values were estimated via cross-
validation.
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the mixed-effects model using the three parameters 
expanded with random effects. However, convergence 
was not reached in any case, so it was decided to reduce 
the number and systematically combine parameters until 
convergence was achieved. Other studies have pointed 
out convergence problems, especially in models with more 
than two parameters to expand (Mehtätalo et al., 2015; 
Corral-Rivas et al., 2019; Ogana et al., 2020). In our study, 
in all the proposed generalized models, convergence was 
achieved with the expansion of two parameters. 

Random effects calibration

In this research, we used calibration and cross-
validation simultaneously to evaluate the prediction of 
random effects on new plots. For this purpose, it was 
necessary to take a sub-sample of tree heights from 
the new plot using an iterative approach to evaluate 
different calibration options (from one to three trees). In 
this context, some studies examined different calibration 
alternatives and although the results share some 
similarities, they also have some differences. 

In the study of Corral-Rivas et al. (2019), different 
sub-sample options were analyzed, from one to three trees. 
The best calibration option was to randomly select the 
three closest trees to the second quantile of the diameter 
distribution. In the study of Ogana et al. (2020), the best 
strategy was to randomly select just one tree. Calama 
and Montero (2004) used a sub-sample of four trees. In 
the study of Bronisz and Mehtätalo (2020), they tested 
several combinations and found that the best strategy was 
to select the thinnest and thickest trees to predict random 
effects. This finding was similar to that of our study, where 
the best strategy was to use the thinnest, the thickest, and 
the closest to the quadratic mean diameter for P. patula 
and the Pinus group. Although many studies have shown 
that only a small sub-sample of trees is necessary to make 
accurate predictions, the number and size of trees in the 
calibration is not consistent and may vary depending on 
the final mixed-effects model. However, most studies agree 
that the use of mixed-effects models is justified when at 
least one additional tree height measurement is available. 

It is important to note that all proposed models 
require knowledge of the diameter distribution to be 
calibrated correctly. Therefore, it may involve additional 
field work in certain cases. However, in the Mexican 
context, in most situations, all tree diameters are 
measured. In addition, the models presented in this study 
are intended to be integrated into dedicated software 
for forest management planning, and therefore do not 
involve additional field work in these situations.

New approaches in tree h-d modeling

In the case of multi-species and multi-layer forests 
there are cases where a dummy variable has been used 
instead several models (Sharma et al., 2018; Sharma et 
al., 2016). This may have some advantages, i) a common 
single model would be applicable to all species, ii) it 
allows to include species with only few observations, and 
iii) it could facilitate field work. 

In our case having a single model does not 
necessarily have advantages over the presented 
generalized models. On the one hand, the development of 
the different specific models shown in the study has made it 
possible to highlight the differences in the growth patterns 
of the species, differences that affect the h-d relationship 
and that are manifested in the fact that the base equations 
and the generalizations obtained are different in each 
case. From a practical point of view, the use of a single 
equation also does not bring any improvement, since it is 
still necessary to distinguish between species in order to 
assign values of 0 or 1 to the dummy variables. Therefore, 
further research is needed to test this approach, especially 
in the Mexican forestry context. 

CONCLUSIONS
In this work, we have developed four generalized 

mixed-effects models that describe the tree height-
diameter relationship for Pinus patula, Abies religiosa, and 
the Pinus and Quercus groups. In general, the proposed 
models showed appropriate goodness-of-fit statistics and 
with no evident violations of the statistical assumptions. 
These generalized models do not use tree height related 
stand-level variables as predictors, i.e. except for the 
calibration trees, no extra height measurements of the new 
plot are needed to make accurate predictions. 

Regarding model calibration, the best option is to 
estimate the random effects by only measuring the total 
height of three trees in the new plot. We recommend these 
models for total height prediction of trees growing in natural 
forests of northern Puebla, Mexico, specifically in the Forest 
Management Unit (UMAFOR) 2108, Zacatlán. However, their 
use can be extended to other regions where Pinus patula is 
naturally distributed, in which case we encourage users to 
first test the models by calibrating them. 

We are confident that our research will serve as a 
basis for future studies on other species and other regions. 
We suggest that further research should be undertaken 
at the national forest inventory level because the use of 
mixed-effects models for predicting tree heights or other 
variables (e.g. crown width, crown base height, and crown 
length) will reduce cost and effort by estimating heights 
instead of directly measuring them. In addition, it will be 
possible to use these models for imputation of missing tree 
heights in large databases, such as those from the national 
forest inventory of Mexico. Finally, the generalized mixed-
effects models developed in this study will contribute to 
Mexican forest science by providing new tools that support 
sustainable forest management, specifically by reducing the 
cost and effort involved in undertaking forest inventories. 
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